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1. INTRODUCTION

Bi-directional associative memory (BAM) neural network model, proposed by Kosko

[1, 2], is a two-layer nonlinear feedback network model. It is often known as an

extension of the unidirectional auto-associator of the Hopfield model, generalizing

the single-layer auto-associative Hebbian correlation to a two-layer pattern- matched

hetero-associative circuit. It has promising potential for applications in many differ-

ent fields such as associative memory, artificial intelligence, and some optimization

problems. In such applications, it is of prime importance to ensure that the designed

neural networks are stable. In recent years, the dynamical behaviors on the existence

and global stability of equilibrium, periodic solutions of BAM neural networks with

constant delays or time-varying delays or distributed delays have been studied by

some scholars (see for example Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references

therein). Also, there are some papers to study the dynamics of the discrete time neu-
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ral networks, such as Refs. [13, 14, 15]. However, most of the investigations focused

on the continuous or discrete systems, respectively.

It is troublesome to study the dynamical properties for continuous and discrete

systems, respectively. So it is significant to study dynamical systems on time scales

which can unify continuous and discrete time models very well. The theory of time

scales was initiated by S. Hilger (1988), it has a tremendous potential for applications

in some mathematical models of real processes and phenomena studied in physics,

population dynamics, biotechnology, economics and so on. The readers can refer the

books by Bohner and Peterson [16, 17], which summarize much of time scales calculus.

Also many dynamical results of neural networks on time scales have been obtained

by many scholars (see [18, 19, 20] and references cited therein).

In this paper, we would like to integrate fuzzy operations into BAM neural net-

works. Speaking of fuzzy operations, Yang and Yang [21] first introduced fuzzy

cellular neural networks (FCNNs) combining those operations with cellular neural

networks. So far researchers have founded that FCNNs are useful in image pro-

cessing, and some results have been reported on stability and periodicity of FCNNs

[22, 23, 24, 25, 26, 27].

Arising from problems in applied sciences, the existence of anti-periodic solutions

plays a key role in characterizing the behavior of nonlinear differential equations (see

[28, 29, 30, 31, 32]). It is worth continuing the investigation of the existence and

stability of anti-periodic solutions of fuzzy BAM neural networks. To the best of our

knowledge, there are few published papers considering the anti-periodic solutions of

fuzzy BAM neural networks.

Motivated by the above discussions, we consider the following fuzzy BAM neural

networks with constant delays on time scales.
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




















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

x∆
i (t) = −ai(t)hi(xi(t)) +

∑m
j=1 cji(t)fj(yj(t− τji))

+
∧m

j=1 αji(t)fj(yj(t− τji)) + Ii(t)

+
∨m

j=1 βji(t)fj(yj(t− τji)), i = 1, 2, · · · , n,

y∆j (t) = −bj(t)̺j(yj(t)) +
∑n

i=1 dij(t)gi(xi(t− δij))

+
∧n

i=1 pij(t)gi(xi(t− δij)) + Jj(t)

+
∨n

i=1 qij(t)gi(xi(t− δij)), j = 1, 2, · · · ,m.

(1)

where t ∈ T, T is a periodic time scale which has the subspace topology inherited

from the standard topology on R. n and m correspond to the number of units in X-
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layer and Y -layer, respectively. xi(t), yj(t) are the states of the ith neuron in X-layer

and jth neuron in Y layer; ai(t) > 0, bj(t) > 0 represent an amplification function of

the ith neuron in X-layer and jth neuron in Y layer at time t. cji(t), dij(t) represents

the elements of the feedback template. αji(t), βji(t), pij(t), qij(t) are elements of fuzzy

feedback MIN template and fuzzy feedback MAX template, respectively;
∧

and
∨

denote the fuzzy AND and fuzzy OR operation, respectively; τji, δij denote the axonal

signal transmission delays; fj(·), gi(·) are signal transmission functions. Ii(t), Jj(t) are

external input to the ith unit in X-layer and the jth unit in Y -layer,respectively.

Without loss of generality, we set [a, b]T = {t ∈ T : a ≤ t ≤ b} and 0 ∈ T,T is

unbounded above, i.e. supT = ∞. Let x = (x1, x2, · · · , xk)
T ∈ R

k denote a column

vector, in which the symbol (·)T represents the transpose of a vector. Let |x| be the

absolute-value vector given by |x| = (|x1|, |x2|, · · · , |xk|), and ‖x‖ =
∑k

i=1 |xi|.

