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1. INTRODUCTION

One of the most important problems in modern mathematical physics is to under-

stand the asymptotic behavior of the trajectories of infinite-dimensional dynamical

systems induced by PDEs. One way to investigate the problem for dissipative dy-

namical systems is to study their global attractors which contain much of the relevant

information about the systems and often some finite-dimensional characters. The first

step is to study the existence of a global attractor. After that, we study the dynamics

of the global attractor such as the regularity, structure, continuous dependence on

parameters, fractal dimension estimates, etc.
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Recently, the class of equations involving an operator of Grushin type

Gsu = ∆xu+ |x|2s∆yu, s ≥ 0

has been studied widely by many mathematicians (for examples, see [1, 2, 4, 5, 6,

10, 11, 14, 15, 16]). Here (x, y) ∈ Ω and Ω is a bounded domain in R
N = R

N1 ×
R

N2 (N1, N2 ≥ 1) with smooth boundary ∂Ω. The operator Gs was first introduced

by Grushin in [7] when s is a positive integer, and later by Franchi and Lanconelli in

[6] when s is not an integer. Note that G0 is the Laplace operator denoted by ∆, and

Gs, when s > 0, is not elliptic (but hypoelliptic) in domains of RN1 ×R
N2 intersecting

the surface {x = 0}.
In this paper, we study the dynamics of the global attractor for the following

semilinear degenerate parabolic problem














ut −Gsu+ f(u) = g(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

Note that if s = 0, the equation (1.1) is just the nonlinear reaction-diffusion equation.

Here we assume that u0 ∈ L2(Ω), g ∈ L∞(Ω), and f : R → R is a function of

polynomial type, that is, f is a C1 function satisfying the following conditions

c1|s|p − c0 ≤ f(s)s ≤ c2|s|p + c0, p ≥ 2, (1.2)

f ′(s) ≥ −ℓ, (1.3)

where c0, c1, c2 and ℓ are positive constants. A typical example of such functions is a

polynomial of odd order with positive leading coefficient

f(u) =

2p+1
∑

i=0

aiu
i, ai ∈ R, a2p+1 > 0.

The existence and uniqueness of weak solutions, and the existence of a global attractor

A in L2(Ω) of the continuous semigroup S(t) generated by (1.1) were proved by Anh

and Ke in [2] under the assumption g ∈ L2(Ω).

To study problem (1.1), we recall some weighted function spaces which will be

used in the paper. Let S1
0(Ω) be the completion of C1

0 (Ω̄) with the norm

‖u‖S1

0

=

(
∫

Ω

|∇xu|2 + |x|2s|∇yu|2 dxdy

)
1

2

.

Then we know that S1
0(Ω) is a Banach space and the embedding S1

0(Ω) →֒ L2(Ω)

is compact. Denote A = −Gs with the homogeneous Dirichlet boundary condition.

Then its domain

D(A) =
{

u ∈ S1
0(Ω) | Au ∈ L2(Ω)

}
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is a Banach space with the graph norm

‖u‖D(A) =

(
∫

Ω

|Gsu|2dxdy
)

1

2

.

We also know that the embedding D(A) →֒ S1
0(Ω) is compact.

The paper is organized as follows. In Section 2, we show that the global attractor of

the semigroup S(t) induced by (1.1) is bounded in L∞(Ω) and D(A). In Section 3, we

investigate the existence of a Lyapunov function, the injectivity on the global attrac-

tor, the squeezing property and its consequences. In Section 4, we obtain estimates

on upper bound and lower bound of the fractal dimension of the global attractor.

These are an extension of some previous results for the nonlinear reaction-diffusion

equations in [9, 12, 13].

Throughout the paper, for brevity, we denote by | · |, ‖ · ‖∞ and ‖ · ‖S1

0

the norms

in the spaces L2(Ω), L∞(Ω) and S1
0(Ω), respectively.

2. BOUNDEDNESS OF GLOBAL ATTRACTORS

In this section, we prove that the global attractor A of the semigroup S(t) induced by

(1.1) is bounded in both L∞(Ω) and D(A), which will be used in the next sections.

Theorem 2.1. The global attractor A of the equation (1.1) is bounded in L∞(Ω).

