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ABSTRACT: In this article, we consider the three dimensional α-fractional non-

linear differential system of the form

Dα (x(t)) = a(t)f (y(t)) ,

Dα (y(t)) = −b(t)g (z(t)) ,

Dα (z(t)) = c(t)h (x(t)) , t ≥ t0,

where 0 < α ≤ 1, Dα denotes the Katugampola fractional derivative of order α.

We establish some new sufficient conditions for the oscillation of the solutions of

the differential system, using the generalized Riccati transformation and inequality

technique. Examples illustrating the results are also given.
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1. INTRODUCTION

The problem of oscillation and nonoscillation of differential equations was first studied

by C. Sturm in his seminal paper, published in 1836. In the last decades, a number
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of papers and research monographs have appeared on the theory and applications of

oscillations. The problem has been studied by several authors [5, 9, 21, 28].

On the other hand, the qualitative theory of nonlinear systems of differential

equations was introduced by Henry Poincare at the end of the nineteenth century.

Considerable attention has been given to the oscillation of linear and nonlinear dif-

ferential systems that have been studied by many authors [8, 11, 15, 17, 27, 29, 34].

Even though, the oscillation theory of classical differential system is well established,

the progress in the oscillation of nonlinear fractional differential systems is relatively

slower, due to the nonlocal behavior of fractional derivatives, involving singular ker-

nels.

Below, we review some of the applications of three-dimensional systems, starting

with the system studied by Shirokorad [31]:

ẋ = y − f(x),

ẏ = z,

ż = −ρz − kf(x).

The above system works as a flight controller, for an aircraft, but is also the classical

scheme of a one-valve electronic generator.

In chemical modeling, Robertson [25] proposed the system of differential equations,

ẋ1 = −0.04x1 + 104x2x3, x1(0) = 1,

ẋ2 = 0.04x1 − 3 ∗ 107x2
2 − 104x2x3, x2(0) = 0,

ẋ3 = 3 ∗ 107x2
2, x3(0) = 0.

In 1983, Rai et al. [24] modeled mutualism or inter-specific cooperation among three

species, using the system

du

dt
= γu

(

1− u

L0 + lx

)

,

dx

dt
= αx

(

1− x

K

)

− βxy

1 +mu
,

dy

dt
= y

(

−s+
cβx

1 +mu

)

.

Lorenz derived a simple model, for predicting the weather based on a simplified version

of the Rayleigh-Bernard [20] convection fluids model. The Lorenz system has the form

ẋ = σ(y − x),

ẏ = Rx− y − xz,

ż = −bz + xy.
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This system provides a specific example of chaotic dynamics, persisting all the time.

Fractional order differential equations have been applied to study several physical

phenomena such as Physics and Chemistry [viscoelastic systems, polymeric mate-

rials], Medicine and Pharmacology [neuronal dynamics, pharmacokinetics], Biology

and Ecology [population evolution, illness propagation], Financial Mathematics and

Economics [Black-Scholes equation, price formation], etc. In stock market analysis,

fractional order models have recently been used to describe the probability distribu-

tion of log-prices in the long-time limit, which is useful to characterize the natural

variability in prices in the long term. For the fundamental theory of fractional differ-

ential equations and the general background, we refer the reader to the papers and

monographs in [1, 6, 7, 10, 16, 19, 22, 23, 30, 33, 35].

The Caputo and Riemann-Liouville fractional derivatives are based on integral

expressions and gamma functions which are nonlocal. In 2014, though, Khalil et

al.[14] introduced a new fractional derivative called the conformable derivative, using

a limit definition analogous to that of standard derivative. Then the fractional version

of the chain rule, exponential functions and integration by parts was developed in

[2, 3]. The conformable derivative of Khalil was soon generalized by Katugampola to

what in this paper, is referred as the Katugampola fractional derivative [4, 12, 13].

In 2017, Sadhasivam et al. [26] studied the existence of solutions of three-dimensio-

nal fractional differential systems.

In 2000, Spanikova et al.[32] investigated the oscillatory properties of three-dimen-

sional differential systems of the neutral type.