Let u(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ∈ C(T,Rn+m), ui(t) is said to be

an ω anti periodic on T if xi(t+ω) = −xi(t), yj(t+ω) = −yj(t) for all t ∈ T, t+ω ∈ T.

The initial conditions associated with system (1) are of the form











xi(s) = ϕi(s), s ∈ [−τ, 0]T, τ = max1≤i≤n,1≤j≤m{τji},

yj(s) = φj(s), s ∈ [−δ, 0]T, δ = max1≤i≤n,1≤j≤m{δij},

(2)

where ϕi ∈ C([−τ, 0],R), φj ∈ C([−δ, 0],R), i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

For the sake of convenience, we introduce some notations

Ii = sup
t∈T

|Ii(t)|, I = max
1≤i≤n

{Ii}, Jj = sup
t∈T

|Jj(t)|, J = max
1≤j≤m

{Jj},

αji = sup
t∈T

|αji(t)|, βji = sup
t∈T

|βji(t)|, pij = sup
t∈T

|pij(t)|. qij = sup
t∈T

|qij(t)|,

cji = sup
t∈T

|cji(t)|, dij = sup
t∈T

|dij(t)|, ai = inf
t∈T

|ai(t)|, bj = inf
t∈T

|bj(t)|.

Denote R+ = (0,∞),T+ = (0,∞)T, Throughout this paper, we make the following

assumptions.

(A1) ai(t+ω)hi(r) = −ai(t)hi(−r), bj(t+ω)̺j(r) = −bj(t)̺j(−r), cji(t+ω)fj(r) =

−cji(t)fj(−r), αji(t + ω)fj(r) = −αji(t)fj(−r), βji(t + ω)fj(r) = −βji(t)fj(−r),

dij(t + ω)gi(r) = −dij(t)gi(−r), pij(t + ω)gi(r) = −pij(t)gi(−r), qij(t + ω)gi(r) =

−qij(t)gi(−r), Ii(t+ ω) = −Ii(t), Jj(t+ ω) = −Jj(t) for all t ∈ T, r ∈ R.

(A2) hi, ̺j ∈ C(R,R), there exist constants ξi > 0, κj > 0 such that

ξi|r1 − r2| ≤ sgn(r1 − r2)[hi(r1)− hi(r2)],

κj |r1 − r2| ≤ sgn(r1 − r2)[̺j(r1)− ̺j(r2)],
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for all r1, r2 ∈ R and hi(0) = 0, ̺j(0) = 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(A3) fj , gj ∈ C(R,R), and there exist lj > 0, νj > 0 such that

|fj(r1)− fj(r2)| ≤ lj |r1 − r2|, |gi(r1)− gi(r2)| ≤ νi|r1 − r2|,

for all r1, r2 ∈ R and fj = 0, gi(0) = 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

The organization of the rest of this paper is as follows. In Section 2, we introduce

some definitions and lemmas to make preparations for later sections. In Section 3, by

using analysis method and constructing Lyapunov functional, we establish sufficient

conditions for the existence of the anti-periodic solutions of system (1) which is glob-

ally exponentially stability. An example is given to demonstrate the effectiveness of

our results in Section 4.

2. PRELIMINARIES

In this section, we shall first recall some basic definitions, lemmas which are used in

what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward

jump operators σ, ρ : T → T and the graininess µ : T → R
+ are defined, respectively,

by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if

ρ(t) < t, right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T

has a left-scattered maximum m, then T
k = T \ {m}; otherwise T

k = T. If T has a

right-scattered minimum m, then Tk = T \ {m}. otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at right-

dense point in T and its left-side limits exist at left-dense points in T. The set of

rd-continuous functions f : T → R will be denoted by Crd(T,R). If f is continuous

at each right-dense point and each left-dense point, then f is said to be a continuous

function on T. We define C(J,R) = {u(t) : u(t) is continuous on J}.

Definition 1. [33] If a ∈ T, supT = ∞, and f is rd-continuous on [0,∞)T, then we

define the improper integral by

∫ ∞

a

f(s)∆s := lim
b→∞

∫ b

a

f(s)∆s,

provided this limit exists, and we say that the improper integral converges in this

case. If this limit does not exist, then we say that the improper integral diverges.
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Definition 2. [33] For each t ∈ T, let N be a neighborhood of t, then, for V ∈

Crd[T × R
n,R+). Define D+V ∆(t, x(t)) to mean that, given ε > 0, there exists a

right neighborhood Nε ⊂ N of t such that

V (σ(t), x(σ(t))) − V (s, x(σ(t))) − µ(t, s)f(t, x(t))

µ(t, s)
< D+V ∆(t, x(t)) + ε.

for each s ∈ Nε, s > t, where µ(t, s) = σ(t) − s. If t is rd and V (t, x(t)) is continuous

at t, this reduces to

D+V ∆(t, x(t)) =
V (σ(t), x(σ(t))) − V (t, x(σ(t)))

σ(t)− t
.