Proof. For u ∈ L2(Ω), we denote

u+(x, y) =







u(x, y), u(x, y) > 0,

0, otherwise,

and similarly

u−(x, y) =







u(x, y), u(x, y) < 0,

0, otherwise.

By (1.2), we have

f(s)s ≥ c1|s|p − c0

for all s ∈ R. Hence we get

f(s) ≥ ‖g‖∞ when s ≥ M for sufficiently large M > 0. (2.1)

Multiplying the first equation in (1.1) by (u−M)+ and integrating over Ω yield

1

2

d

dt

∫

Ω

(u−M)2+dxdy +

∫

Ω

(

|∇x(u−M)+|2 + |x|2s|∇y(u−M)+|2
)

dxdy
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+

∫

Ω

f(u)(u−M)+dxdy =

∫

Ω

g(u−M)+dxdy.

By (2.1), we see that

1

2

d

dt

∫

Ω

(u−M)2+dxdy +

∫

Ω

(

|∇x(u−M)+|2 + |x|2s|∇y(u −M)+|2
)

dxdy ≤ 0.

Since the space S1
0(Ω) is embedded into L2(Ω), we have

∫

Ω

(

|∇x(u−M)+|2 + |x|2s|∇y(u−M)+|2
)

dxdy ≥ C

∫

Ω

(u−M)2+dxdy.

It follows that
d

dt

∫

Ω

(u −M)2+dxdy ≤ −C

∫

Ω

(u−M)2+dxdy,

and so
∫

Ω

(u −M)2+dxdy ≤ e−Ct

∫

Ω

(u0 −M)2+dxdy.

Since A is bounded in L2(Ω) (Theorem 2.6 in [2]) and invariant under S(t), we obtain
∫

Ω

(u −M)2+dxdy = 0

for all u ∈ A. We apply a similar argument to (u+M)− to deduce that
∫

Ω

(u+M)2−dxdy = 0

for all u ∈ A. This shows that

‖u‖∞ ≤ M for all u ∈ A.

Using the boundedness of A in L∞(Ω), we now show that A is bounded in D(A).

Theorem 2.2. The global attractor A of the equation (1.1) is bounded in D(A).

Proof. We rewrite the equation (1.1) as

Au = −du

dt
− f(u) + g, u(0) = u0. (2.2)

To prove the theorem, it is enough to show that the right-hand side of the first equation

of (2.2) is bounded in L2(Ω) on A. Since u ∈ L∞(Ω), we see that f(u) ∈ L2(Ω), and

we have had g ∈ L2(Ω).

First let us estimate
∫ t

0
|ut|2ds. Multiply ut :=

d
dtu to both sides of the following

equation

ut +Au+ f(u) = g. (2.3)
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Then we get

|ut|2 +
1

2

d

dt
‖u‖2S1

0

+

∫

Ω

f(u)utdxdy =

∫

Ω

g(x, y)utdxdy,

and so

|ut|2 +
1

2

d

dt
‖u‖2S1

0

+
d

dt

∫

Ω

F (u)dxdy =
d

dt

∫

Ω

g(x, y)udxdy, (2.4)

where F (s) =
∫ s

0
f(σ)dσ is a primitive of f . Integrating the equality (2.4) from 0 to

t gives

∫ t

0

|ut|2dt+
1

2
‖u(t)‖2S1

0

=
1

2
‖u0‖2S1

0

−
∫

Ω

F (u(x, y, t))dxdy +

∫

Ω

F (u(x, y, 0))dxdy

+

∫

Ω

g(x, y)u(x, y, t)dxdy −
∫

Ω

g(x, y)u(x, y, 0)dxdy.

Since A is bounded in both S1
0(Ω) and L∞(Ω), we see that

∫ t

0

|ut|2dt+
1

2
‖u(t)‖2S1

0

≤ K (2.5)

for some K > 0.

Next we obtain the bound on ut in L2(Ω). Differentiate (2.3) to obtain

d

dt
ut +Aut + f ′(u)ut = 0.

If we take the inner product with t2ut, then we get

(t2ut, ∂tut)− t2(ut, Gsut) = −t2(f ′(u)ut, ut).

Noting that f ′(s) ≥ −ℓ for all s ∈ R, it follows that

1

2

d

dt
|tut|2 − t|ut|2 + t2‖ut‖2S1

0

≤ t2ℓ|ut|2.

