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1. INTRODUCTION

This paper is concerned with the following problem

x′′(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0, x′(0) = y0, (1.1)

where F : [0, T ] × X → P(X) is a set-valued map, X is a separable Banach space,

x0, y0 ∈ X and {A(t)}t≥0 is a family of linear closed operators from X into X that

genearates an evolution system of operators {U(t, s)}t,s∈[0,T ]. The general framework

of evolution operators {A(t)}t≥0 that define problem (1.1) has been developed by

Kozak ([13]) and improved by Henriquez ([10]).

The present paper is motivated by several recent papers ([1, 2, 3, 4, 10, 11]) where

existence results and qualitative properties of solutions for problem (1.1) have been

obtained by using fixed point techniques.
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In the present paper we study the properties of the map that associates to given

initial conditions the set of mild solutions of problem (1.1) and the main purpose is

to prove that this solution map depends Lipschitz-continuously on the initial condi-

tions. Our approach is based on an idea of Tallos ([12, 15]) applying the set-valued

contraction principle in the space of selections of the multifunction instead of the

space of solutions as usual. This approach allows us to obtain also a Filippov type

existence result for mild solutions of problem (1.1). Recall that for a differential in-

clusion defined by a lipschitzian set-valued map with nonconvex values, Filippov’s

theorem consists in proving the existence of a solution starting from a given ”quasi”

solution. Moreover, the result provides an estimate between the ”quasi” solution and

the solution obtained.

The results in this paper may be interpreted as extensions of similar results ob-

tained for other classes of second order differential inclusions ([6, 7]) to the more

general problem (1.1).

The paper is organized as follows: in Section 2 we recall some preliminary results

that we use in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

Let denote by I the interval [0, T ], T > 0 and let X be a real separable Banach space

with the norm |.| and with the corresponding metric d(., .). As usual, we denote by

C(I,X) the Banach space of all continuous functions x(.) : I → X endowed with

the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the Banach space of all (Bochner)

integrable functions x(.) : I → X endowed with the norm |x(.)|1 =
∫ T

0
|x(t)|dt. With

B(X) we denote the Banach space of linear bounded operators on X.

In what follows {A(t)}t≥0 is a family of linear closed operators from X into X

that genearates an evolution system of operators {U(t, s)}t,s∈I . By hypothesis the

domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 1. ([10, 13]) A family of bounded linear operators U(t, s) : X → X,

(t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if

i) For any x ∈ X, the map (t, s) → U(t, s)x is continuously differentiable and:

a) U(t, t) = 0, t ∈ I.

b) If t ∈ I, x ∈ X then ∂
∂t
U(t, s)x|t=s = x and ∂

∂s
U(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂s
U(t, s)x ∈ D(A(t)), the map (t, s) → U(t, s)x is of class C2

and:
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a) ∂2

∂t2
U(t, s)x ≡ A(t)U(t, s)x.

b) ∂2

∂s2
U(t, s)x ≡ U(t, s)A(t)x.

c) ∂2

∂s∂t
U(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
U(t, s)x, ∂3

∂s2∂t
U(t, s)x and:

a) ∂3

∂t2∂s
U(t, s)x ≡ A(t) ∂

∂s
U(t, s)x and the map (t, s) → A(t) · ∂

∂s
U(t, s)x is contin-

uous.

b) ∂3

∂s2∂t
U(t, s)x ≡ ∂

∂t
U(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [11])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space

X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)
dτ2

with domain H2(R,C) the Sobolev space of 2π-periodic functions whose derivatives

belong to L2(R,C). It is well known thatA1 is the infinitesimal generator of strongly

continuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely

the spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors

zn(τ) = 1√
2π
einτ , n ∈ N. The set zn, n ∈ N is an orthonormal basis of X. In

particular, A1z =
∑

n∈Z
−n2 < z, zn > zn, z ∈ D(A1). The cosine function is given

by C(t)z =
∑

n∈Z
cos(nt) < z, zn > zn with the associated sine function S(t)z = t <

z, z0 > z0 +
∑

n∈Z∗

sin(nt)
n

< z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ

with domain D(A2(t)) =

H1(R,C). Set A(t) = A1 + A2(t). It has been proved in [10] that this family

generates an evolution operator as in Definition 1.

Definition 2. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of

problem (1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such

that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I. (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and

x(.) is defined by (2.3).