Definition 3. [16] We say that a time scale T is periodic if there exists p > 0 such

that if t ∈ T, then t ± p ∈ T. For T 6= R, the least positive p is called the period of

the time scale.

Definition 4. [16] Let T 6= R be a periodic time scale with periodic p. We say

that the function f : T → R is ω anti-periodic if there exists a natural number n

such that ω = np, f(t+ ω) = −f(t) for all t ∈ T and ω is the least number such that

f(t+ ω) = −f(t). If T = R, we say that f is ω anti-periodic if ω is the least positive

number such that f(t+ ω) = −f(t) for all t ∈ T.

Definition 5. For f : T → R and t ∈ T
k, we define the delta derivative of y(t), f∆(t),

to be the number (if exists) with the property that for given ε > 0, there exists a

neighborhood U of t such that

|[f(σ(t)) − f(s)]− y∆(t)[σ(t) − f(s)]| < ε|σ(t)− s|,

for all s ∈ U . If f is continuous, then f is right-dense continuous, and y is delta

differentiable at t, then f is continuous at t. Let f be right-dense continuous. If

F∆(t) = f(t), then we define the delta integral by
∫ t

a
f(s)∆s = F (t)− F (a).

A function r : T → R is called regressive if 1 + µ(t)r(t) 6= 0, for all t ∈ T
k.

If r is regressive function, then the generalized exponential function er is defined

by

er(t, s) = exp

{
∫ t

s

ξµ(τ)(r(τ))∆τ

}

, s, t ∈ T,

with the cylinder transformation

ξh(z) =

{

log(1+hz)
h

, h 6= 0

z, h = 0

Let p, q : T → R be two regressive functions, we define

p⊕ q := p+ q + µpq; p⊖ q := p⊕ (⊖q); ⊖p :=
p

1 + µp
.
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Lemma 1. [17] Let p, q be regressive functions on T. Then

(i) e0(t, s) = 1 and ep(t, t) = 1; (ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) ep(t, s)ep(s, r) = ep(t, r); (iv) e∆p (·, s) = pep(·, s).

Lemma 2. [21] Suppose x and y are two states of system (1), then we have

∣

∣

∣

∣

∣

∣

n
∧

j=1

αij(t)gj(x) −
n
∧

j=1

αij(t)gj(y)

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|αij(t)||gj(x) − gj(y)|,

and
∣

∣

∣

∣

∣

∣

n
∨

j=1

βij(t)gj(x) −

n
∨

j=1

βij(t)gj(y)

∣

∣

∣

∣

∣

∣

≤

n
∑

j=1

|βij(t)||gj(x) − gj(y)|.

Definition 6. Let u∗(t) = (x∗
1(t), · · · , x

∗
n(t), y

∗
1(t), · · · , y

∗
m(t))T be the solution of

system (1) with initial value θ∗ = (ϕ∗
1(t), · · · , ϕ

∗
n(t), φ

∗
1(t), · · · , φ

∗
m(t))T , it is said to be

globally exponentially stable if for all solution of (1.1) u(t) = (x1(t), · · · , xn(t), y1(t),

· · · , ym(t))T with initial value θ = (ϕ1(t), · · · , ϕn(t), φ1(t), · · · , φm(t))T , there exists

positive constant ε > 0 and M = M(ε) ≥ 1 such that, for every η ∈ T,

n
∑

i=1

|xi(t)− x∗
i (t)|+

m
∑

j=1

|yj(t)− y∗j (t)| ≤ MeΘε(t, η)‖θ − θ∗‖.

where

‖θ − θ∗‖ =

n
∑

i=1

sup
η∈(−δ,0]T

|ϕi(η)− ϕ∗
i (η)|+

m
∑

j=1

sup
η∈(−τ,0]T

|φj(η)− φ∗
i (η)|.

3. MAIN RESULT

In this section, applying analysis method and constructing proper Lyapunov func-

tional, we will prove the existence of anti periodic solutions of (1) which is global

exponential stability.