To the best of our knowledge, the oscillatory behavior of an α-fractional nonlinear

three-dimensional differential system has been investigated yet. This paper attempts

to deal with such type of system as it is yet, an unexplored area. This scarcity of

work has led us to consider the following system

Dα (x(t)) = a(t)f (y(t)) ,

Dα (y(t)) = −b(t)g (z(t)) , (1)

Dα (z(t)) = c(t)h (x(t)) , t ≥ t0,

where 0 < α ≤ 1, Dα denotes the α-fractional derivative of order α with respect to t.

Throughout this paper, we assume the following conditions:

(A1) a(t) ∈ C2α([t0,∞),R+), b(t) ∈ Cα([t0,∞),R+),

c(t) ∈ C([t0,∞),R+), c(t) is not identically zero on any interval of the form [T0,∞),

where T0 ≥ t0;

(A2) f ∈ C1(R,R), yf(y) > 0, Dαf(y) ≥ K > 0, g ∈ C1(R,R),

zg(z) > 0, Dαg(z) ≥ L > 0, h ∈ C(R,R), xh(x) > 0 and
h(x)
x

≥ M > 0 for x 6= 0.

By a solution of the system (1), we mean a function
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U(t) = (x(t), y(t), z(t)), which has the properties

r(t)Dαx(t) ∈ C2α([T1,∞),R), p(t)Dα (r(t)Dαx(t)) ∈ Cα([T1,∞),R) and satisfies

system (1) on [T1,∞). Denote by S the set of all solutions U(t) of (1) which exist

on some ray [T1,∞) ⊂ [t0,∞) and satisfy sup {|x(t)|+ |y(t)|+ |z(t)| : t ≥ T } > 0 for

any T ≥ T1. We assume that (1) possesses such solution.

A solution U(t) ∈ S is considered to be oscillatory if all the components are oscil-

latory, otherwise it will be called nonoscillatory. The system (1) is called oscillatory

if all its solutions are oscillatory otherwise it will be called nonoscillatory.

The objective in this paper is to establish new oscillation criteria, for (1), making

use of generalized Riccati transformation and inequality technique.

This paper is organized as follows. In Section 2, we review fundamental concepts

on the α- fractional derivative. In Section 3, we establish some new conditions for

the oscillatory behavior of the solutions of system (1). In the final section, we present

some illustrative examples on our results.

2. PRELIMINARIES

The purpose of this section is to introduce some basic definitions of the Katugampola

α-fractional derivatives and integrals which we will use throughout the paper. We

begin with the following definition.

Definition 1. [12] Let y : [0,∞) → R and t > 0. Then the fractional derivative of

y of order α is given by

Dα(y)(t) := lim
ǫ→0

y(teǫt
−α

)− y(t)

ǫ
for t > 0, (2)

α ∈ (0, 1]. If y is α-differentiable in some (0, a), a > 0, and lim
t→0+

Dα(y)(t) exists, then

we define

Dα(y)(0) := lim
t→0+

Dα(y)(t).

The α-fractional derivative satisfies the following properties.

Let α ∈ (0, 1] and f, g be α- differentiable at a point t > 0 . Then

(p1) D
α(tn) = ntn−α for all n ∈ R.

(p2) D
α(C) = 0 for all constant functions, f(t) = C.

(p3) D
α(fg) = fDα(g) + gDα(f).

(p4) D
α( f

g
) = gDα(f)−fDα(g)

g2 .

(p5) D
α(f ◦ g)(t) = Dαf(g(t))Dα(g)(t).

(p6) If f is differentiable, then Dα(f)(t) = t1−α df
dt
(t).
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Definition 2. [12] Let a ≥ 0 and t ≥ a. Also, let y be a function defined on (a, t]

and α ∈ R. Then, the α-fractional integral of y is given by

Iαa (y)(t) :=

∫ t

a

y(x)

x1−α
dx (3)

if the Riemann improper integral exists.

3. MAIN RESULTS

In this section, we study the oscillatory behavior of the solutions of system (1) under

certain conditions.

(A3) we will consider the case:

∫ ∞

t0

sα−1 1

p(s)
ds = ∞,

∫ ∞

t0

sα−1 1

r(s)
ds = ∞,

where p(t) = 1
b(t) , r(t) =

1
a(t) and q(t) = KLc(t), p(t), r(t) and q(t) are positive real

valued continuous functions.