We shall use the following notations for the solution sets of (1.1).

S(x0, y0) = {(x(.), f(.)); (x(.), f(.)) is a trajectory-selection pair

of (1.1)},
(2.4)
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S1(x0, y0) = {x(.); x(.) is a mild solution of (1.1)}. (2.5)

In the sequel the following conditions are satisfied.

Hypothesis H1. i) There exists an evolution operator {U(t, s)}t,s∈I associated

to the family {A(t)}t≥0.

ii) There exist M,M0 ≥ 0 such that |U(t, s)|B(X) ≤ M and | ∂
∂s
U(t, s)| ≤ M0, for

all (t, s) ∈ ∆.

iii) F (., .) : I × X → P(X) has nonempty closed values and for every x ∈ X,

F (., x) is measurable.

iv) There exists L(.) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, .) is L(t)-

Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ X,

here dH(A,B) is the Hausdorff distance between A,B ⊂ X

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B);

a ∈ A}.

v) d(0, F (t, 0)) ≤ L(t) a.e. (I)

Let m(t) =
∫ t

0
L(u)du and for given α ∈ R we consider on L1(I,X) the following

norm

|f |1 =

∫ T

0

e−αm(t)|f(t)|dt, f ∈ L1(I,X),

which is equivalent with the usual norm on L1(I,X).

Consider the following norm on C(I,X)× L1(I,X)

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,X)× L1(I,X).

Finally we recall some basic results concerning set valued contractions that we

shall use in the sequel.

Let (Z, d) be a metric space and consider a set valued map T on Z with nonempty

closed values in Z. T is said to be a λ-contraction if there exists 0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ Z

If Z is complete, then every set valued contraction has a fixed point, i.e. a point

z ∈ Z such that z ∈ T (z) ([8]).

We denote by Fix(T ) the set of all fixed point of the multifunction T . Obviously,

Fix(T ) is closed.

Theorem 3. ([14]) Let Z be a complete metric space and suppose that T1, T2 are

λ-contractions with closed values in Z. Then

dH(Fix(T1), F ix(T2)) ≤
1

1− λ
sup
z∈Z

dH(T1(z), T2(z)).
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3. THE MAIN RESULTS

We are ready now to show that the set of all trajectory-selection pairs of (1.1) depends

Lipschitz-continuously on the initial condition.

Theorem 4. Let Hypothesis H1 be satisfied and let α > M .

Then the map (x0, y0) → S(x0, y0) is Lipschitz-continuous on X×X with nonempty

closed values in C(I,X)× L1(I,X).

Proof. Let us consider x0, y0 ∈ X, f(.) ∈ L1(I,X) and define the following set valued

maps

Mx0,y0,f (t) = F (t,−
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds), t ∈ I (3.1)

Tx0,y0
(f) = {φ(.) ∈ L1(I,X); φ(t) ∈Mx0,y0,f (t) a.e. (I)}. (3.2)

We shall prove first that Tx0,y0
(f) is nonempty and closed for every f ∈ L1(I,X).

The fact that that the set valued mapMx0,y0,f (.) is measurable is known. For example,

the map t→ − ∂
∂s
U(t, 0)x0+U(t, 0)y0+

∫ t

0
U(t, s)f(s)ds can be approximated by step

functions and we can apply Theorem III. 40 in [5]. Since the values of F are closed

and X is separable with the measurable selection theorem (Theorem III.6 in [5]) we

infer that Mx0,y0,f (.) admits a measurable selection φ. According to Hypothesis H1

one has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, x(t))) ≤ L(t)(1 + |x(t)|)

≤ L(t)(1 +M0|x0|+M |y0|+

∫ t

0

M |f(s)|ds).

Thus integrating by parts we obtain

∫ T

0

e−αm(t)|φ(t)|dt ≤

∫ T

0

e−αm(t)L(t)(1 +M0|x0|+M |y0|+

∫ t

0

M |f(s)|ds)dt ≤
1 +M0|x0|

α
+
M |y0|

α
+
M |f |1
α

.

Hence, if φ(.) is a measurable selection of Mx0,y0,f (.), then φ(.) ∈ L1(I,X) and thus

Tx0,y0
(f) 6= ∅.

The set Tx0,y0
(f) is closed. Indeed, if φn ∈ Tx0,y0

(f) and |φn − φ|1 → 0 then we

can pass to a subsequence φnk
such that φnk

(t) → φ(t) for a.e. t ∈ I, and we find

that φ ∈ Tx0,y0
(f).