Lemma 3. Let (A1)− (A3) hold, further suppose that the following assumption hold

(A4) There exists a positive constant γ > 0 such that

−aiξi +

m
∑

j=1

(cji + αji + βji)lj < −γ < 0,

−bjκj +

n
∑

i=1

(dij + pij + qij)νi < −γ < 0.
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Suppose that u(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T is a solution of system (1)

with the initial condition










xi(s) = ϕi(s), |ϕi(s)| <
I
γ
, s ∈ [−τ, 0]T,

yj(s) = φj(s), |φj(s)| <
J
γ
, s ∈ [−δ, 0]T

(3)

Then

|xi(t)| <
I

γ
, |yj(t)| <

J

γ
, t ∈ [0,∞)T, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Proof. By way of contradiction, we assume that (3) does not hold, then there exist

i ∈ {1, 2, · · · , n} or j ∈ {1, 2, · · · ,m}, and the first t0 > 0, t0 ∈ T such that

|xi(t0)| ≥
I

γ
, |xi(ρ(t0))| ≤

I

γ
, |xi(t)| <

I

γ
, t ∈ [−τ, t0)T, (4)

or

|yj(t0)| ≥
J

γ
, |yi(ρ(t0))| ≤

J

γ
, |yj(t)| <

J

γ
, t ∈ [−δ, t0)T, (5)

If (4) hold, calculating the Dini derivative of |xi(t0), together with (A1) − (A4), we

have

0 ≤ D+(|xi(t0)|
∆) = sgn(xi(t0)) {−ai(t0)hi(xi(t0))

+

m
∑

j=1

cji(t0)fj(yj(t0 − τji))

+

m
∧

j=1

αji(t0)fj(yj(t0 − τji)) +

m
∨

j=1

βji(t0)fj(yj(t0 − τji)) + Ii(t0)







≤ −ai(t0)|hi(xi(t0))− hi(0)|+

m
∑

j=1

|cji(t0)||fj(yj(t0 − τji))− fj(0)|

+

∣

∣

∣

∣

∣

∣

m
∧

j=1

αji(t0)fj(yj(t0 − τji))−

m
∧

j=1

αji(t0)fj(0)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

m
∨

j=1

βji(t0)fj(yj(t0 − τji)) −

m
∨

j=1

βji(t0)fj(0)

∣

∣

∣

∣

∣

∣

+ |Ii(t0)|

≤ −aiξi|xi(t0)|+

m
∑

j=1

(cji + αji + βji)lj |yj(t0 − τji)|+ Ii

≤



−aiξi +

m
∑

j=1

(cji + αji + βji)lj





I

γ
+ Ii

≤ 0,
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which is a contradiction. Similarly, we can prove that (5) does not hold. The proof

of Lemma 3 is completed.

Theorem 7. Assume (A1)-(A4) hold. Suppose further that

(A5) there exist positive constants ε > 0, ζi > 0, ζ′j > 0 such that

ζi[ε− aiξi(1 + µ(t)ε)] +
m
∑

j=1

ζ′j(dij + pij + qij)νi(1 + εµ(t+ δij))eε(t+ δij , t) < 0,

ζ′j [ε− bjκj(1 + µ(t)ε)] +

n
∑

i=1

ζi(cji + αji + βji)lj(1 + εµ(t+ τji))eε(t+ τji, t) < 0,

Then the solution of system (1) is globally exponentially stable.

Proof. Let u∗(t) = (x∗
1(t), · · · , x

∗
n(t), y

∗
1(t), · · · , y

∗
m(t))T be the solution of (1.1) with

initial value θ∗ = (ϕ∗
1(t), · · · , ϕ

∗
n(t), φ

∗
1(t), · · · , φ

∗
m(t))T , and u(t) = (x1(t), · · · , xn(t),

y1(t), · · · , ym(t))T be the solution of (1) with initial value θ = (ϕ1(t), · · · , ϕn(t), φ1(t),

· · · , φm(t))T . Then we have

(xi(t) − x∗
i (t))

∆

= −ai(t)[hi(xi(t))− hi(x
∗
i (t))]

+
m
∑

j=1

cji(t)[fj(yj(t− τji))− fj(y
∗
j (t− τji))]

+

m
∧

j=1

αji(t)fj(yj(t− τji))−

m
∧

j=1

αji(t)fj(y
∗
j (t− τji))