Before stating the main theorems, we present some results in the form of Lemmas

that will facilitate the proofs of our main results.

Lemma 3. If U(t) ∈ S is a nonoscillatory solution of (1), then the component

function x(t) is always nonoscillatory.

Proof. The proof follows from Lemma 1.1 in [18].

The next lemma will be used in our main results.

Lemma 4. Suppose that (A3) holds. Then there exists a t1 ≥ t0 such that either

(I) x(t) > 0, Dαx(t) > 0, Dα(r(t)Dαx(t)) > 0 for t ≥ t1.

or

(II) x(t) > 0, Dαx(t) < 0, Dα(r(t)Dαx(t)) > 0 for t ≥ t1.

Proof. Let x(t) be an eventually positive solution of (1) on (t0,∞). Now, system (1)

can be reduced to the following nonlinear differential inequality

Dα

(

1

b(t)
Dα

(

1

a(t)
Dαx(t)

))

+KLc(t)h(x(t)) ≤ 0, t ≥ t1, (4)

which implies,

Dα (p(t)Dα (r(t)Dαx(t))) + q(t)h(x(t)) ≤ 0, t ≥ t1, (5)
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From (5), we get Dα(p(t)Dα(r(t)Dαx(t))) ≤ 0 for t ≥ t0. Then p(t)Dα(r(t)Dαx(t))

is decreasing on (t0,∞).

Suppose now, Dα(r(t)Dαx(t)) ≤ 0 then r(t)Dαx(t) is decreasing and there exists

a constant l and t2 ≥ t0 such that p(t)Dα(r(t)Dαx(t)) ≤ −l for t ≥ t2. Integrating

from t2 to t, we get

r(t)Dαx(t) ≤ r(t2)D
αx(t2)− l

∫ t

t2

sα−1 1

p(s)
ds. (6)

Letting t → ∞ and using (A3), we get r(t)Dαx(t) → −∞. Hence, there is an integer

t2 ≥ t3 such that r(t)Dαx(t) ≤ r(t3)D
αx(t3) < 0 for t ≥ t3. Integrating from t3 to t,

we get

x(t) ≤ x(t3) + r(t3)D
αx(t3)

∫ t

t3

sα−1 1

r(s)
ds. (7)

As t → ∞, x(t) → −∞ by (A3). Which gives a contradiction to x(t) > 0. We

conclude that Dα(r(t)Dαx(t)) > 0 and r(t)Dαx(t) is increasing and we are led to (I)

or (II).

Lemma 5. Suppose that (A3) and Case (I) of Lemma 4 hold. Then there exists a

t1 ≥ t0 such that

Dαx(t) ≥ λ(t)

r(t)
p(t)Dα(r(t)Dαx(t)) for t ≥ t1, (8)

where λ(t) =
∫ t

t1
sα−1 1

p(s)
ds.

Proof. Let x(t) be an eventually positive solution of (1). Consider Case (I) of Lemma

4 and inequality (5). From these two, we obtain Dαx(t) > 0, Dα(r(t)Dαx(t)) > 0,

and Dα(p(t)Dα(r(t)Dαx(t))) ≤ 0 for t ≥ t1. Thus,

r(t)Dαx(t) = r(t1)D
αx(t1) +

∫ t

t1

sα−1 p(s)D
α(r(s)Dαx(s))

p(s)
ds

≥ p(t)Dα(r(t)Dαx(t))

∫ t

t1

sα−1 1

p(s)
ds for t ≥ t1.

From this, we get (8).

The following theorem is our main result.

Theorem 6. Suppose that assumptions (A1)− (A3) hold. Furthermore, assume that

there exists a positive function δ ∈ Cα([0,∞);R+) such that

lim sup
t→∞

t
∫

t1

(

sα−1Mq(s)δ(s)− 1

4
(δ

′

(s))2+
s1−αr(s)

δ(s)λ(s)

)

ds = ∞, (9)



α-FRACTIONAL DIFFERENTIAL SYSTEM 879

and

∞
∫

t0

(

ξα−1 1

r(ξ)

∞
∫

ξ

(

ζα−1 1

r(ζ)

∞
∫

ζ

sα−1q(s)ds

)

dζ

)

dξ = ∞, (10)

where (δ
′

(s))+ = max
{

0, δ
′

(s)
}

. Then every solution of system (1) is either oscilla-

tory or lim
t→∞

x(t) = 0.