The next step of the proof will show that Tx0,y0
(.) is a contraction on L1(I,X).
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Let f, g ∈ L1(I,X) be given, φ ∈ Tx0,y0
(f) and let ε > 0. Consider the following

set valued map

G(t) =Mx0,y0,g(t) ∩ {x ∈ X; |φ(t)− x| ≤ L(t)|

∫ t

0

U(t, s)(f(s)− g(s))ds|+ ε}.

Since

d(φ(t),Mx0,y0,g(t)) ≤d(F (t,−
∂

∂s
U(t, 0)x0 + U(t, 0)y0

+

∫ t

0

U(t, s)f(s)ds), F (t,−
∂

∂s
U(t, 0)x0 + U(t, 0)y0

+

∫ t

0

U(t, s)g(s)ds)) ≤ L(t)|

∫ t

0

U(t, s)(f(s)− g(s))ds|

we deduce that G(.) has nonempty closed values. Moreover, according to Proposition

III.4 in [5], G(.) is measurable. Let ψ(.) be a measurable selection of G(.). It follows

that ψ ∈ Tx0,y0
(g) and

|φ− ψ|1 =

∫ T

0

e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0

e−αm(t)L(t)(

∫ t

0

M |f(s)

− g(s)|ds)dt+

∫ T

0

εe−αm(t)dt ≤
M

α
|f − g|1 + ε

∫ T

0

e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ, Tx0,y0
(g)) ≤

M

α
|f − g|1.

Replacing f by g we obtain

d(Tx0,y0
(f), Tx0,y0

(g)) ≤
M

α
|f − g|1,

hence Tx0,y0
(.) is a contraction on L1(I,X).

Consequently Tx0,y0
(.) admits a fixed point f(.) ∈ L1(I,X). We define x(t) =

− ∂
∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds.

We have that S(x0, y0) ⊂ C(I,X) × L1(I,X) is a closed subset. Let (xn, fn) ∈

S(x0, y0), |(xn, fn) − (x, f)|C×L → 0. Thus, fn ∈ Fix(Tx0,y0
), which is a closed set,

and thus f(.) ∈ Fix(Tx0,y0
). Set y(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds

and we prove that y(.) = x(.). One may write

|y − xn|C = sup
t∈I

|y(t)− xn(t)| ≤ sup
t∈I

M

∫ t

0

|fn(u)− f(u)|du ≤Meαm(T )|fn − f |1

and finally we get that y(.) = x(.).

We prove next the following inequality

dH(Tx1,y1
(f), Tx2,y2

(f)) ≤
1

α
(M0|x1 − x2|+M |y1 − y2|) (3.3)
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∀f ∈ L1(I,X), x1, x2, y1, y2 ∈ X. Let us consider the set-valued map

G1(t) =Mx1,x2,f (t)∩{z ∈ X; |φ(t)−z| ≤ L(t)(|
∂

∂s
U(t, 0)||x1−x2|+|U(t, 0)||y1−y2|+ε},

t ∈ I, where φ(.) is a measurable selection of Mx1,y1,f (.) and ε > 0.

With the same arguments used for the set valued map G(.), we deduce that G1(.)

is measurable with nonempty closed values. Let ψ(.) be a measurable selection of

G1(.). It follows that ψ(.) ∈ Tx2,y2
(f) and

|φ− ψ|1 =

∫ T

0

e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0

e−αm(t)L(t)(|
∂

∂s
U(t, 0)|

· |x1 − x2|+ |U(t, 0)||y1 − y2|)dt+ ε

∫ T

0

e−αm(t)dt ≤
M0

α
|x1 − x2|

+
M

α
|y1 − y2|+ ε

∫ T

0

e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ, Tx2,y2
(f)) ≤

1

α
(M0|x1 − x2|+M |y1 − y2|).

Replacing (x1, y1) by (x2, y2) we obtain (3.3).

From (3.3) and Theorem 3 we obtain

dH(Fix(Tx1,y1
), F ix(Tx2,y2

)) ≤
1

α−M
(M0|x1 − x2|+M |y1 − y2|).