+

m
∨

j=1

βji(t)fj(yj(t− τji))−

m
∨

j=1

βji(t)fj(y
∗
j (t− τji)) (6)

and

(yj(t) − y∗j (t))
∆

= −bj(t)[̺j(yj(t))− ̺j(y
∗
j (t))]

+

n
∑

i=1

dij(t)[gi(xi(t− δij))− gi(x
∗
i (t− δij))]

+
n
∧

i=1

pij(t)gi(xi(t− δij))−
m
∧

i=1

pij(t)gi(x
∗
i (t− δij))

+

n
∨

i=1

qij(t)gi(xi(t− δij))−

n
∨

i=1

qij(t)gi(x
∗
i (t− δij)) (7)

In view of (6) and (7), for t > 0, we have

D+|xi(t) − x∗
i (t)|

∆
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≤ −aiξi|xi(t)− x∗
i (t)|

+

m
∑

j=1

(cji + αji + βji)lj |yj(t− τji)− y∗j (t− τji)| (8)

and

D+|yj(t) − y∗j (t)|
∆

≤ −bjκj |yj(t)− y∗j (t)|

+

n
∑

i=1

(dij + pij + qij)νi|xj(t− δij)− x∗
i (t− δij)| (9)

For any η ∈ [−max{τ, δ}, 0], we construct the Lyapunov functional

V (t) =

4
∑

k=1

Vk(t).

where

V1(t) =

n
∑

i=1

ζieε(t, η)|xi(t)− x∗
i (t)|,

V2(t) =
n
∑

i=1

m
∑

j=1

ζi(cji + αji + βji)lj

×

∫ t

t−τji

(1 + εµ(s+ τji))eε(s+ τji, η)|yj(s)− y∗j (s)|∆s

V3(t) =
m
∑

j=1

ζ′jeε(t, η)|yj(t)− y∗j (t)|,

V4(t) =

m
∑

j=1

n
∑

i=1

ζ′j(dij + pij + qij)νi

×

∫ t

t−δij

(1 + εµ(s+ δij))eε(s+ δij , η)|xi(s)− x∗
i (s)|∆s

Calculating the delta derivative D+V ∆(t) along to (1), we can get

D+V1(t)
∆|(1)

=

n
∑

i=1

ζi
[

εeε(t, η)|xi(t)− x∗
i (t)|+ eε(σ(t), η)D

+|xi(t)− x∗
i (t)|

∆
]

≤

n
∑

i=1

ζi {εeε(t, η)|xi(t)− x∗
i (t)|+ eε(σ(t), η) [−aiξi|xi(t)− x∗

i (t)|
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+

m
∑

j=1

(cji + αji + βji)lj |yj(t− τji)− y∗j (t− τji)|











≤

{

n
∑

i=1

ζi [ε− aiξi(1 + µ(t)ε)] eε(t, η)|xi(t)− x∗
i (t)|

}

+







(1 + µ(t)ε)eε(t, η)

n
∑

i=1

m
∑

j=1

ζi(cji + αji + βji)lj

× |yj(t− τji)− y∗j (t− τji)|
}

D+V2(t)
∆|(1) ≤

n
∑

i=1

m
∑

j=1

ζi(cji + αji + βji)lj(1 + εµ(t+ τji))

×eε(t+ τji, η)|yj(t)− y∗j (t)|

−

n
∑

i=1

m
∑

j=1

ζi(cji + αji + βji)lj(1 + εµ(t))

×eε(t, η)|yj(t− τji)− y∗j (t− τji)|

D+V3(t)
∆|(1)

=

m
∑

j=1

ζ′j
[

εeε(t, η)|yj(t)− y∗j (t)|+ eε(σ(t), η)D
+|yj(t)− y∗j (t)|

∆
]

≤

m
∑

j=1

ζ′j
{

εeε(t, η)|yj(t)− y∗j (t)|+ eε(σ(t), η)
[

−bjκj |yj(t)− y∗j (t)|

+

n
∑

i=1

(dij + pij + qij)νi|xi(t− δij)− x∗
i (t− δij)|

]}

≤







m
∑

j=1

ζ′j
[

ε− bjκj(1 + µ(t))ε
]

eε(t, η)|yj(t)− y∗j (t)|







+







(1 + µ(t)ε)eε(t, η)

m
∑

j=1

n
∑

i=1

ζ′j(dij + pij + qij)νi

× |xi(t− δij)− x∗
i (t− δij)|}

D+V4(t)
∆|(1) ≤

m
∑

j=1

n
∑

i=1

ζ′j(dij + pij + qij)νi(1 + εµ(t+ δij))

