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1. INTRODUCTION

Fractional calculus has been widely applied in many areas, such as fluid dynamics,
thermodynamics and viscoelastic theory [1, 2]. The nonlocal property of fractional
derivative makes fractional calculus being used in such areas and better results were
obtained. That is, the next state of a system depends not only on its current state
but also on all of its historical states. Note that the theory of fractional differential
equations(FDEs) is one of the important branches of fractional calculus. In recent
years, FDEs in infinite dimensional spaces have been studied extensively since they

are abstract formulations for many problems arising from economics, mechanics and
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physics. In [3], using the methods include operator semigroup theory and Laplace
transform, Zhou et al. gave a definition of mild solution of FDEs with Caputo frac-
tional derivative. They established sufficient conditions for the existence and unique-
ness of mild solutions for these equations. Applying the ideas given in [3], Zhou et
al. [4] obtained the appropriate definition of mild solution for FDEs with Riemman-
Liouville fractional derivative. By means of the measure of noncompactness theory,
they studied the existence of mild solutions for these equations. Hilfer [5] generalized
Riemman-Liouville fractional derivative, which is called Hilfer fractional derivative.
Hilfer fractional derivative contains both Caputo fractional derivative and Riemman-
Liouville type. Inspired by [3, 4], Gu et al. [6] gave a suitable definition of mild
solution for FDEs with Hilfer fractional derivative. Many authors subsequently stud-
ied the Hilfer FDEs in infinite dimensional spaces. For more details on FDEs, see
[9, 10, 7, 8, 11, 12, 13] and the references therein.

On the other hand, the deterministic models often fluctuate due to noise or
stochastic perturbation, so it is reasonable and practical to import the stochastic
effects into the investigation of FDEs. Meanwhile, fractional stochastic differential
equations(FSDESs) have received great interest of researchers. More precisely, Wang
[14] investigated the mild solutions of a class of FSDEs. By constructing Picard type
approximate sequences, Li [15] studied the existence and uniqueness of mild solutions
for a class of FSDEs with delay driven by fractional Brownian motion. Ahmed [16] et
al. established the existence of mild solutions of Hilfer FSDES with nonlocal condi-
tions. For more details on the existence of mild solutions of FSDEs, see [17, 18, 19, 20]
and references therein.

Controllability is one of the important concepts in mathematical control the-
ory. The main concepts of controllability can be categorized into two kinds: ex-
act(complete) controllability and approximate controllability. The latter for control
systems is more appropriate to be studied since the conditions of former are usually
too strong in infinite dimensional spaces [21]. Many researchers focused on the ap-
proximate controllability of FSDEs, see [22, 23, 24, 25, 26, 27, 28, 29, 30] and the
references therein. However, these works consider the approximate controllability of
FSDEs only in the Caputo sense. To the best of our knowledge, the approximate con-
trollability of Hilfer fractional neutral stochastic differential equations has not been
investigated. Motivated by the above consideration, in this paper, we study the ap-
proximate controllability of Hilfer fractional neutral stochastic differential equations

of the form:

DU [x(t) — h(t, ()] + Az(t) = f(t,2(t)) + Bu(t) + o(t) 2l
teJ = (0, (1)

Iéifu)(lfu)x(mt:o = g(z) + o,

where Dyl denotes the Hilfer fractional derivative, v € [0,1], u € (3,1), —A is the
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infinitesimal generator of an analytic semigroup {S(¢)}:>0 on a Hilbert space X. The
state z(-) takes values in X, The control function u € L% (J,U), U is a Hilbert space.
B:U — X is a bounded linear operator. Let J = [0,b]. W is a standard Q—Wiener
process on separable Hilbert space H. xg is an .%y—measurable random variable and
satisfies E| o> < 0o. h, f,o and g are appropriate functions that satisfying some
assumptions.

An outline of this paper is given as follows. Section 2 introduces some notations
and preliminary facts. In Section 3, the existence and uniqueness of mild solutions
for system (1) are established. In Section 4, a new set of sufficient conditions for
approximate controllability of system (1) is established. Finally, Section 5 presents

an example.

2. PRELIMINARIES

Some preliminary facts are presented in this section which is necessary for this paper.

