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ABSTRACT: We would like to propose the solution of the heat equation without

boundary conditions. The methodology used is Laplace transform approach, and the

transform can be changed another ones. This attempt is more advanced than the

existing method and has a meaning in that it is approached in a general way without

restricting the boundary conditions. The solution of heat equation is presented by

using the property of integrability of transform.
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1. INTRODUCTION

The solution of the partial differential equations is a general method to obtain the

solutions by using Fourier series which is the basis of Fourier transform, which is

one of the integral transforms. The efforts have been pursued to solve the PDEs

using other integral transform other than Fourier series. A representative example

of these transforms is Laplace transform, and Laplace-typed transform can be used

as an alternative to Laplace transform. This-typed integral transforms are mainly

Sumudu[1-3], Elzaki[4-6] and G-transform[7-8], and these transforms are not yet well-

resolved to solve the heat equation. For this reason, this research is deemed necessary.

To find the solution of the heat equation in which the boundary conditions are not

given is not well treated in this way so far. In this research, the solution of the heat

equation in which the boundary conditions are not given is obtained by using Laplace
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transform. The strong point of integral transform is well-represented in computed

tomography (CT) or magnetic resonance imaging (MRI) which obtain the projection

data by integral transform and produce the image with the inverse transform.

Ang [9] has dealt with the problem of solving the one-dimensional heat equation

subject to given initial and nonlocal conditions. Using the method of the Laplace

transform, Mainardi[10] showed that the fundamental solutions of the basic Cauchy

and signaling problems can be expressed in terms of an auxiliary function. In the

process of solving this diffusion problem numerically, the Laplace transform method

is used to eliminate the dependence on time[11]. On the other hand, Begacem[12] has

mentioned applications of integral transform in nonlinear fractional and stochastic

differential equations and systems.

The main objective of this paper is to give a solution of the heat equation with-

out boundary conditions by using the method of integral transforms. This study is

meaningful in that it suggests points to be considered in existing studies.

Theorem 5 deals with finding the solution using Laplace-typed transforms when

boundary conditions are not restricted. The obtained solution is as follows; We con-

sider
∂u

∂t
= c2

∂2w

∂x2
(1)

subject to u(x, 0) = f(x) where u(x, y, z, t) is the temperature at a point (x, y, z) and

time t, and f(x) is the initial temperature. Of course, c2 = K/ρσ, where K is the

thermal conductivity, ρ is the density, and σ is the specific heat. Then the solution

u(x, t) equals to
c√
4πt

∫ ∞

−∞
e−(|x−τ |2/4tc2)f(τ) dτ .

If we changed the tool of transform to G-transform, a generalized Laplace-typed

transform, then the representation of transform has to be changed to

c

2
Uα+ 1

2

∫ ∞

−∞
e
− 1

c
√

u
|x−τ |

f(τ) dτ

for an integer α and for U = G(u).

2. THE SOLUTION OF THE HEAT EQUATION WITHOUT

BOUNDARY CONDITIONS

Lemma 1. (Boundedness theorem) Let I = [a, b] be a closed bounded interval and

let f : I → R be continuous on I. Then f is bounded on I [13].

Lemma 2. Let V1 and V2 be normed linear spaces, and let T : V1 → V2 be a linear

operator. Then T is continuous if and only if there is a non-negative number A such
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that

||T (v)|| ≤ A||v||

holds for each v in V1[14].

Lemma 3. (Lebesgue dominated convergence theorem(LDCT) [14]). Let (X,M, µ)

be a measure space and suppose {fn} is a sequence of extended real-valued measurable

functions defined on X such that

a) limn→∞ fn(x) = f(x) exists µ-a.e.

b) There is an integrable function g so that for each n, |fn| ≤ g µ-a.e.

Then f is integrable and

lim
n→∞

∫
X

fndµ =

∫
X

fdµ.