Let x1, x2, y1, y2 ∈ X and (x(.), f(.)) ∈ S(x1, y1). In particular, f(.) ∈ Fix(Tx1,y1
)

and thus, for every ε > 0 there exists g(.) ∈ Fix(Tx2,y2
) such that

|f − g|1 ≤
1

α−M
(M0|x1 − x2|+M |y1 − y2|) + ε. (3.4)

Put z(t) = − ∂
∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)g(s)ds. One has

|x− z|C =sup
t∈I

|x(t)− z(t)| ≤M0|x1 − x2|+M |y1 − y2|

+ sup
t∈I

∫ t

0

M |f(s)− g(s)|ds ≤M0|x1 − x2|+M |y1 − y2|

+MTeαm(t)|f − g|1 ≤ (1 +
Meαm(t)

α−M
)(M0|x1 − x2|+M |y1 − y2|)

+
Meαm(t)

α−M
ε.

If we denote k = max{M0 +
MM0e

αm(T )

α−M
,M + M2eαm(T )

α−M
} we deduce first that

d((x, f),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|]



326 A. CERNEA

and by interchanging (x1, y1) and (x2, y2) we obtain

dH(S(x1, y1),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|]

and the proof is complete.

Obviously, from Theorem 4 we also obtain

Corollary 5. Let Hypothesis H1 be satisfied and let α > M . Then the map

(x0, y0) → S1(x0, y0) is Lipschitz continuous on X × X with nonempty values in

C(I,X).

In general, under the hypothesis of Theorem 4 the set S1(x0, y0) is not closed in

C(I,X). The next result shows that if X is reflexive and the multifunction F (., .) is

convex valued and integrably bounded then S1(x0, y0) ⊂ C(I,X) is closed.

Let B be the closed unit ball in X.

Theorem 6. Assume that X is reflexive, α > M and let F (., .) : I ×X → P(X) be

a convex valued set valued map that satisfies Hypothesis H1. Assume that there exists

k(.) ∈ L1(I,X) such that for almost all t ∈ I and for all x ∈ X, F (t, x) ⊂ k(t)B.

Then for every x0, y0 ∈ X, the set S1(x0, y0) ⊂ C(I,X) is closed.

Proof. Let xn(.) ∈ S1(x0, y0) such that |xn−x|C → 0. There exists hn(.) ∈ L1(I,X)

such that (xn(.), hn(.)) is a trajectory-selection pair of (1.1) ∀n ∈ N . We define

fn(t) = e−αm(t)hn(t), t ∈ I.

The set valued map F (., .) being integrably bounded, we have that fn(.) is bounded

in L1(I,X) and ∀ε > 0, ∃δ > 0 such that ∀E ⊂ I, µ(E) < δ |
∫
E
fn(s)ds| < ε

uniformly with respect to n. Moreover, X is reflexive and so by the Dunford-Pettis

criterion ([9]), taking a subsequence and keeping the same notations, we may assume

that fn(.) converges weakly in L1(I,X) to some f(.) ∈ L1(I,X).

We recall that for convex subsets of a Banach space the strong closure coincides

with the weak closure. We apply this result. Since fn(.) converges weakly in L1(I,X)

to f(.) ∈ L1(I,X) for all h ≥ 0, f(.) belongs to the weak closure of the convex

hull co{fn(.)}n≥h of the subset {fn(.)}n≥h. It coincides with the strong closure of

co{fn(.)}n≥h. Hence there exist λni > 0, i = n, . . . k(n) such that

k(n)∑
i=1

λni = 1, gn(.) =

k(n)∑
i=n

λni fi(.) ∈ co{fn(.)}n≥h

and such that gn(.) converges strongly to f(.) in L1(I,X). Let

ln(.) =

k(n)∑
i=n

λni hi(.)
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Then there exists a subsequence gnj
(.) that converges to f(.) almost everywhere.

Hence, lnj
(.) converges almost everywhere to l(.) = eαm(.)f(.) ∈ L1(I,X). Hence

using the Lebesque dominated convergence theorem, for every t ∈ I we obtain

lim
j→∞

∫ t

0

U(t, s)lnj
(s)ds =

∫ t

0

U(t, s)l(s)ds

We define

y(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)l(s)ds, t ∈ I

and observe that

|x(t)− y(t)| ≤ |x(.)− xnj
(.)|C + |

∫ t

0

U(t, s)lnj
(s)ds−

∫ t

0

U(t, s)l(s)ds|

which yields x(t) = y(t) ∀t ∈ I.