Integrating between 0 and t gives

|tut|2 +
∫ t

0

t2‖ut‖2S1

0

ds ≤
∫ t

0

(s+ ℓs2)|ut|2ds.

For t = 1, we have sups∈[0,1](s+ ℓs2) = 1 + ℓ. Employing this and by (2.5), we have

|ut(1)|2 ≤ (1 + ℓ)

∫ 1

0

|ut|2ds ≤ (1 + ℓ)K.

Hence we obtain the uniform L2(Ω) bound on ut(1) for all u ∈ A. Since A is invariant,

we can deduce that −du/dt− f(u) + g is uniformly bounded in L2(Ω) over A. Since

Au is uniformly bounded in L2(Ω), we conclude that u is uniformly bounded in D(A)

for all u ∈ A.
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Remark 2.1. Using the asymptotic a priori estimate method as in [17], one can

show the existence of global attractors for the semigroup S(t) in the spaces Lp(Ω),

S1
0(Ω) and D(A) ∩ L2p−2(Ω). Of course, these global attractors coincide with the

global attractor A in L2(Ω) obtained in [2].

3. DYNAMICS OF GLOBAL ATTRACTORS

In this section, we prove the existence of a Lyapunov function on A and the injectivity

of the semigroup S(t) on A using the boundedness of A. Moreover, we show that the

squeezing property for (1.1) holds.

First, we recall the concept of Lyapunov functions.

Definition 3.1. Let S(t) be a continuous semigroup on a Banach space X. A

Lyapunov function for a positively invariant set M ⊂ X is a functional Φ : M → R

such that

(i) Φ is continuous on M;

(ii) Φ is nonincreasing along trajectories;

(iii) if Φ(S(t)u0) = Φ(u0) for some t > 0, then u0 is a fixed point of S(t).

We now prove the following result.

Theorem 3.1. The functional Φ on the global attractor A of the equation (1.1)

given by

Φ(u) =

∫

Ω

(

1

2
|∇xu|2 +

1

2
|x|2s|∇yu|2 + F (u)− gu

)

dxdy

is a Lyapunov function on A, where F (s) =
∫ s

0 f(σ)dσ.

Proof. By (2.4), we have
d

dt
Φ(u) = −|ut|2,

which implies that Φ is strictly decreasing along the trajectories. Hence if Φ(u(T )) =

Φ(u0) for some T > 0, then we see that u(t) ≡ u0 for all 0 ≤ t ≤ T, and so u0 is a

fixed point. We now show the continuity of Φ on A. Since
∫

Ω

(

|∇xu|2 + |x|2s|∇yu|2
)

dxdy = ‖u‖2S1

0

= (Au, u) ≤ |Au||u|,

we see that ‖u‖2
S1

0

is Lipschitz continuous on A. Furthermore, we have

∣

∣

∫

Ω

(F (u)− F (v)) dxdy
∣

∣ =
∣

∣

∫

Ω

∫ u(x,y)

v(x,y)

f(s) dsdxdy
∣

∣
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≤
∫

Ω

‖f‖∞|u(x)− v(x)| dxdy

≤ ‖f‖∞|u− v|

where ‖f‖∞ := supu∈A ‖f(u)‖∞ < ∞ since A is bounded in L∞(Ω), and

∣

∣

∫

Ω

(gu− gv) dxdy
∣

∣ ≤ ‖g‖∞|u− v| for u, v ∈ A.

This implies that Φ is a Lyapunov function on A.

Because the existence of a Lyapunov function, we can say more about the structure

of the global attractorA. It is known that a global attractor is the union of all bounded

complete trajactories. Moreover, in our case due to the existence of a Lyapunov

function, the global attractor A is the unstable manifold of the set of equilibria

A = Wu(E),

where E is the set of all fixed points of the semigroup S(t).

To show the injectivity of the semigroup S(t) on A, we need the following lemma

whose proof can be found in [12, Chapter 11].

Lemma 3.1. Let H and V be Hilbert spaces, and H∗ and V ∗ be their duals, respec-

tively, with V ⊂⊂ H ∼= H∗ ⊂ V ∗. Suppose that w ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A))

satisfies
dw

dt
+Aw = h(t, w(t)) in L2(0, T ;H), and

|h(t, w(t))| ≤ k(t)‖w(t)‖, k(t) ∈ L2(0, T ),

where A is a bounded linear operator from V into V ∗. If w(T ) = 0, then w(t) = 0 for

all 0 ≤ t ≤ T.