×eε(t+ δij , η)|xi(t)− x∗
i (t)|

−
m
∑

j=1

n
∑

i=1

ζ′j(dij + pij + qij)νi(1 + εµ(t))eε(t, η)
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×|xi(t− δij)− x∗
i (t− δij)|

From the above, it follows that

D+V (t)∆

≤

n
∑

i=1

{ζi [ε− aiξi(1 + εµ(t))]

+

m
∑

j=1

ζ′j(dij + pij + qij)νi(1 + εµ(t+ δij))







eε(t, η)|xi(t)− x∗
i (t)|

+

m
∑

i=j

{

ζ′j
[

ε− bjκj(1 + εµ(t))
]

+

n
∑

i=1

ζi(cji + αji + βji)

×lj(1 + εµ(t+ τji))} eε(t, η)|yj(t)− y∗j (t)| (10)

By assumption (A5), we obtain D+V (t)∆ < 0, i.e. V (t) < V (0), for t > 0.

On the other hand, we have

V (0) =
n
∑

i=1

ζieε(0, η)|xi(0)− x∗
i (0)|+

m
∑

j=1

ζ′jeε(0, η)|yj(0)− y∗j (0)|

+

n
∑

i=1

m
∑

j=1

ζi(cji + αji + βji)lj

×

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, η)|yj(s)− y∗j (s)|∆s

+

m
∑

j=1

n
∑

i=1

ζ′j(dij + pij + qij)νi

×

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , η)|xi(s)− x∗
i (s)|∆s

≤
n
∑

i=1







ζieε(0, η) +
m
∑

j=1

ζ′j(dij + pij + qij)νi

×

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , η)∆s

}

sup
s∈[−δ,0]

|xi(s)− x∗
i (s)|

+

m
∑

j=1

{

ζ′jeε(0, η) +

n
∑

i=1

ζi(cji + αji + βji)lj

×

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, η)

}

sup
s∈[−τ,0]

|yj(s)− y∗j (s)|

≤ M(ε)

{

sup
s∈[−δ,0]

|xi(s)− x∗
i (s)|+ sup

s∈[−τ,0]

|yj(s)− y∗j (s)|

}
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where

M(ε) = max







n
∑

i=1



ζieε(0, η) +

m
∑

j=1

ζ′j(dij + pij + qij)νi

×

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , η)∆s

]

,

m
∑

j=1

[

ζ′jeε(0, η) +

n
∑

i=1

ζi(cji + αji + βji)lj

×

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, η)

]}

Also,

n
∑

i=1

ζieε(t, η)|xi(t)− x∗
i (t)|+

m
∑

j=1

ζ′jeε(t, η)|yj(t)− y∗j (t)| ≤ V (t) ≤ V (0),

that is

min
1≤i≤n,1≤j≤m

{ζi, ζ
′
j}eε(t, η)





n
∑

i=1

|xi(t)− x∗
i (t)|+

m
∑

j=1

|yj(t)− y∗j (t)|





≤ V (0).

We can obtain that

n
∑

i=1

|xi(t)− x∗
i (t)|+

m
∑

j=1

|yj(t)− y∗j (t)| ≤ M(ε)eΘε(t, η)‖θ − θ∗‖.

where M(ε) = M(ε)
min1≤i≤n,1≤j≤m{ζi,ζ′

j
} . Therefore, by Definition 6, the solution u(t) of

(1) is globally exponentially stable. This completes the proof.

Theorem 8. Assume that (A1)−(A5) hold. Then system (1) has an ω anti periodic

solution which is globally exponentially stable.

Proof. Let u(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T be a solution of (1) with initial

conditions (3). Then by Lemma 3, the solution u(t) is bounded.

It follows that

((−1)k+1xi(t+ (k + 1)ω))∆ = (−1)k+1x∆
i (t+ (k + 1)ω)

= (−1)k+1 {−ai(t+ (k + 1)ω)hi(t+ (k + 1)ω)

+
m
∑

j=1

cji(t+ (k + 1)ω)fj(yj(t+ (k + 1)ω − τji))
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+

m
∧

j=1

αji(t+ (k + 1)ω)fj(yj(t+ (k + 1)ω − τji))

+

m
∨

j=1

βji(t+ (k + 1)ω)fj(yj(t+ (k + 1)ω − τji)) + Ii(t+ (k + 1)ω)







= −ai(t)hi((−1)k+1xi(t+ (k + 1)ω)