Throughout this paper, — A is the infinitesimal generator of an analytic semigroup
of bounded linear operators {S(t)};>0. Assume that 0 € p(A), where p(A) is the
resolvent set of A. Then for Vn € (0, 1], we can define the fractional power A" as a
closed linear operator on D(A"). Let (2, %, P) be a complete probability space with
a normal filtration {F}ic0p. W J x Q — H is a standard Q—Wiener process
on (Q,.#,P) with the linear bounded covariance operator @ such that TrQ < oo,
which is adapted to normal filtration {7 },c[0,4). Assume that there exist a complete
orthonormal system {e, },>1 in H, a bounded sequence of nonnegative real numbers
{An}nen such that

Qen:Aneny Ap 20, n=1,2,.-

and a sequence of independent real-valued Brownian motions {53, },>1 such that

<W(t),e>=Y VA <en,e>Bu(t),e € Ht €[0,b].
n=1

Introduce the following Hilbert spaces:

L*(Q,X)

{f | f is an F — measurable square integrable random
variable with values in X},
LY:= {f|f is a Hilbert-Schmidt operator from Qz (H) to X},
L% (J,U):= {z|x:JxQ— X is a square integrable .%; — adapted

process with values in U} .
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Let g=v+pu—vp, then 1 —g= (1 —v)(1 —p) € (0,1). We denote
C(J,L*(Q,X)) == {x:J— L*Q,X) | zis an F-adapted stochastic process,

which is a continuous mapping such that sup E||z(t)|* < oo} .
ted

1
It is a Banach space with the norm ||z c(s.r2(0,x)) = (supes Ellz(t)]|?) 2.

Let C1_4(J, L?(©2, X)) be the Banach space
Cr—q(J,L*(Q, X)) = {z € C(J', L*(Q, X)) | ' 92(t) € O(J, L*(2, X))},

equipped with the norm
1

lalle = (supEntl—qx(t)P)
teJ

For brevity, let us take ¢ = C1_,(J, L*(2, X)).

Definition 1. [1] The fractional integral of order v with the lower limit 0 for a

function f : [0,00) — R can be written as

v _ L)
If f(t) = I‘(V)/O (t—s)lfl’ds’ t>0,v>0,

where T'(+) is the gamma function.

Definition 2. [1] Riemann-Liouville’s derivative of order v with the lower limit 0

for a function f :[0,00) — R can be written as

y B 1 dr t f(S) B
LD0+f(t) = mﬁ/o mds, t>0,n= [l/] + 1.

Definition 3. [1] Caputo’s derivative of order v with the lower limit 0 for a function
f:]0,00) = R can be written as

n—1
v 14 t v
“Dy. f(t) = Dj lf(t) -y ﬁf(k)“”] >0, n=[]+1.
k=0
Furthmore, if f(" € C[0, 00), then

! ] /Ot(t —5)" (8 ds, >0, n=[v] + 1.

“Dyf(t) = Tn—)

Definition 4. [5] The Hilfer fractional derivative of order v € [0,1] and p € (0,1)

with the lower limit 0 is defined as

v, v(l—p d 1—v)(1—p
Dt (1) = I ™ 16T f (o),
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Remark 5. [5] (i) For v =0, p € (0,1), Dof corresponds to the classical Riemann-

Liouville fractional derivative: DO’“f( t) = $Ié+ "f(t) =1 DELf(2).

(i4) For v = 1, p € (0,1), 0+‘ corresponds to the classical Caputo fractional
derivative: D1 P = Ié+"jtf( ) = Db, f(t).

We introduce the Wright function M,,, which is defined by

o n 1
1),60
Z:n_l ),ue(o, ),0 € C,
and satisfies ( )
1+gq
0IM = ,60>0.
/ T(1+ pg)’

Motivated by [6, 31], one can define the mild solution for system (1).

Definition 6. [6, 31] A function z € ¥ is a mild solution of system (1), if

Iéi_”)(l_“)x(t)h:o = g(z) + xo and it satisfies the following integral equation

(t) u(8)[wo = h(0,2(0)) + g(x)] + h(t, x(t))
/ AP, h(s,x(s))ds + / (t = 8)[f(s,2(s)) + Bu(s)]ds
+/ P,(t —s)o(s)dW(s), t € J, P—a.s., (2)
0
where

Su(t) = T TP (), Pult) = 71 T(8), To(t) = /OOO HOM,,(0)S(t0)d0.
For the sake of convenience, in the rest of this paper, we write (2) as
2(0) = Sup(0fa — h(0.2(0)) + g(a)] + h(t.2(1)
+ /Ot(t — SFVATL(t — s)h(s, 2(s))ds
+ /Ot(t = )Mt — 5)[f (s, 2(s)) + Bul(s)]ds
+ /Ot(t — )T, (t — 8)o(s)dW (s), t € J', P —a.s.

We introduce the following assumption.
(Hp) S(t) is continuous in the uniform operator topology for ¢ > 0 and {S(t)}+>0 is

uniformly bounded, i.e., there exists M > 1 such that sup | S(¢)| < M.
t€[0,00)
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lemma 7. [6, 31] Assume that (Hy) is satisfied, we have the following properties.

