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ABSTRACT: In this paper, we study the bifurcations and dynamics of bounded

traveling wave solutions for the modified Novikov equation by combining the factoriza-

tion technique and the method of dynamical systems. We show that the corresponding

traveling wave system is a singular planar dynamical system with two singular straight

lines, and obtain all possible phase portraits of the system. Then we show the ex-

istence and dynamics of several types of bounded traveling wave solutions including

solitary wave solutions, periodic wave solutions, compacton solutions, kink-like and

antikink-like solutions. The dynamics of these new bound traveling wave solutions

will significantly facilitate nonlinear wave theories.
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1. INTRODUCTION

In 2009, Novikov first obtained the equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (1)

when classifying nonlocal partial differential equations with cubic nonlinearity [1].

With the advent of Novikov equation Eq.(1), the integrability of Eq.(1) was proved

[2, 1]. Subsequently, the solutions for Eq.(1) and their properties gained considerable

attention. Eq.(1) admits (multi)peakon solutions [3, 4, 5]. The stability of Eq.(1)
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was also investigated in [6]. Additionally, the dynamics of traveling wave solutions

for Eq.(1) was also studied [7, 8, 9].

In 2010, the following modified Novikov equation

ut − uxxt + 4u4ux = 3uuxuxx + u2uxxx, (2)

was introduced [10]. Note that the nonlinear structure of Eq.(2) is more compli-

cated than that of Eq.(1) by substituting the term u2ux by u4ux. Hence, it may

become difficult to study traveling wave solutions and their dynamics. Zhao and

Zhou [10] exploited symbolic computation to study its exact traveling wave solu-

tions. However, the solutions obtained in [10] are only some special and concrete

types of solutions of tanh, tan and so on. Deng [11] factorized Eq.(2) into a sim-

ple second-order differential equation by dropping one term and obtained some so-

lutions [12]. However, in fact, Eq.(2) can be factorized into a more complicated

second-order differential equation, the dynamical behavior of which can be much

more abundant. Besides, inside these solutions [10, 11], many are unbounded. Driven

by these motivations, in this paper, we study the dynamics of bounded traveling

wave solutions for Eq.(2) from the perspective of the theory of dynamical systems

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Note that Eq.(2) cannot

be directly transformed into the planar system as [7, 8, 9] did in Eq.(1). By em-

ploying the factorization technique [12, 11] and the method of dynamical systems, we

demonstrate all possible bifurcations of phase portraits under different parameters

conditions. Then we show the existence and dynamics of several specific types of

bounded traveling wave solutions under corresponding parameters conditions.

2. BIFURCATIONS OF PHASE PORTRAITS

In this section, we first transform Eq.(2) into a planar system through the factorization

technique, and then demonstrate the bifurcations of phase portraits for the planar

system.

Substituting u(x, t) = ϕ(ξ) with ξ = x− ct into Eq.(2), it follows that,

(

ϕ2 − c
)

ϕ′′′ + 3ϕϕ′ϕ′′ −
(

4ϕ4 − c
)

ϕ′ = 0, (3)

where the prime stands for the derivative with respect to ξ.

Through the factorization technique, Eq.(3) has the following factorization

((

ϕ2 − 2
)

∂ξ + 3ϕϕ′
)

(

∂ξξ −
(

2

3
ϕ2 + 1

))

ϕ = 0. (4)

So the solutions for Eq.(4) can be derived by solving the following coupled ordinary

differential equation
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{

(

ϕ2 − 2
) dF (ϕ(ξ))

dξ + 3ϕϕ′F (ϕ(ξ)) = 0,

ϕ′′ − ϕ
(

2
3ϕ

2 + 1
)

= F (ϕ(ξ)).
(5)

From the first equation of Eq.(5), we have

F (ϕ(ξ)) =
g

|ϕ2 − 2| 32
, (6)

where g is a integral constant.

Substituting Eq.(6) into the second equation of Eq.(5), it follows that

ϕ′′ = ϕ

(

2

3
ϕ2 + 1

)

+
g

|ϕ2 − 2| 32
. (7)

Letting y = ϕ′, we obtain a planar system






dϕ
dξ = y,
dy
dξ = ϕ

(

2
3ϕ

2 + 1
)

+ g

|ϕ2−2|
3

2

,
(8)

with first integral

H1(ϕ, y) = y2 − 1

3
ϕ4 − ϕ2 − gϕ

√

2− ϕ2
, for ϕ2 < 2, (9)

H2(ϕ, y) = y2 − 1

3
ϕ4 − ϕ2 +

gϕ
√

ϕ2 − 2
, for ϕ2 > 2. (10)

Transformed by dξ = |ϕ2 − 2| 32dτ , system (8) becomes a regular system
{

dϕ
dτ = |ϕ2 − 2| 32 y,
dy
dτ = ϕ

(

2
3ϕ

2 + 1
)

|ϕ2 − 2| 32 + g.
(11)

Since the level curves of system (8) is the same as those of the regular system (11),

we can analyze the phase portraits of system (8) from those of system (11).