+

m
∑

j=1

cji(t)fj((−1)k+1yj(t+ (k + 1)ω − τji))

+
m
∧

j=1

αji(t)fj((−1)k+1yj(t+ (k + 1)ω − τji))

+
m
∨

j=1

βji(t)fj((−1)k+1yj(t+ (k + 1)ω − τji)) + Ii(t) (11)

Similarly, we have

((−1)k+1yj(t+ (k + 1)ω))∆ = (−1)k+1y∆j (t+ (k + 1)ω)

= −bj(t)̺j((−1)k+1yj(t+ (k + 1)ω)

+

n
∑

i=1

dij(t)gi((−1)k+1xi(t+ (k + 1)ω − δij))

+

n
∧

i=1

pij(t)gi((−1)k+1xi(t+ (k + 1)ω − δij))

+

n
∨

i=1

qij(t)gi((−1)k+1xi(t+ (k + 1)ω − δij)) + Jj(t) (12)

Thus for any natural number k, (−1)k+1ui(t + (k + 1)ω) is the solution of (1). By

Theorem 7, there exists a constant M(ε) such that

n
∑

i=1

|(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)|

+

m
∑

j=1

|(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)|

≤ M(ε)eΘε(t+ kω, η)

{

n
∑

i=1

sup
s∈[−τ,0]

|xi(s+ ω)− xi(s)|

+
m
∑

j=1

sup
s∈[−δ,0]

|yj(s+ ω)− yj(s)|







≤ M(ε)eΘε(t+ kω, η)
nI +mJ

γ
(13)
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Then for a natural number l, we have

|(−1)l+1xi(t+ (l + 1)ω)|

=

∣

∣

∣

∣

∣

xi(t) +

l
∑

k=0

[

(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)
]

∣

∣

∣

∣

∣

≤ |xi(t)|

+

l
∑

k=0

∣

∣(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)
∣

∣ (14)

|(−1)l+1yj(t+ (l + 1)ω)|

=

∣

∣

∣

∣

∣

yj(t) +

l
∑

k=0

[

(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)
]

∣

∣

∣

∣

∣

≤ |yj(t)|

+

l
∑

k=0

∣

∣(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)
∣

∣ (15)

Noting that u(t) is bounded and (13), then there exist a sufficient large constant

K > 0 and a positive constant Γ such that

∣

∣(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)
∣

∣ ≤ Γ(e−cω)k, k > K, (16)

and
∣

∣(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)
∣

∣ ≤ Γ(e−cω)k, k > K, (17)

where i = 1, 2, · · · , n, j = 1, 2, · · · ,m. It follows from (14)-(17) that (−1)ku(t + kω)

uniformly converges to a continuous function v(t) = (x∗
1(t), · · · , x

∗
n(t), y

∗
1(t), · · · , y

∗
n(t))

T

in time scales sense.

Now we will prove that v(t) is an ω anti periodic solution of (1). First, we have

v(t+ ω) = lim
k→∞

(−1)kui(t+ kω + ω)

= − lim
k→∞

(−1)k+1ui(t+ (k + 1)ω) = −v(t).

Next, we shall prove v(t) is a solution of (1). (11) and (12) imply that {(−1)k+1ui(t+

(k+1)ω) uniformly converges to a continuous function in the sense time scales. Letting

k → ∞, we have

(x∗
i (t))

∆ = −ai(t)hi(x
∗
i (t))

+
m
∑

j=1

cji(t)fj(y
∗
j (t− τji)) +

m
∧

j=1

αji(t)fj(y
∗
j (t− τji))

+
m
∨

j=1

βji(t)fj(y
∗
j (t− τji)) + Ii(t), i = 1, 2, · · · , n,
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(y∗j (t))
∆ = −bj(t)̺j(y

∗
j (t))

+

n
∑

i=1

dij(t)gi(x
∗
i (t− δij)) +

n
∧

i=1

pij(t)gi(x
∗
i (t− δij))

+

n
∨

i=1

qij(t)gi(x
∗
i (t− δij)) + Jj(t), j = 1, 2, · · · ,m.

Therefore v(t) is a solution of (1), applying Theorem 7, we can show that v(t) is

globally exponentially stable. This completes the proof.