(1) Tu(t), Pu(t) and S, . (t) are linear and bounded operators, that is, forVt >0, x €

X, qg=v+pu—vu, we have

Mt
IN(D)

(17) Operators T,,(t), P,(t) and S, ,(t) are strongly continuous.

Mt ]|

ITu(0)2] < 0

» [[Pu @)zl < and [| Sy, (t)z]| <

lemma 8. [31] ForVax € X,y € (0,1) and n € (0, 1], we have

; C,r@ ~ )
= A= v n < e /
AT, (e = AT, (t)Ax, t € J, |ATT,(t)x| < T (1 + (1 — n)),t eJ.

lemma 9. [33, 32/ For arbitrary LY-valued predictable process W(t),t € [r1,72],

which satisfies

T2
E </ |\I!(s)|%gds) <00, 0< 7 <7 <h,

1

we have

d

2 -
<5 ([T Ieei ).

Definition 10. [34] System (1) is said to be approximate controllability on J if
R(b) = L*(Q2, X), where

[ s

1

R(b) = {x(bsu) |
z(-;u) is the mild solution of system (1) with respect to u € L% (J,U)} .

lemma 11. [35] For V¢ € L(Q, X), there exists an F;—adapted process o : J x Q) —
LY such that Ef; Hap(s)HQLgds < oo and £ = E¢ + fob o(s)dW (s).

3. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS
The existence and uniqueness of mild solutions for system (1) are investigated in this

section.

We introduce two relevant operators:
b 1
(i) Th = / (b—s)" 1T, (b— s)BB*T;(b— s)ds, 5 <u< 1,
0

(i1) R(a, Tf) = (ol +T4)71, a >0,
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where B* and T;(t) are the adjoints of B and T),(t), respectively. By Lemma 7, it is
easy to see that F8 is a linear bounded operator.
For Va >0, V¢ € L3, X), we define the control function u® as follows:

u(t,x) = B*T} (b — t)R(a, T)) P(x), (3)
where
B() =€ = S1u(0) [0 — (0,2(0)) + g(@)] — h(b, 2(b))
-/ (b VAT, (b — $)h(s, a(s))ds — / (b P T (b — )1 (s, 2(4))ds
-/ (b YT (b — s)o{s)dW (s),

and § = B¢ + fo ©(s)dW (s)(see Lemma 11).
Let us introduce the following hypotheses.
(Hy): {S(t),t > 0} is a compact Cp-semigroup and [|aR(a, TH)|| < 1 for Ya > 0.
(H3): The function f:J x X — X satisfies the following conditions:
(i) for each t € J, f(t,) : X — X is continuous,
(#7) for each x € X, f(-,x) : J — X is strongly measurable,
(t31) there exists a constant M; > 0 such that for Vt € J, Vo € X,

If(t )l < M@+ 7)), (8 21) = f(t,z2)l| < Mat!™|zy — a2]|.

(H3): h:Jx X — X is a continuous function and there exist a constant v €

1
(0,1), v > 3 and M > 0 such that h € D(A7) and for Vt € J, Vz,y € X,
[ATA(t, )| < Ma(1+ =), [AVA(t,x) — ATh(t,y)l| < Mat'~ |z — y]|.
(Hy): There exists a constant M3 > 0 such that for Va,y € ¥,

lg(x) —g(W)| < Msllz —y

€-

5): ere exists a constant p > 57— suc a € runction o : — satisiies
Hs): Th ist tant p > 7 such that the functi J — LY satisfi

/HU 9|Phds < oo,

lemma 12. Assume that hypotheses (Ho)— (Hs) are satisfied, there exists a constant
C* > 0 such that forVx € €,

(/ (s, )| ds) W+ lal2).



698 J. LV AND X. YANG

Proof. By (Hy), (H1), Lemma 7 and the inequality

(a1+az+-+ay)? <n(ai +a3+-+a), a, - ,an >0, (4)
one has
b
E ( / ||ua<s,x>||2ds>
0
BM2MZ .~
< ——=F|P(x
6bM2M2
< - <E|§|2 + E[|Sy,u(b)[zo — h(0,2(0)) + g(@)][|* + E||h(b, 2(b))]|*

a?(L(p))?

b
+E /0 (b— s)" AT, (b — s)h(s,x(s))ds

2

)

b
HE| [ 0=y T b= ) (s a())ds

2

b
+F /0 (b—s)"1T,(b— s)o(s)dW (s)

By (Hs) and (Hy4), we have

E[Sy,,(b)[wo — h(0,2(0)) + g()]|”