Theorem 3.2. The semigroup S(t) has the injectivity property on A. More precisely,

if u(t) and v(t) are two trajectories on A with u(T ) = v(T ) for some T > 0, then

u(t) = v(t) for all 0 ≤ t ≤ T.

Proof. Let w = u− v. Then we have

dw

dt
+Aw + f(u)− f(v) = 0. (3.1)

Since the global attractor A is bounded in both S1
0(Ω) and D(A), we obtain

w ∈ L∞(0, T ;S1
0(Ω)) ∩ L2(0, T ;D(A)).

Let

h(t, w(t)) = f(v(t)) − f(u(t)).
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Then we see that

|f(u)− f(v)|2 =

∫

Ω

|f(u)− f(v)|2dxdy

=

∫

Ω

∣

∣

∫ u(x,y)

v(x,y)

f ′(s) ds
∣

∣

2
dxdy

≤
∫

Ω

‖f ′‖2∞|u(x, y)− v(x, y)|2dxdy

≤ ‖f ′‖2∞|u− v|2L2 , (3.2)

where ‖f ′‖∞ := supu∈A ‖f ′(u)‖∞ < ∞ since A is bounded in L∞(Ω). Consequently,

we get

|h(t, w(t))| ≤ ‖f ′‖∞|w(t)| ≤ C‖w(t)‖S1

0

.

Hence we complete the proof by applying Lemma 3.1.

By Theorem 3.2, we can see that every trajectory on A is defined for all t ∈ R,

and S(t)A = A for all t ∈ R. Hence {S(t)}t∈R is a dynamical system on A.

Definition 3.2. We say that the squeezing property holds for a semigroup {S(t)}t≥0

if, for each 0 < δ < 1, there is a finite-rank orthogonal projection P = P (δ), with

orthogonal complement Q = Q(δ), such that for all u, v ∈ A, either

|Q(Su− Sv)| ≤ |P (Su− Sv)| (3.3)

or if not, then

|Su− Sv| ≤ δ|u− v|, (3.4)

where S = S(1).

We will verify that the squeezing property indeed holds for the equation (1.1).

The main idea is to consider w(t) = u(t) − v(t) and to estimate the equation that

bound d(Pw)/dt below and d(Qw)/dt above. The following lemma which will be used

in our proof is clear.

Lemma 3.2. For t ∈ [0, T ], let x(t) ∈ R satisfy the following inequality

1

2

d

dt
|x|2 ≤ C(t)|x|,

where C(t) is continuous. Then we have

d

dt+
|x| ≤ C(t).

Theorem 3.3. The squeezing property holds for the semigroup S(t) induced by the

equation (1.1).
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Proof. Let ωj be eigenfunctions of A which are orthonormal in L2(Ω) with corre-

sponding eigenvalues λj , increasing in j with

Aωj = λjωj , λj+1 ≥ λj , for j = 1, 2, . . .

(for more details, see [3]). Let u, v ∈ A, and w = u − v. Then the equation (3.1) is

satisfied. For each n ∈ N, define

Pnw =

n
∑

j=1

(w, ωj)ωj and Qnw =

∞
∑

j=n+1

(w, ωj)ωj .

Put p = Pnw and q = Qnw. Then we have w = p+ q. Take the inner product of (3.1)

with p to get
1

2

d

dt
|p|2 + ‖p‖2S1

0

+ (f(u)− f(v), p) = 0.

By (3.2), we have
1

2

d

dt
|p|2 + ‖p‖2S1

0

≥ −C|w||p|,

where C = ‖f ′‖∞. Due to the eigenvalue expansion of u and the fact that ‖u‖2
S1

0

=

(Au, u), we have

‖p‖S1

0

≤ λ
1

2

n |p| (3.5)

and

‖q‖S1

0

≥ λ
1

2

n+1|q|. (3.6)

By (3.5), we obtain
1

2

d

dt
|p|2 ≥ −λn|p|2 − C|w||p|.

By Lemma 3.2, this becomes

d

dt+
|p| ≥ −λn|p| − C(|p|+ |q|).