We note that the above lemma gives a validity to the following equality

∫ ∞∑
n=1

gn dµ =

∞∑
n=1

∫
gn dµ

for (gn) is a nondecreasing sequence.

As a study of comprehensive forms, we have proposed the intrinsic structure and

properties of Laplace-typed integral transforms in [7] as

F (u) = G(f) = uα

∫ ∞

0

e−
t

u f(t)dt (1)

for α is an integer and for G is a generalized integral transform. In general, Laplace

transform has a strong point in the transforms of derivatives, that is, the differen-

tiation of a function f(t) corresponds to multiplication of its transform £(f) by s.

While, if we choose G−2(f) as

G−2(f) =
1

u2

∫ ∞

0

e−
t

u f(t)dt, (2)

then this transform is giving a simple tool for transforms of integrals. That is, the

integration of a function f(t) corresponds to multiplication of G−2(f) by u, whereas,

the differentiation of f(t) corresponds to division of G−2(f) by u. This means that

the integer α is applicable to −2 in (1). This transform is meaningful in that it can

select values of various α. In (2), Laplace transform has a value α = 0, Sumudu one

has α = −1, and Elzaki one has α = 1.

Lemma 4. The following properties are valid in G-transform[8].

(A) (u-shifting) If f(t) has the transform F (u), then eatf(t) has the transform

F (
u

1− au
).
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That is,

G−2[e
atf(t)] = F (

u

1− au
).

(B) (t-shifting) If f(t) has the transform F (u), then the shifted function f(t −
a)h(t− a) has the transform e−a/uF (u). In formulas,

G−2[f(t− a)h(t− a)] = e−a/uF (u)

for h(t− a) is Heaviside function(We write h since we need u to denote u-space.)

(Ca)

G−2(f
′) =

1

u
Y − 1

u2
f(0)

(Cb)

G−2(f
′′) =

1

u2
Y − 1

u3
f(0)− 1

u2
f ′(0)

for Y = G−2(f) and for f is n-th differentiable.

(Cc)

G−2(f
(n)) =

1

un
Y − 1

un+1
f(0)− 1

un
f ′(0)− 1

un−1
f ′′(0)− · · ·

− 1

u2
f (n−1)(0)

for n is an arbitrary natural number.

(D) Let F (u) denote the transform of an integrable function f(t) i.e., F (u) =

G−2[f(t)]. Then

G−2[

∫ t

0

f(τ)dτ ] = uF (u)

holds for t > 0.

(E)

G−2(f ∗ g) = u2G−2(f)G−2(g)

where ∗ is the convolution of f and g.

(Fa)

G−2(f)
′(u) =

dG

du
= − 2

u
Y +

1

u2
G−2(tf(t))

(Fb)

G−2(f)
′′(u) =

6

u2
Y − 2

u
G−2(tf(t))(1 +

1

u2
) +

1

u2
G−2(t

2f(t))

(Fc) ∫ ∞

u

G−2(f)(s)ds = a− u2G−2(
f(t)

t
)
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for a constant a =
∫∞
0

f(t)/t dt and for Y = G−2(f)(u) under the condition of the

limit of f(t)/t, as t approaches 0 from the right, exists.

(Fd) G−2(ty
′) = Y + u(dY/du) and G−2(ty

′′) = dY/du + (1/u2)y(0) for Y =

G−2(f)(u).

From now on, let us check the solution of heat equation without the boundary

conditions.

Theorem 5. (heat equation without the boundary conditions)

Let us consider the heat equation

∂u

∂t
= c2

∂2w

∂x2
(1)

subject to u(x, 0) = f(x) where u(x, y, z, t) is the temperature at a point (x, y, z) and

time t, and f(x) is the initial temperature. Of course, c2 = K/ρσ, where K is the

thermal conductivity, ρ is the density, and σ is the specific heat. Then the solution

u(x, t) equals to
c√
4πt

∫ ∞

−∞
e−(|x−τ |2/4tc2)f(τ) dτ .