3Mt212 ) e , i
= T@[EH%H + B||ATATh(0,2(0))[|* + Ellg(z) — g(0) + g(0)|1%]
3M32¢2a-2 2 20 A—~112 9 o 1o )
T2 [Ellwoll” + 2M3 | ATY|P(1 + |2]1%) + 2MZ 215 + 2[l9(0)]1*]

E |[h(b,x(®)|* = EJ| A~ AVh(b,2(b))|* < 2M3 | AP(L + [lz]%)-

By Lemma 8, (H3) and Hoélder’s inequality, we have

2

b
I /0 (b= s)P VAT, (b — $)h(s, x(s))ds

2
E

b
/0 (b—s)F AT, (b — s)AVh(s, z(s))ds

/-Lcl—’yr(l_'_’}/) ? ’ — g ypu—1 Sl—q (s s i
< (MGt E(/ (b= sy a1 4 171 <>||>d>

- ( i )(/O(b ) d)E(/O M2(1+ ||()||)d>
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< (Kt +7))2 2M3(1  [2]3)
- L1+ p) 2yp—1
Using (H») and Holder’s inequality, we have

2

b
E /0 (b— ) Tu(b—s)f(s,z(s))ds

M2M1 ’ p—1 1—q i
< )E</ (b= 11+ ||x<s>||>ds>

20 M2 M7 (1 + ||=[|%)
I2(p)(2p — 1)

By Lemma 9 and (Hs), we have

2

b
E /0 (b—s)""T,(b—s)o(s)dW (s)

LQ ' — 8)2472)5(s)||2 0ds
FQ(N)E</O (b 52| >||Lgd>

M? < p—1 2pu ) / 2
b~ »—1 o pds
I2(p) \2pp—p—1 oz

Therefore, there exists a constant C* > 0 such that

(/ (s, |2ds> <

The proof is complete. O

(1 +ll=l1%) -

Let

10M2 (M| A2 + M3)

A= I2(Q)

50220420 2C2 T2 (1+ ) M3 5b22a+20 )2 )2
(2yp = DI+ yp) I2(p)(2p — 1)
AOMOMEb*H(|A™Y||P M3 + M3) | 200> 2020 MAM G M3 || A7 |2
a?I ()12 (q) (21 — 1) a?T (1) (20 — 1)
2062202042 NANTE M2p2CF_ T2 (1+7) 20622040 )10 N M2
2 (2yp — DI ()T (1 + yp) o?p?(2p — 1)1 (p)

Theorem 13. Assume that hypotheses (Ho) — (Hs) hold. For any control function
u®(-) defined by (3), system (1) has a unique mild solution on € provided that A < 1.

+ 562724 A77|)P M2 +

+
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Proof. For V o > 0,Vx € €, define the operator F,, on € by
(Faz)(t) = Suu(t)[zo —h(0,2(0)) + g(x)] + h(t, z(t))

+/0 (t— )"~ AT, ( — )h(s, o(s))ds
+ [ =9 T =) 0(0) + B (sl
+/0 (t— )" Tt — s)o(s)dW (s), t € J'.

We prove that F, has a fixed point on ¢’. The proof will be divided into three steps.
Step 1: F, maps ¢ into €.

For any y € C(J,L2(, X)), let x(t) = t9y(t) € €. Define the operator F, as

follows:

(Fay)(t)

t19(Foa)(t)
= 1798, u(8)wo — h(0,2(0)) + g(a)] + £~ h(t, x(t))

+t1_q/0 (t — s)" LAT,(t — s)h(s,z(s))ds
+t1*q/0 (t— )"~ 1T (¢ — 8)[f (s, 2(s)) + Bu®(s, 2)]ds
1 /t(t — s)"*lTH(t —s)o(s)dW (s), t € J.

0

In order to prove F, maps ¢ into ¢, we will prove that F, maps C(J, L2(£, X)) into
C(J,L*(9, X)). We divide the proof into two claims.

Claim 1: t — (F,y)(t) is continuous on [0,b] in the L*-sense.
By Lemma 7 and Lemma 8, one can deduce that

[t h(t, 2(t)| — Oast — 0T,
t
Htl_q/ (t— )"~ VAT, (t — $)h(s, o(s))ds]| — 0 as ¢ — 0F
0

tlfq/o (t — )"V, (¢ — 5)[f (s, 2(s)) + Bu®(s, z)lds|| — 0 ast — 0T,

—0ast—0T.