Similarly, we take the inner product of (3.1) with q to obtain, by applying (3.6),

d

dt+
|q| ≤ −λn|q|+ C(|p|+ |q|). (3.7)

Choose n sufficiently large so that

λn − C > 2C. (3.8)

If (3.3) holds, then we are done. If not, we have

|Qnw(1)| > |Pnw(1)|. (3.9)
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Using (3.8), we see that

(λn − C)|Qnw(t)| > 2C|Pnw(t)| (3.10)

for t = 1. Since w(t) is continuous into L2(Ω), (3.10) is satisfied in a neighborhood of

t = 1. Consider the following two cases.

Case 1. Suppose (3.10) holds for all t ∈ [ 12 , 1]. By (3.8), we have

(λn − C)|q| − C|p| > 1

2
(λn − C)|q| > C|q|

for all t ∈ [ 12 , 1]. Then (3.7) becomes

d

dt+
|q| ≤ −λnC|q|, and so |q(1)| ≤ e−

1

2
λnC

∣

∣q
(1

2

)∣

∣.

By (3.9), we get

|w(1)| ≤
√
2e−

1

2
λnC

∣

∣q
(1

2

)∣

∣ ≤
√
2e−

1

2
λnC

∣

∣w
(1

2

)∣

∣.

Since the solutions u and v satisfy the Lipschitz property (see Theorem 2.4 in [2]),

we obtain that
∣

∣w
(1

2

)∣

∣ ≤ L
(1

2

)

|w(0)|.

Hence

|w(1)| ≤
√
2L

(1

2

)

e−
1

2
λnC |w(0)|.

This induces (3.4) if λn is chosen to be sufficiently large enough.

Case 2. Suppose there exists t0 ≥ 1/2 such that (3.10) is valid on (t0, 1] and

(λn − C)|Qnw(t0)| = 2C|Pnw(t0)| (3.11)

Define a map Φ : [t0, 1] → R by

Φ(t) = Φ(p(t), q(t)) = (|p|+ |q|)exp
( λn|q|
C(|p|+ |q|)

)

.

Then we have
dΦ

dt
≤ 0 for all t ∈ [t0, 1].

Hence

Φ(1) ≤ Φ(t0).

Since (3.10) holds at t = 1, we obtain

Φ(1) ≥ |q(1)|eλn/C .
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On the other hand, since (3.11) holds at t = t0, it follows that

2C(|p(t0)|+ |q(t0)|) = (λn + C)|q(t0)|,

and so

Φ(t0) =
λn + C

2C
|q(t0)|e2λn/(λn+C).

Consequently

|q(1)| ≤ e−λn/C
λ+ C

2C
e2|q(t0)|.

Using the Lipschitz property of the solutions again, we see that

|q(1)| ≤ e−λn/C
λ+ C

2C
e2L(1)|w(0)|.

Since |p(1)| < |q(1)|, we must have

|w(1)| ≤ 2e−λn/C
λn + C

2C
e2L(1)|w(0)|.

Hence if we choose n sufficiently large enough, we obtain (3.4), and so it completes

the proof.

Remark 3.1. As pointed out in [12, Chapter 14], the squeezing property has many

important consequences. First, using the squeezing property one can show that the

global attractor A lies close to a finite-dimensional Lipschitz manifold as a graph

over PL2(Ω) and that the dynamics ”projected” onto PL2(Ω) (here P = P (δ) is

the finite-rank orthogonal projection in Definition 3.2) give a good indication on the

asymptotic behavior of solutions. Furthermore, one can prove that the flow on the

global attractor A has a finite number of determining modes, i.e., for two solutions

u(t) and v(t) on the the attractor, if

|P (u(t)− v(t))| → 0 as t → ∞

then

|u(t)− v(t)| → 0 as t → ∞.