In this equation, if we changed the tool of transform to G-transform, a generalized

Laplace-typed transform, then the representation of transform has to be changed to

c

2
Uα+ 1

2

∫ ∞

−∞
e
− 1

c
√

u
|x−τ |

f(τ) dτ

for an integer α and for U = G(u).

Proof. Taking Laplace transform on both sides, we have

sU(x, s)− u(x, 0) = c2
∂2U

∂x2

for U(x, s) = £[u(x, t)]. Organizing the equality, we have

c2
∂2U

∂x2
− sU(x, s) = −f(x). (4)

At first, let us find the solution Uh of

c2
∂2U

∂x2
− sU(x, s) = 0.

Since the trial solution is u = eλx, we can easily find the solution Uh of the form of

Uh(x, s) = c1e
√
sx/c + c2e

−√
sx/c. (5)
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Next, let us find the particular solution Up of (5). Clearly, the Wronskian of bases is

−2
√
s/c, and so,

Up(x, s) = −e
√

sx

c

∫ x

0

e−
√

sτ

c
(−f(τ))

−2
√
s

c

dτ + e−
√

sx

c

∫ x

0

e
√

sτ

c (−f(τ))
−2

√
s

c

dτ

= − c

2
√
s
· e

√
sx

c

∫ x

0

e−
√

sτ

c f(τ) dτ +
c

2
√
s
e−

√
sx

c

∫ x

0

e
√

sτ

c f(τ) dτ (6)

From (4) and (5), we have

U(x, s) = c1e
√

sx

c + c2e
−

√
sx

c − c

2
√
s
· e

√
sx

c

∫ x

0

e−
√

sτ

c f(τ) dτ

+
c

2
√
s
e−

√
sx

c

∫ x

0

e
√

sτ

c f(τ) dτ

= (c1 −
c

2
√
s

∫ x

0

e−
√

sτ

c f(τ) dτ) · e
√

sx

c + (c2 +
c

2
√
s

∫ x

0

e
√

sτ

c f(τ) dτ) · e−
√

sx

c .

Note that the integrability of U ensures the boundedness of it. Since U is bounded

as x → ∞,

c1 =
c

2
√
s

∫ ∞

0

e
√

sτ

c f(τ) dτ.

Similarly, since U is bounded as x → −∞,

c2 = − c

2
√
s

∫ −∞

0

e
√

sτ

c f(τ) dτ =
c

2
√
s

∫ 0

−∞
e

√
sτ

c f(τ) dτ.

Thus

U(x, s) =
c

2
√
s
e

√
sx

c

∫ ∞

x

e−
√

sx

c f(τ) dτ +
c

2
√
s
e−

√
sx

c

∫ x

−∞
e

√
sτ

c f(τ) dτ

=
c

2
√
s

∫ ∞

x

e
√

s

c
(x−τ)f(τ) dτ +

c

2
√
s

∫ x

−∞
e−

√
s

c
(x−τ)f(τ) dτ

=
c

2
√
s

∫ ∞

−∞
e−

√
s

c
|x−τ |f(τ) dτ (7)

Since

£(
e−

a
2

4t

√
πt

) =
e−a

√
s

√
s

,

setting a = |x− τ |/c, we have

£(
e−

|x−τ|2
4tc2

√
4πt

) =
e

−√
s

c |x− τ |
2
√
s

,

and hence,

u(x, t) = £−1(U(x, s)) = £−1(
c

2
√
s

∫ ∞

−∞
e−

√
s

c
(x−τ)f(τ) dτ)
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= c

∫ ∞

−∞
£−1(

e−
√

s

c
(x−τ)

2
√
s

)f(τ) dτ

=
c√
4πt

∫ ∞

−∞
e−(|x−τ |2/4tc2)f(τ) dτ .