=g /0 (t = )T, (¢ — 8)o(s)dV (s)

In view of [6], we have

Tim (Fag)(1) = lim 0198, — h(0, 2(0)) + g()] = 2 "(O’P””((q(;)) @)

Hence, we can define (F,y)(0) = [wofh(oif((q(;)”g(w)].
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Let x € € be fixed, for t; = 0,0 < to < b, we can easily get that
lim B[ (Fay)(t2) — (Fay)(t)]* = 0

to—1t1

For 0 < t; <ty < b, we have
— —~ 2
B||(Fay)(t2) — (Fay)(ty)|

< 68|18 u(t2) — 1180 (00) 0 — h(0, 2(0)) + g(a)]
FOE |ty h(ta, 2(t2)) — 6 h(tr, a(t) 2

1 q/OQ (ts — )" LAT, (ta — 5)h(s, z(s))ds

2

+6L

2

t1
‘t}_q/ (tr — s)" ATy (1 — s)h(s, z(s))ds
0

vor|o | (b2 — Y T (b — 5)f(s, 2(s))ds
0

2

" / (b — 8)" Tu(ts — 5 (s 2(s))ds

ta
+6F té_q/ (ta — 8)" 1T, (ta — 5) Bu®(s, )ds
0

t1 2
—t}*q/o (ty — 8)" 1T, (t1 — s)Bu®(s,z)ds

+om| [ " 2 — ) Ty (k2 — 8)o(s)W(s)

2

t1
—t%fq/ (t1 — 8)" 1T, (t — s)o(s)dW (s)
0
= h+DL+I3+1,+ 15+ I

By Lemma 7, (H,) and the strong continuity of '7%S,, ,(t), we have

Jim | (#5790, (t2) = £S5 (t1) o — h(0,(0)) + g(@)] | = 0,
H Sunltz) = 11 Syu(t) 2o — h(0,2(0)) + g(@)]
< F( ] (leoll +[IATTIAYAO0, 2(0)) ]| + Mslalls + [lg(0)]]) € L*(%).
According to the Lebesgue dominated theorem, we can obtain
tgh—rgl h=0.

By (Hs), we have limy,_,;, I = 0. Moreover,

2

Is < 24E|t) ¢ /Ot1 [(t2 — )M~ — (t1 — 8)P AT, (t2 — s)h(s, 2(s))ds
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2

124 || /0 s — S UAT (1 — 8) — ATa(tr — )]h(s,2(s))ds

t1 2
+24F ||(t57 - t%fq)/ (t1 — )" LAT,(t1 — s)h(s,z(s))ds
0

2

12
+24E || / (ts — )" AT (ts — s)h(s, o(s))ds

ty

= 131 + I3z + I33 + I34.

By Lemma 8, (H3) and Hoélder’s inequality, we have

I3
t1
< ou g ( | =y — syt <t2—s>||A7h<s,x<s>>|ds)
0
_ 2457292 C3_ T2(1 + ) M3
- (1 + py)
t1 2
<E ( [ (@ =9t = =) 2= )01+ sl-qnms)n)ds)
0
48t§72qN2012—7F2(1+7)M22( 2&) 2pu—1 2u—1 2p—1
o (0 et )
I2(1 4 py)(2p — 1)(1 = 2(1 = y)p)

X (t;m*”“ — (ty — t1)1—2<1—’”“) —0asts — 1.

2

By (Hp), we get that T),(t) is a compact operator for every ¢ > 0. Therefore, T),(t) is

continuous in the uniform operator topology. For £ > 0 small enough, we obtain
t1—¢€

2
I3 <48t ' ( / (t1 — s)* A T Tu(te — 8) — ATt — s)||A7h(s,x(s))|ds>

0

ty 2
+ 48t§_2qE ( / (tr — S)M_IHAI_WT#(tz —s) — Al_WTM(h - 8)||A7h(s,x(s))|ds)

1—¢€
96t§ MME (LA ||z %) (b — ) (3T — e
21 —1

s€[0,t1—¢]

2
X < sup AT Ttz — s) = AT Tu(t — 8)|>

N 38415 2T M3 12 CE_ T2 (1 +v)e® (1 + ||=[|%)
2(1+ py)(2yp — 1)

—0astys = t1,e > 0,

48(t, " — ;)P CR D2 (L + ) MFEM (L + ||z

I3z <
[2(1 4 py) (2yp — 1)

— 0asty — tq,

48ty 1P CE T2 (1 + ) M3 (t2 — 01)* (1 + [|«|%)
21+ py)(2yp — 1)

34 = — 0 asty — 7.
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Moreover,
2

Lo< 2| /Otl[a?—s)“l—(tl—s)”11Tu<t2—s)f<s,x<s>>ds

2

248 7 [t = 9" Tt = 5) = Tyt = ) s.0()ds

2

+24E || (379 — 179 /tl(tl — )T (ty — ) f(s,2(s))ds
0

2

+24 ||t5 1 / ” (ta — )P 1T, (t2 — 5) f (5, 2(s))ds

t1

= Ig1 + Iyo + 143 + 1y4.