4. FRACTAL DIMENSION ESTIMATES

In this section, we obtain an upper bound and a lower bound of the fractal dimension

of the global attractor A. For brevity, we denote V = S1
0(Ω) and H = L2(Ω). The

scalar product on V and H will be denoted by ((·, ·)) and (·, ·), respectively. Then we

have

V ⊂ H ∼= H∗ ⊂ V ∗.
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Let F (u) = −Gs+f(u)−g, where u is the solution of (1.1), g ∈ L∞(Ω), and f : R → R

is a function of polynomial type satisfying (1.2)-(1.3) and an additional assumption:

f ∈ C2(R) and f ′′ is uniformly bounded on the bounded sets of R. (4.1)

For any t ∈ [0, T ], define

A(t) : V → V ∗ by A(t) = F ′(u(t)),

where F ′ is the Fréchet derivative of F with F ′(u) = −Gs + f ′(u). Then A(t) is an

isomorphism sending D(A(t)) onto H. For each t ∈ [0, T ], define a(t; ·, ·) : V ×V → R

by

a(t;u, v) = 〈A(t)u, v〉,

where 〈·, ·〉 is a dual pairing of V and V ∗. Then {a(t;u, v) : t ∈ [0, T ]} is a family of

bilinear continuous forms on V such that

∀u, v ∈ V, t 7→ a(t;u, v) is a measurable function, (4.2)

∃M = MT < ∞ s.t. |a(t;u, v)| ≤ MT‖u‖‖v‖, ∀u, v ∈ V, a.e. t ∈ [0, T ], (4.3)

∃α > 0 s.t. a(t;u, u) ≥ α‖u‖2, u ∈ V, a.e. t ∈ [0, T ]. (4.4)

For any ξ ∈ H, consider the following initial value problem







dU(t)

dt
+A(t)U(t) = 0 on (0, T ),

U(0) = ξ.
(4.5)

Then from (4.2)-(4.4) we can show that there exists a unique solution U of (4.5) such

that

U ∈ L2(0, T ;V ) ∩C([0, T ];H), (4.6)

U ′ ∈ L2(0, T ;V ′). (4.7)

From the above setting, we have the following result on the uniform differentiability

of S(t) on A.

Lemma 4.1. For every t > 0, S(t) is uniformly differentiable on A. Its differential

at u0 ∈ A is the linear operator L(t, u0) : ξ ∈ H 7→ U(t) ∈ H, where U(·) is the

solution of (4.5). Moreover, we have supu0∈A |L(t, u0)|L (H) < ∞.

Proof. Let t0 > 0 and u0, v0 ∈ A. Let u, v be the solutions of (1.1) with u(0) = u0

and v(0) = v0, and U be the solution of (4.5) with ξ = u0 − v0. For each t ≥ 0, define

a linear operator

L(t, u0) : ξ ∈ H 7→ U(t) ∈ H.
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Let η(t) = v(t)− u(t)− U(t) for t ≥ 0. Then we see that η(t) satisfies η(0) = 0 and

dη

dt
−Gsη + f ′(u)η = h, (4.8)

where

h = f(u)− f(v) + f ′(u)(v − u) = [f ′(u)− f ′(u + θ(v − u))](u− v), 0 < θ < 1.

By Theorem 2.1 and (4.1), we see that

|h(t)| ≤ c|u− v|2,

for some c > 0 and all t ≥ 0. Hence, by Theorem 2.4 in [2], we get

|h(t)| ≤ ce4ℓt|u0 − v0|2, for all t ≥ 0. (4.9)

We multiply (4.8) by η and integrate over Ω. Then (1.3) and Green’s formula yield

1

2

d

dt
|η|2 + ‖η‖2S1

0

≤ ℓ|η|2 +
∫

Ω

hη dxdy ≤ (ℓ+
1

2
)|η|2 + 1

2
|h|2.

Hence by (4.9),

d

dt
|η|2 ≤ (2ℓ+ 1)|η|2 + c2e8ℓt0 |u0 − v0|4, for all 0 ≤ t ≤ t0.

By Gronwall’s inequality, we obtain

|η(t0)|2 ≤ e(2ℓ+1)t0 − 1

2ℓ+ 1
c2e8ℓt0 |u0 − v0|4.

This implies that S(t0) is uniformly differentiable on A, and its differential at u0 ∈ A
is L(t0, u0). Moreover, by the continuous dependence of solution of (4.5) on the initial

data, we can see that supu0∈A |L(t, u0)|L (H) < ∞.

We now recall the definition of fractal dimension. The fractal dimension of A is

defined by

dFA = lim sup
ε→0

logN(A, ε)

log(1/ε)
,

where N(A, ε) is the minimum number of the balls of radius ε > 0 to cover A.