4. AN EXAMPLE

Example 1 Consider the following fuzzy BAM neural networks with delays on time

scales.






















































































x∆
i (t) = −ai(t)hi(xi(t)) +

∑2
j=1 cji(t)fj(yj(t− τji))

+
∧2

j=1 αji(t)fj(yj(t− τji))

+
∨2

j=1 βji(t)fj(yj(t− τij)) + Ii(t),

y∆j (t) = −bj(t)̺j(yj(t)) +
∑2

i=1 dij(t)gi(xi(t− δij))

+
∧2

i=1 pij(t)gi(xi(t− δij))

+
∨2

i=1 qij(t)gi(xi(t− δij)) + Jj(t),

(18)

where t ∈ T, i, j = 1, 2,T =
⋃

k∈Z [
1
4k,

1
4 (k + 1)] is a periodic time scale.

a1(t) = 2.04 + 0.2| sin(4πt)|, a2(t) = 2.05 + 0.3| sin(4πt)|,

b1(t) = 2.56 + 0.1| cos(4πt)|, b2(t) = 2.58 + 0.4| cos(4πt)|,

c11(t) = 0.07 sin(4πt), c12(t) = 0.09 cos(4πt), c21(t) = 0.08 cos(4πt),

c22(t) = 0.06 sin(4πt), α11(t) = 0.12 cos(4πt), α12(t) = 0.11 sin(4πt),

α21(t) = 0.09 sin(4πt), α22(t) = 0.06 cos(4πt), β11(t) = 0.04 sin(4πt),

β12(t) = 0.05 cos(4πt), β21(t) = 0.07 cos(4πt), β22(t) = 0.06 sin(4πt),

d11(t) = 0.09 sin(4πt), d12(t) = 0.07 cos(4πt), d21(t) = 0.06 cos(4πt),

d22(t) = 0.08 sin(4πt), p11(t) = 0.14 cos(4πt), p12(t) = 0.1 sin(4πt),

p21(t) = 0.08 sin(4πt), p22(t) = 0.09 cos(4πt), q11(t) = 0.06 sin(4πt),
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q12(t) = 0.09 cos(4πt), q21(t) = 0.07 cos(4πt), q22(t) = 0.12 sin(4πt),

I1(t) = 0.5 sin(4πt), I2(t) = 0.7 cos(4πt),

fj(r) =
1

5
| sin r|, gi(r) =

1

5
| sin r|(i, j = 1, 2).

J1(t) = 0.4 sin(4πt), J2(t) = 0.6 cos(4πt),

hi(r) =
1

2
sin r, ̺j(r) =

1

3
sin r, i, j = 1, 2.

then, we have

a1 = 2.04, a2 = 2.05, b1 = 2.56, b2 = 2.58, c11 = 0.07, c22 = 0.06,

c12 = 0.09, c21 = 0.08, α11 = 0.12, α22 = 0.06, α12 = 0.11, α21 = 0.09,

β11 = 0.04, β22 = 0.06, β12 = 0.05, β21 = 0.07, d11 = 0.09, d22 = 0.08,

d12 = 0.07, d21 = 0.06, p11 = 0.14, p22 = 0.09, p12 = 0.1, p21 = 0.08,

q11 = 0.06, q22 = 0.12, q12 = 0.09, q21 = 0.07, I1 = 0.5, I2 = 0.7,

J1 = 0.4, J2 = 0.6, lj = νi =
1

5
, ξi =

1

2
, κj =

1

3
,

τji = 0.3, δij = 0.4, i, j = 1, 2.

It is easy to get

−a1ξ1 +

2
∑

j=1

(cj1 + αj1 + βj1)lj = −0.926 < −0.6 < 0,

−a2ξ2 +

2
∑

j=1

(cj2 + αj2 + βj2)lj = −0.939 < −0.6 < 0,

−b1κ1 +
2

∑

i=1

(di1 + pi1 + qi1)νi = −0.753 < −0.6 < 0,

−b2κ2 +

2
∑

i=1

(di2 + pi2 + qi2)νi = −0.75 < −0.6 < 0.

Let ζi = 1, ζ′j = 1, ε = 0.1, µ(t) = 1
8 , it is easy verify (A5) hold.

Therefore we can see that conditions (A1) − (A5) hold. By Theorem 3.1 and

Theorem 8, system (18) has a 1
4 -anti-periodic solution which is globally exponentially

stable (see fig.1).
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Figure 1: Numerical solution x(t) = (x1(t), x2(t))
T , y(t) = (y1(t), y2(t))

T

of systems (18) for initial value ϕ(s) = (0.8,−0.7)T ,

φ(s) = (0.9,−1)T ,s ∈ [−0.4, 0].
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