By (H,), Holder’s inequality and the continuity of T},(¢)(t >)) in t in the uniform

operator topology, we have

2AM2272 [t
I < /=2 / ty — s)P L — (4 — s)P T st)
I (0«2 Pt (g — sy

ay " 0+ S (s)]))? i)

4NN, (1 + [al|2)

< T (b — )2 — 2P S 0asty —
< 20020 — 1) [+ (t2 — 1) = 0asty — ta,
t1—e 2
I < 48E||ih / (b1 — )T (s — 5) — Ty (1 — 5)|f (s, 2(s))ds
0
1 h ?
HSE([67 [ (0= 5" Tt — 5) = Tults — 5))f (. (s))ds
t17€
_ 96ty MTMP(L 4 |lalg) (t — o) (1" — e
- 2u—1
2
( sup  [[Tu(t2 — s) = Tu(ts — 8)||>
s€[0,t1—¢]
384152 IM2 M2 (1 4 || z]|2)
t t
FQ(ILL)(ZM—I) — 0 as 2 — 1,€—>0,
A8M2M2t2# (1 2) (579 —1179)2
1'43 < 8 11 (2+||x g)(Z 1 ) —>Oast2—>t1,
() (2 —1)
A8E22IM2 M2 (1 2)(ty — t1)2H
Iu < 2 21( 2l — 0™
() (20 — 1)
For I5, we have
2

ty
I < 24F té_q/ [(t2 — )P — (t1 — )P HT,(ta — s)Bu®(s, x)ds
0
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2

ty
+24p ||k / (b — )Ty (ts — 5) — Tu(tr — )] Bu® (s, 2)ds
0

2

ty
+24F ||ty — 7 9) / (t1 — s)" M, (t) — s)Bu®(s, x)ds
0

2

to
+24F té_q/ (ta — 8)" 1T, (ta — 5) Bu®(s, v)ds

t1

= Is1 + Iso + Is3 + Is4.

By Hoélder’s inequality and Lemma 12, we have

2412 2IM2ME (397 4 (ty — tq)20 L — 201 t

I < 2 B( 12 (2_ 1) 2 )E(/ |ua(s,x)||2ds) 50
2(p)(2p — 1) 0

as to — 1.

For € > 0 small enough, we obtain

2
48ty 2IMB(t — et
2 Myt M swp Tulte—5)— Tu(t — 9)]

I <
2p—1 s€[0,t1—¢]
t17€
E (/ ||uo‘(s,x)|2ds>
0
19265 202 M3 ! ( /t1 ) )
E u®(s,x)||*ds | = 0asty = t1,e — 0,
TG0 @a - 1) el
SR ST )
I3 < E u®(s,x)||*ds | — 0asty — tq,
: (- 1) , ol
2422 IN2 M2 (ty — t1)21 1 2
Iy < 2 B E(/ u*(s, 2ds)—>0ast2—>t1.
(1) , el
Similarly
1 h ’
Is < 24F t{q/ [(t2 — 8)F ™1 — (t1 — 8)F T, (ta — s)o(s)dW (s)
0

248 |7 [ (0= 9 Tt = 5) = Tt = s)lo(a)aW (3

2

w21 70— ) [0 T - st

2

+24F ||t5 1 /t2 (ta — 8)* 1T, (ta — s)o(s)dW (s)

t1

= Ig1 + Igo + I3 + Igs.
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By Lemma 9, (Hs) and Hoélder’s inequality, we have

—1 1

s %z)w(/oh““‘s)“1‘052—8)’”1"2’“16!8)?7(/; lote)as)

— 0Oasty — tq,

3=

t1—e
I < 4827 sup ||Tu<t2—s>—Tu<t1—s>|2(/ o <>||2pds)
s€[0,t1—¢] 0

x < p—l et pod )
I S S R
2pp—p—1" 2pp—p — 1

—1 1

19242729\ 12 p—1 A g

H I (P ) T ([ o)
I'2(p) 2pp—p—1 t—c

— Oast2—>t1,

p—1 <
24 tl_q o tl_q 2M2 o 1 2p —p—1 p t1 P
oy < 202 =0 ——— lo(s)lIZds ) =0
2(u) 2]9# p—1 0 ’
as to — tq,
24t2_2qM2 P — 1 2pp—p—1 ”771 t2 2 %
s < 2 < to —t1 pl) (/ o(s pds) —0
G0 \Zpu—p—1 : f oty
as ty — t1.