For L ∈ L (H) and m ∈ N, let ωm(L) be the norm of the exterior product ∧mL

in ∧mH, that is,

ωm(L) = sup
ξ1,··· ,ξm∈H

|ξi|≤1

|Lξ1 ∧ · · · ∧ Lξm|. (4.10)

For each m ∈ N, let

ω̄m(t) = sup
u0∈A

ωm(L(t, u0)), t ≥ 0, and Πm = lim
t→∞

ω̄m(t)1/t.
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The uniform Lyapunov numbers, µm are given by

µ1 = logΠ1, µm = logΠm − logΠm−1, m ≥ 2.

To estimate the fractal dimension of the global attractor, we use the following

abstract result.

Lemma 4.2. [9, Theorem 3.1] If µ1 + · · ·+ µm < 0 for some m ∈ N, then

dFA ≤ m max
1≤j≤m−1

(

1 +
(µ1 + · · ·+ µj)+
|µ1 + · · ·+ µm|

)

.

The crucial step to obtain an upper bound of the fractal dimension of A is to

estimate the Lyapunov numbers of A.

Theorem 4.1. The fractal dimension of A is less than or equal to 2m, where m ∈ N

is such that

m− 1 <

(

2κ2

κ1

)N(s)/(2+N(s))

≤ m.

Here κ1 = 1
2c1, κ2 = c3(c2 + ℓ)1+(N(s)/2) for some constants c1, c2 and c3. More

precisely, c1, c2 and c3 are obtained in the proof below.

Proof. Note that

µ1 + · · ·+ µm = logΠm, for m ∈ N.

According to (4.10), we obtain

ωm(L(t, u0)) = sup
ξi∈H
|ξi|≤1

|U1 ∧ · · · ∧ Um|,

where Ui is the solution of (4.5) with Ui(0) = ξi for 1 ≤ i ≤ m. By Lemma 1.2 in [13,

Chapter V], we see that

1

2

d

dt
|U1 ∧ · · · ∧ Um|2 = −Tr(F ′(u) ◦Qm)|U1 ∧ · · · ∧ Um|2,

where Qm is the orthogonal projection in H onto the space spanned by U1, · · · , Um.

So we get

ωmL(t, u0) ≤ sup
ξi∈H
|ξi|≤1

exp

(

−
∫ t

0

Tr F ′(S(τ)u0) ◦Qm(τ) dτ

)

. (4.11)

For each m ∈ N, we let

qm = lim sup
t→∞

{

inf
u0∈A

1

t

∫ t

0

inf
rankQ=m

Tr F ′(S(τ)u0) ◦Q(τ) dτ

}

, (4.12)
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where Q is any orthogonal projection in H with QH ⊂ V. From (4.11), we get

ω̄m(t) = sup
u0∈A

ωm(L(t, u0)) ≤ sup
u0∈A

exp

{

−
∫ t

0

inf
rankQ=m

Tr F ′(S(τ)u0) ◦Q(τ) dτ

}

.

Hence we obtain

Πm = lim
t→∞

{

ω̄m(t)
}1/t ≤ exp(−qm).

Consequently, if qm > 0 for some m, then by Lemma 4.2, we get

dFA ≤ m max
1≤j≤m−1

{

1 +
(−qj)+
qm

}

. (4.13)

We now show that qm > 0 for some m. Let Q be an orthogonal projection in H

of rank m with QH ⊂ V. Let {φj}j∈N be an orthonormal basis of H with φ1, . . . , φm

being a basis of QH. Then we have

Tr F ′(u) ◦Q =

m
∑

j=1

(F ′(u)φj , φj) =

m
∑

j=1

‖φj‖2S1

0

+

∫

Ω

f ′(u)ρ dxdy,

≥
m
∑

j=1

‖φj‖2S1

0

− ℓ

∫

Ω

ρ dxdy,

where

ρ(x, y) =

m
∑

j=1

|φj(x, y)|2.

Let {λj} be the sequence of eigenvalues of A in L2(Ω) such that 0 < λ1 ≤ λ2 ≤ · · · .
Then we see that

m
∑

j=1

‖φj‖2S1

0

≥ λ1 + · · ·+ λm.