Let us observe now that for almost every t ∈ I

lnj
(t) ∈

k(nj)∑
i=nj

λ
nj

i F (t, xi(t)) ⊂ F (t, x(t)) + L(t)

k(nj)∑
i=nj

λ
nj

i |x(t)− xi(t)|B.

Since limi→∞ |x(t)−xi(t)| = 0, we deduce that f(t) ∈ F (t, x(t)) a.e.(I) and the proof

is complete.

Using the same idea as in the proof of Theorem 4 one may obtain a Filippov type

existence result for problem (1.1).

Theorem 7. Let Hypothesis H1 be satisfied and let α > M and let y(.) be a mild

solution of the problem

x′′ = A(t)x+ g(t) x(0) = x1, x′(0) = y1,

where g(.) ∈ L1(I,X) and there exists p(.) ∈ L1(I,R) such that

d(g(t), F (t, y(t))) ≤ p(t), a.e. (I).

Then for every ε > 0 there exists x(.) a mild solution of (1.1) satisfying for all

t ∈ I

|x(t)− y(t)| ≤ (M0 +
MM0T

α−M
eαm(t))|x0 − y0|+ (M+

M2

α−M
eαm(t))|x1 − y1|+

αMeαm(t)

α−M

∫ T

0

e−αm(s)p(s)ds+ ε. (3.5)
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Proof. We keep the same notations as in the proof of Theorem 4. Consider the

following set-valued maps

F̃ (t, x) = F (t, x) + p(t)B, (t, x) ∈ I ×X,

M̃x1,y1,f (t) = F̃ (t,−
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds), t ∈ I

T̃x1,y1
(f) = {φ(.) ∈ L1(I,X); φ(t) ∈ M̃x1,y1,f (t) a.e. (I)},

f ∈ L1(I,X), where B is the closed unit ball in X. Obviously, F̃ (., .) satisfies Hy-

pothesis H1.

As in the proof of Theorem 4 we obtain that T̃x1,y1
(.) is also a M

α
-contraction on

L1(I,X) with closed nonempty values.

We prove next the following estimate

dH(Tx0,y0
(f), T̃x1,y1

(f)) ≤
M0

α
|x0 − x1|+

M

α
|y0 − y1|+

∫ T

0

e−αm(t)p(t)dt (3.6)

∀ f(.) ∈ L1(I,X).

Let φ ∈ Tx0,y0
(f), δ > 0 and, for t ∈ I, define

G1(t) = M̃x1,y1,f (t) ∩ {z ∈ X; |φ(t)− z| ≤ L(t)(|
∂

∂s
U(t, 0)||x1−

x0|+ |U(t, 0)||y1 − y0|) + p(t) + δ}.

With the same arguments used for the set-valued map G(.) in the proof of Theorem

4, we deduce that G1(.) is measurable with nonempty closed values. Let ψ(.) be a

measurable selection of G1(.). It follows that ψ(.) ∈ T̃y0,y1
(f) and one has

|φ− ψ|1 =

∫ T

0

e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0

e−αm(t)[L(t)(|
∂

∂s
U(t, 0)||x1 − x2|

+ |U(t, 0)||y1 − y2|) + p(t) + δ]dt ≤
M0

α
|x0 − x1|

+
M

α
|y0 − y1|+

∫ T

0

e−αm(t)p(t)dt+ δ

∫ T

0

e−αm(t)p(t)dt.

Since δ > 0 was arbitrary, as above, we obtain (3.6). Applying Theorem 3 we get

dH(Fix(Tx0,y0
), F ix(T̃x1,y1

)) ≤
M0

α−M
|x0 − y0|+

M

α−M
|x1 − y1|+

α

α−M

∫ T

0

e−αm(t)p(t)dt.

Since g(.) ∈ Fix(T̃x1,y1
) it follows that there exists f(.) ∈ Fix(Tx0,y0

) such that

for any ε > 0
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|g − f |1 ≤
M0

α−M
|x0 − x1|+

M

α−M
|y0 − y1|+

α

α−M

∫ T

0

e−αm(t)p(t)dt

+
ε

Meαm(T )
. (3.7)

We define x(t) = − ∂
∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds, t ∈ I and we have

|x(t)− y(t)| ≤M0|x0 − x1|+M |y0 − y1|+Meαm(t)|f − g|1.

Combining the last inequality with (3.7) we obtain (3.5).
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