— — 2
The above arguments show that limg, 4, EH(Fay)(tg) - (Fay)(tl)H = 0. Thus,

t — (Fay)(t) is continuous on [0,b] in the L2-sense.
Claim 2: For any y € C(J, L?(Q2, X)), sup,c; E||(Fay)(®)|* < oc.
For any y € C(J, L?(€, X)), we have

E||(Fay)(®)]”
< 6B [[t79S,,(0) w0 — h(0,2(0)) + g(@)||* + 68 [[t* =t =(1))]”

+6E || / (= S AT (- $)h(s, 2(5))ds
ot )
+6E tlfq/o (t — )" 1T, (t — 5) f(s,2(s))ds
+6E ||t 79 /t(t — 8)" 7T, (t — s)Bu®(s, z)ds
0
+6E tlfq/o (t — )" 1T, (t — s)o(s)dW (s)
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< Ji+Jda+Js 4+ Jy+ Js + .

By (Hs), (Hy) and Lemma 12, we have

18M?

Jl = FQ( ) [EH 0H2+2M2HA ’Y” (

) +2M3|z]|% + 2ll9(0)]?]

Jo <1267 2IMF| ATV + ||2]12),

1267204290202 MET2(1 4 4)(1 + ||z[|2)
P21+ 5p) 2y = 1) ’

3 <

< 122202 M2 ME (1 + ||2]|2)
B I2(p)(2p — 1)

GbL =20+ 2 \f2 D2
Js < () )2ﬂ—1B (/ |[u*(s, z)]|| ds),

6b2 24\ < p—1 e ) / )
Jg < b pds
=T \2mp-p-1 lotell

Therefore, HEQH% = SUPscy E||(1:'v‘ay)(t)|\2 < 00. By Claim 1 and Claim 2, F,
C(J,L*(Q, X)) = C(J,L*(Q, X)). Hence F, maps € into €.
Step 2: F,, is a contraction mapping.

For V z,y € ¥, we have

B[t 9[(Faz)(t) — (Fay) @)

BE (|95, (1)[1(0, 2(0)) — h(0,5(0)) + g(z) — g()]||”
SB[t 2 (1)) — h(t.y ()]

IN

2

+5E tlfq/o (t — )" LAT,(t — s)(h(s,2(s)) — h(s,y(s)))ds

2

45070 [ =y T = ) 0(9) = F s u(s))s

2

t

Yol R / (£ — )21, (¢ — ) Blu® (s, ) — u® (s, y)]ds
0

< Iy + Iy + I3 + 114 + II5.

By (Hz) — (H4) and Lemma 8, we have

< i (147747 (h0,2(0) = 0,50 + lo(o) — 9(0) ]
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10M2 (M| A77|1* + M3) >

Iy < 56> 24| ATV |PE|| A7 (h(t, () — h(t,y(®)))II* < 56° 71 A7 |2 M5 ]|z — )17,

2
ES

IN

. ( = AT = )47 s ) h(ay(s)))nds)

5b2_2q/£2027 1‘\2(1 +,Y)M2 t B B 2
rai ot ([ = et~ y(o) s )
SO ()M
@y — D21+ ) Y

2
73]

52222 ME o — y

R CTES VR

II5 <

20MOME ¢ 1 B o . 2
WEM) (t — )" [h(0,2(0)) = h(0,4(0)) + g(z) g(y)|d>

206224 N4 NI 2

S 2 ([ (e - . pe)as)
S ([t [o-rp a6 -0

x| AY(h(, 2(7)) — h(ﬂy(T)))lldeS)

206224016 M1,
a?I'0 ()

t b
E( / (t - )" ( / (b— ) IIf(T,x(T))—f(T,y(T))IdT> ds>

_ AOMOMEDH(| AP M3 + M3) ||« — y|1%
- a?I ()12 (q) (21 — 1)
200° 22 MM MF| A >
ST () @ 1) z — ylle
20022020+ 20 N4 NS M22C2 T2(1 + )|l — g2
o?p?(2yp — DI ()2 (1 + yp)
200224 MOMEM? ||z — yl|%
a?p? (2p — 1T (p) '

2

+

Therefore,

2

1Faz — Faylly < Alle —yll%-
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Since A < 1, it follows that Fy, is a contraction mapping. According to the contraction
mapping principle, F, has a unique fixed point in %', which is a mild solution of system
(1). The proof is complete. O

4. APPROXIMATE CONTROLLABILITY

In this section, the approximate controllability results of system (1) are given. Firstly,
the hypotheses are introduced.
(Hg): There exists a constant N > 0 such that

[n(t 2@O) + llg@) + £ 2@)] < N, Ve € €.Vt € J.

(H7): aR(a,T4) — 0 as o — 0T in the strong operator topology.
The following theorem justifies the controllability results of system (1).

Theorem 14. Assume that hypotheses (Ho) — (H7) are fulfilled, then system (1) is
approximately controllable on J provided that A < 1.