Moreover, we have

λ1 + · · ·+ λm ≥ c1m
1+(2/N(s)) − c2m,

where c1 = c1(N, s, |Ω|, αN−1) is a constant depending on N, s, |Ω| and αN−1, and

c2 = c2(s) is a constant depending on s. Here αN−1 is the area of the unit sphere in

R
N (for more details, see Theorem 1.1 in [3]). Hence we get

m
∑

j=1

‖φj‖2S1

0

≥ c1m
1+(2/N(s)) − c2m.

Since each φj is mutually orthonormal, we have

Tr F ′(u) ◦Q ≥ c1m
1+(2/N(s)) −m(c2 + ℓ),

where
∫

Ω
ρ dxdy = m. By Young’s inequality, we obtain

m(c2 + ℓ) ≤ 1

2
c1m

1+(2/N(s)) + c3(c2 + ℓ)1+(N(s)/2),
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where c3 depends on N, s, |Ω| and αN−1. Consequently, we get

Tr F ′(u) ◦Q≥
1

2
c1m

1+(2/N(s)) − c3(c2 + ℓ)1+(N(s)/2).

Hence by (4.12), we have

qm ≥ κ1m
1+(2/N(s)) − κ2,

where κ1 = 1
2c1 and κ2 = c3(c2 + l)1+(N(s)/2). Let m ∈ N be such that

qm > 0 and m− 1 <

(

2κ2

κ1

)N(s)/(2+N(s))

≤ m.

Then we obtain
(−qj)+
qm

≤ 1, ∀j = 1, . . . ,m− 1.

Hence we conclude that dFA ≤ 2m from (4.13).

We now find a lower bound of the fractal dimension of the global attractor A
induced by the equation (1.1). For simplicity, we assume g ≡ 0 and f(0) = 0 in the

equation (1.1). Then we can see the following properties:

• the mapping (t, u0) 7→ S(t)u0 from R+ ×H into H is continuous;

• 0 ∈ H is a fixed point of S(t).

Moreover, we can check that S(t) is Fréchet differentiable at 0 for all t ∈ R+ with

differential S′(t)(0) = L(t,0). Let us write S′(t) = S′(t)(0) for simplicity. Then we

can show that the spectrum of S′(t) consists of its eigenvalues and 0. To show this,

let us consider the following first variation equation which is obtained from (4.5) by

putting u = 0 :

{

Ut −GsU + f ′(0)U = 0,

U(0) = ξ.

Then we have

−Gswk = λkwk, wk ∈ S1
0(Ω),

and may assume that

0 < λ1 ≤ λ2 ≤ · · · , λk → ∞ as k → ∞.

Without loss of generality, we can suppose that f ′(0) + λk 6= 0 for all k ∈ N. Put

µk = f ′(0) + λk. Then we obtain

−Gswk + f ′(0)wk = µkwk.
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Consequently, we see that the eigenvalues of S′(t) are the numbers e−µkt, and the

corresponding eigenfunctions are wk for k ∈ N. If λ /∈ {e−µkt, 0 : k ∈ N}, then
S′(t)ζ − λζ 6= 0 for ζ ∈ H \ {0}. This means that the spectrum of S′(t) consists of

eigenvalues and 0.

Let n be the number of λ′
ks with λk < −f ′(0), and let H+ be the subspace of

H spanned by the eigenvectors corresponding to the eigenvalues e−µkt of S′(t) with

µk < 0. Then we know that dimH+ = n. This shows that z = 0 is a hyperbolic

fixed point of S′(t) since the spectrum of S′(t) does not intersect with the unit circle.

Moreover, we see that S′(t) satisfies a Lipschitz condition:

‖S′(t)u1 − S′(t)u2‖ ≤ ‖u1 − u2‖ for u1, u2 ∈ H.

For r > 0, we let

W r
+(z) = {u0 ∈ Br(z) : ∃un ∈ H s.t. S(n)un = u0 and un → z as n → ∞},

where Br(z) is the ball of radius r centered at z under a suitable norm on H. Then

we have that W r
+(z) ⊂ A for sufficiently small r > 0, and W r

+(z) is a C1 manifold of

dimension equal to dimH+ = n. Consequently, we have proved the following theorem.

Theorem 4.2. The fractal dimension dFA of the global attractor A of the equation

(1.1) is greater than or equal to n, where n =dimH+.
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