For simplicity, letting

f(ϕ) = ϕ

(

2

3
ϕ2 + 1

)

+
g

|ϕ2 − 2| 32
, (12)

f1(ϕ) = ϕ

(

2

3
ϕ2 + 1

)

, (13)

f2(ϕ) = − g

|ϕ2 − 2| 32
, (14)

g0 =
(4 −

√
2)

5

2 (1 +
√
2)

12 4
√
2

, (15)

and (ϕ, 0) be one of the singular points of system (11). Then the characteristic values

of linearized system of system (11) at the singular point (ϕ, 0) are

λ±(ϕ, 0) = ±
√

f ′(ϕ). (16)
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(a) −g0 < g < 0 (b) g = −g0 (c) g < −g0

(d) 0 < g < g0 (e) g = g0 (f) g > g0

Figure 1: The intersection points of the two curves defined by Eq.(13) and

Eq.(14) when ϕ2 < 2.

(a) g > 0 (b) g < 0

Figure 2: The intersection points of the two curves defined by Eq.(13) and

Eq.(14) when ϕ2 > 2.

From Eq.(16), we know that the property of the singular point (ϕ, 0) can be

detected by the sign of f ′(ϕ).

To determine the singular points of system (11), we just the horizontal ordinates

of the intersection points of the two curves defined by Eqs.(13) and (14). The position

relationships of the two curves defined by Eqs.(13) and (14) are shown in Figs.(1) and

(2).

Therefore, according to the theory of dynamical systems, we obtain all possible

bifurcations of phase portraits of system (8) in Fig. 3.



THE MODIFIED NOVIKOV EQUATION 585

j1
j2
j3

O

l1
l2

j1

*

j

y

(a) −g0 < g < 0

O j4
j5

l1 l2

j

y

(b) g = −g0

O j6

l1 l2

j

y

(c) g < −g0

-j1
-j2

-j3
O

l1
l2

-j
1

*

j

y

(d) 0 < g < g0

O-j4-j5

l1 l2

j

y

(e) g = g0

O-j6

l1 l2

j

y

(f) g > g0

Figure 3: The phase portraits of system (8).

3. DYNAMICAL BEHAVIOR OF BOUNDED SOLUTIONS FOR

SYSTEM (8)

Based on the dynamics of the level curves determined byH1(ϕ, y) = h orH2(ϕ, y) = h,

where h is a constant, and the bifurcations of phase portraits of system (8) in Fig.3,

we discuss the dynamical behavior of the bounded solutions for system (8).
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(a) −g0 < g < 0 (b) 0 < g < g0

Figure 4: The solitary wave solutions for Eq.(2).

(a) −g0 < g < 0 (b) 0 < g < g0

Figure 5: The periodic wave solutions for Eq.(2).

3.1. The case −g0 < g < 0 [see Fig.3(a)]

Corresponding to the homoclinic orbit to the saddle point (ϕ1, 0) defined byH1(ϕ, y) =

H(ϕ1, 0), system (8) has a solitary wave solution shown in Fig.4(a).

Corresponding to the family of periodic orbits, around the center point (ϕ2, 0)

defined by H1(ϕ, y) = h, h ∈ (H(ϕ2, 0), H(ϕ1, 0)), system (8) has a family of periodic

wave solutions shown in Fig.5(a).

Corresponding to the three family of orbits, passing through the point (ϕ0, 0) with

ϕ0 ∈ (−
√
2, ϕ1)

⋃

(ϕ∗
1,
√
2)

⋃

(
√
2, ϕ3), system (8) has three families of compacton

solutions shown in Fig.6(a).

Corresponding to the stable and unstable manifolds defined byH1(ϕ, y) = H(ϕ1, 0)
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(a) −g0 < g < 0 (b) 0 < g < g0

Figure 6: The compacton solutions for Eq.(2).

(a) −g0 < g < 0 (b) −g0 < g < 0 (c) 0 < g < g0

(d) 0 < g < g0

Figure 7: The kink-like and antikink-like solutions for Eq.(2).

to the left side of the saddle point (ϕ1, 0) and H2(ϕ, y) = H(ϕ3, 0) to the left side

of the saddle point (ϕ3, 0), system (8) has two pairs of kink-like and antikink-like

solutions shown in Figs.7(a) and 7(b), respectively.