Proof. For V a > 0, V £ € L?(Q,X), from Theorem 13, it follows that F,, has a
unique fixed point in €. Let z® be the fixed point of F,, then

() = Suu(t)lzo — h(0,2°(0)) + g(a®)] + h(t,2% (1))
+ /0 (t— )"~ LAT, (£ — 8)h(s, 2 (s))ds
+ [ =T = ) 50" (0) + B (s,

t
+/ (£ = ) T(t — s)o(s)dW (s), t € J',
0
where

u®(t,2®) =B*T;; (b — t)R(a, T}) P(a®),
P(2*) =€ — Syu(b)[wo — h(0,27(0)) + g(z*)] — h(b,z* (b))

b

- [0 AT - 2o
b

N /0 (b— )" LT (b — ) f(s,2°(s))ds

b
- / (b—8)M,(b— s)a(s)dW (s).
0
Taking into consideration I — T§R(a, T}) = aR(a,T}), simple calculation gives

z%(0) = Syu®)xo = h(0,2(0)) + g(=)] + h(b, 2% (D))
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b
+/0 (b— 8)"LAT, (b — s)h(s, 2 (s))ds
b
+/0 (b= )" Tu(b — 5)f (s, 2(s))ds
+ /b(b — $)* (b — $)BB T} (b — 5)R(, T%) P(a*)ds
0

b
+ [ o=y T = a(aw (o)
P(z®) + T4 R(a, T} P(2%)
(I - Ty R(a, %) P(a”)
— &~ aR(a,THP(").

§—
§—
From (Hp) it follows that there are three subsequences, still denoted by {h(s,z*(s))},

{g(z*)} and {f(s,2*(s))}, which weakly converges to say h(s), g and f(s). Therefore

E || (b) — &||?
- EHaR(a,rg)ﬁ(xa) ’

IN

E

o (o, r3>{5 Sy (B0 — (0, 2%(0))] — h(b,2"(5))

2

_ /O b(b — )T (b— s)o(s)dW(s)}

+7E ||aR (e, T8) S, (0)[g(x®) — §]||* + 7E ||aR (e, T8) S, . (0)3]|°

b 2
+7E ||aR(«, Fg)/o (b— 8) TAT, (b — 5)(h(s,z%(s)) — h(s))ds

b 2
+7E aR(a,Pg)/O (b— s)""LAT, (b — s)h(s)

b 2
+7E || aR(e, FS)/O (b= )" Tu(b — 5)(f(s,2%(s)) — f(s))ds

2

b
478 k(1) [ (0= 10 - 910

From (H;) it follows that T, (t) and S, ,(t) are compact. Taking into consideration

(H7), simple calculation gives
E||z*(b) = €[I* =0, a — 0F,

which implies the approximate controllability of system (1). The proof is complete.
O
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5. AN EXAMPLE

Consider the following fractional control system

Dy [a(t,€) = h(t, 2(t,€))] = =2(t,) + f(t, 2(£,€)) + Buf(t,€)
+a(t, )% 1t e (0,1], € € [0,7],
z(t,0) = z(t,m) =0, t € (O 1],

Iéi*”““”)z(t,@u:o =30 ST s(€,y) 2t y)dy + 20(€), € € (0,7,

(5)

where D denotes the Hilfer fractional derivative, v € [0,1], u € (%, 1),0<t <
tho< <ty <1 Let X =U = H = L*[0,7],R), J = (0,1], J = [0,1].
s(&y) € L*([0,7] x [0,7], RT). B: U — X is a bounded linear operator. 3(t) is a
one-dimensional standard Brownian motion defined on the filtered probability space
(Q,.Z, P). Define the operator A : D(A) C X — X by Av = —v"”, where

D(A) = {v € X : v, are absolutely continuous, v" € X, v(0) = v(r) = 0}.

It is easy to check that — A generates a strongly continuous semigroup {S(¢)}+>o which
is compact, analytic and self-adjoint [3]. Hence, (Hy) is hold. Furthermore, —A has
a discrete spectrum, the eigenvalues are —n?,n € N, with corresponding normalized
eigenvectors z,(§) = (%)% sin(né).
Let
2(1)(€) = 2(,€), F(t2(D)(E) = F(E2(1,)), ult)(€) = u(t, ),

o(t)(§) = o(t,€), h(t,z(t))(§) = h(t, 2(t,)),
Z/ & ) dy—Z/ (& y)2(ti,y)d

Clearly, we can rewrite system (5) into the abstract form of system (1). If conditions
(Hy) — (Hr) are fulfilled and A < 1, then by Theorem 14, system (5) is approximately
controllable.
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