In this theorem, the tool of transform can be changed to another transform such as a

generalized transform, G-transform. Then the above (7) has to be changed to

c

2
Uα+ 1

2

∫ ∞

−∞
e
− 1

c
√

u
|x−τ |

f(τ) dτ

for an suitable integer α and for U = G(u). Note that F (u) is defined by

F (u) = G(f) = uα

∫ ∞

0

e−
t

u f(t)dt.

In theorem 5, if the temperature u(x, y, z, t) is a continuous on 0 ≤ u ≤ L, by

lemma 1, u is bounded on the interval. The boundedness of the transform U follows

from the integrability of it. Let us check some related things.

Corollary 6. In theorem 5, if the temperature

u(x, t) =
c√
4πt

∫ ∞

−∞
e−(|x−τ |2/4tc2)f(τ) dτ

is a continuous on 0 ≤ u ≤ L, then ||u||1 is a norm and u is bounded.

Proof. Since a continuous function on [0, L] that vanishes almost everywhere must

vanish everywhere, we have f = 0, and so u = 0. The remaining conditions of normed

space are clearly established. On the other hand, the linearity of u is established from

the linearity of f . Hence, by lemma 2, u is bounded.

Example 1. Let us consider a semi-infinite insulated bar

∂u

∂t
= c2

∂2w

∂x2

subject to w(x, 0) = T0, w(0, t) = 0 and w(x, t) = 0 as x approaches 0.

Solution. In a similar way to theorem 5, we obtain the solution

w(x, t) = T0 erf(x/2c
√
t)

where

erf(x) =
2√
π

∫ x

0

e−t2 dt.



660 H. KIM

In the above example, erf(x) is called the error function.

Of course, Laplace transform can be changed to another transform, and it is well

adapted to wave equation. Hence, now that let us change to integral transform to

a generalized transform, G-transform[7]. Let us check the solution of semi-infinite

string by G-transform in terms of a typical example as appearing in [15].

We consider the semi-infinite string subject to the following conditions.

a) The string is initially at rest on the x-axis from x = 0 to ∞.

b) For t > 0 the left end of the string is moved in a given fashion, namely, according

to a single sine wave w(0, t) = f(t) = sin t if 0 ≤ t ≤ 2π, and zero otherwise.

c) Furthermore, limw(x, t) = 0 as x → ∞ for t ≥ 0.

Of course there is no infinite string, but our model describes a long string or

rope(of negligible weight) with its right end fixed far out on the x-axis[15]. If so, let

us find the displacement w(x, t) of the above elastic string. It is well-known fact that

the equation of semi-infinite string can be expressed by

∂2w

∂t2
= c2

∂2w

∂x2
(8)

subject to w(0, t) = f(t), lim w(x, t) = 0 as x → ∞, w(x, 0) = 0 and wt(x, 0) = 0.

In [16, 17], we have dealt with the validity on exchangeability of integral and limit

in the solving process of PDEs by using dominated convergence theorem of lemma 3.

Example 2. We consider the above equation (8). Taking G-transform, we have

the solution

w(x, t) = f(t− x

c
)h((t − x

c
) = sin(t− x

c
)

for x
c < t < x

c + 2π and zero otherwise, where h is Heaviside function[7].

Let us check another heat equation without boundary conditions.

Example 3. Let us consider

∂u

∂t
= c2

∂2w

∂x2

subject to u(x, 0) = 3sin(2πx).

Solution. Taking Laplace transform on both sides, we have

U(x, s) = c1e
√

sx

c + c2e
−

√
sx

c +
3

s+ 4π2
sin(2πx).



HEAT EQUATION WITHOUT BOUNDARY CONDITIONS 661

The boundedness of U follows from the integrability of U . Hence, as x → −∞, we

have c2 = 0 and as x → ∞, c1 = 0. Thus

U(x, s) =
3

s+ 4π2
sin(2πx),

and so

u(x, t) = 3e−4π2tsin(2πx).
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