3.2. The case g = −g0 [see Fig.3(b)]

Corresponding to the three family of orbits, passing through the point (ϕ0, 0) with

ϕ0 ∈ (−
√
2, ϕ4)

⋃

(ϕ4,
√
2)

⋃

(
√
2, ϕ5), system (8) has three families of compacton

solutions.

Corresponding to the stable and unstable manifolds defined byH1(ϕ, y) = H(ϕ4, 0)
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to the left side of the degenerate singular point (ϕ4, 0) and H2(ϕ, y) = H(ϕ5, 0) to

the left side of the saddle point (ϕ5, 0), system (8) has two pairs of kink-like and

antikink-like solutions.

3.3. The case g < −g0 [see Fig.3(c)]

In this case, system (8) has only one saddle point (ϕ6, 0). Corresponding to the two

family of orbits, passing through the point (ϕ0, 0) with ϕ0 ∈ (−
√
2,
√
2)

⋃

(
√
2, ϕ6),

system (8) has two families of compacton solutions.

Corresponding to the stable and unstable manifolds defined byH2(ϕ, y) = H(ϕ6, 0)

to the left side of the saddle point (ϕ6, 0), system (8) has one pair of kink-like and

antikink-like solutions.

3.4. The case 0 < g < g0 [see Fig.3(d)]

Corresponding to the homoclinic orbit to the saddle point (−ϕ1, 0) defined byH1(ϕ, y) =

H(−ϕ1, 0), system (8) has a solitary wave solution shown in Fig.4(b).

Corresponding to the family of periodic orbits, enclosing the center point (−ϕ2, 0)

defined by H1(ϕ, y) = h, h ∈ (H(−ϕ2, 0), H(−ϕ1, 0)), system (8) has a family of

periodic wave solutions shown in Fig.5(b).

Corresponding to the three family of orbits, passing through the point (ϕ0, 0)

with ϕ0 ∈ (−ϕ3,−
√
2, )

⋃

(−
√
2,−ϕ∗

1)
⋃

(−ϕ1,
√
2), system (8) has three families of

compacton solutions shown in Fig.6(b).

Corresponding to the stable and unstable manifolds defined byH1(ϕ, y) = H(−ϕ1, 0)

to the right side of the saddle point (−ϕ1, 0) and H2(ϕ, y) = H(−ϕ3, 0) to the right

side of the saddle point (−ϕ3, 0), system (8) has two pairs of kink-like and antikink-like

solutions shown in Figs.7(c) and 7(d), respectively.

3.5. The case g = g0 [see Fig.3(e)]

Corresponding to the three family of orbits, passing through the point (ϕ0, 0) with

ϕ0 ∈ (−ϕ5,−
√
2)

⋃

(−
√
2,−ϕ4)

⋃

(−ϕ4,
√
2), system (8) has three families of com-

pacton solutions.

Corresponding to the stable and unstable manifolds defined byH1(ϕ, y) = H(−ϕ4, 0)

to the right side of the degenerate singular point (−ϕ4, 0) and H2(ϕ, y) = H(−ϕ5, 0)

to the right side of the saddle point (−ϕ5, 0), system (8) has two pairs of kink-like

and antikink-like solutions.
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3.6. The case g > g0 [see Fig.3(f)]

In this case, system (8) has only one saddle point (−ϕ6, 0). Corresponding to the two

family of orbits, passing through the point (ϕ0, 0) with ϕ0 ∈ (−ϕ6,−
√
2)

⋃

(−
√
2,
√
2),

system (8) has two families of compacton solutions.

Corresponding to the stable and unstable manifolds defined byH2(ϕ, y) = H(−ϕ6, 0)

to the right side of the saddle point (−ϕ6, 0), system (8) has one pair of kink-like and

antikink-like solutions.

The above discussion gives rise to the following theorem.

Theorem 1. The following conclusions hold.

1. When −g0 < g < 0 or 0 < g < g0, Eq.(2) has a solitary wave solution, a

family of periodic wave solutions, three families of compacton solutions and two pairs

of kink-like and antikink-like solutions.

2. When g = ±g0, Eq.(2) has three families of compacton solutions and two pairs

of kink-like and antikink-like solutions.

3. When g < −g0 or g > g0, Eq.(2) has two families of compacton solutions and

one pair of kink-like and antikink-like solutions.

4. CONCLUSIONS

In this paper, by transforming Eq.(2) into a complicated ordinary differential equation

through the factorization technique, from which, we obtain all possible bifurcations

under different parameters conditions. We show the existence and dynamics of several

specific types of bounded traveling wave solutions including solitary wave solutions,

periodic wave solutions, compacton solutions, kink-like and antikink-like solutions,

under corresponding parameters conditions. The dynamics of these bounded traveling

wave solutions will greatly enrich the previews results.
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