Proof. Suppose that (1) has a nonoscillatory solution (x(t), y(t), z(t)) on [t0,∞).

From Lemma 3, x(t) is always nonoscillatory. Without loss of generality, we shall

assume that x(t) > 0 for t ≥ t1 ≥ t0, where t1 is chosen so large that Lemma 4 and

Lemma 5 hold. A similar argument could be made, if the solution x(t) were eventually

negative. Suppose that Case (I) of Lemma 4 holds for t ≥ t1.

Define the generalized Riccati transformation

w(t) = δ(t)
p(t)Dα(r(t)Dαx(t))

x(t)
, t ≥ t1. (11)

Thus w(t) > 0. Differentiating with respect to t and using (5), (8), we have

Dαw(t) ≤ Dαδ(t)

δ(t)
w(t)−Mδ(t)q(t) − λ(t)

δ(t)r(t)
w2(t), t ≥ t1. (12)

Therefore, from (p6), we have the inequality

w
′

(t) ≤ (δ
′

(t))+
δ(t)

w(t)−Mtα−1q(t)δ(t) − tα−1 λ(t)

δ(t)r(t)
w2(t). (13)

Using the inequality, (γ ≥ 2)

γABγ−1 −Aγ ≤ (γ − 1)Bγ , (14)

we get

w
′

(t) ≤ −
(

Mtα−1q(t)δ(t)− 1

4
t1−α(δ

′

(t))2+
r(t)

δ(t)λ(t)

)

. (15)

Integrating both sides from t1 to t, we get

∫ t

t1

w
′

(s)ds ≤ −
∫ t

t1

(

Msα−1q(s)δ(s)− 1

4
s1−α(δ

′

(s))2+
r(s)

δ(s)λ(s)

)

ds,

which yields that

∫ t

t1

(

sα−1Mq(s)δ(s)− 1

4
(δ

′

(s))2+
s1−αr(s)

δ(s)λ(s)

)

ds ≤ w(t1),

for all large t1, which contradicts hypothesis (9).
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Next, we consider Case (II) of Lemma 4. That is, Dαx(t) < 0, Dα(r(t)Dαx(t)) > 0

for t ≥ t1. Since x(t) is positive and decreasing, there exists a lim
t→∞

x(t) = k ≥ 0.

Suppose that k > 0. Integrating (5) from t to ∞, we have

∫ ∞

t

(

p(s)Dα (r(s)Dαx(s))

)
′

ds ≤ −
∫ ∞

t

sα−1q(s)h(x(s))ds, (16)

then,

p(t)Dα (r(t)Dαx(t)) ≥
∫ ∞

t

sα−1q(s)h(x(s))ds,

which implies,

Dα (r(t)Dαx(t)) ≥ 1

p(t)

∫ ∞

t

sα−1q(s)h(x(s))ds,

(r(t)Dαx(t))
′

≥ tα−1 1

p(t)

∫ ∞

t

sα−1q(s)h(x(s))ds,

Again integrating the above inequality from t to ∞, we obtain

−r(t)Dαx(t) ≥
∫ ∞

t

(

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)h(x(s))ds

)

dζ,

−Dαx(t) ≥ 1

r(t)

∫ ∞

t

(

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)h(x(s))ds

)

dζ,

then,

−x
′

(t) ≥ tα−1 1

r(t)

∫ ∞

t

(

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)h(x(s))ds

)

dζ.

Once again integrating this inequality from t0 to ∞, we get

x(t0) ≥
∫ ∞

t0

ξα−1 1

r(ξ)

∫ ∞

ξ

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)h(x(s))dsdζdξ. (17)

From (A2) and x(t) ≥ k, we get

x(t0) ≥ M

∫ ∞

t0

ξα−1 1

r(ξ)

∫ ∞

ξ

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)x(s)dsdζdξ,

then,

x(t0) ≥ Mk

∫ ∞

t0

(

ξα−1 1

r(ξ)

∫ ∞

ξ

ζα−1 1

p(ζ)

∫ ∞

ζ

sα−1q(s)dsdζ

)

dξ, (18)

which contradicts (10). Hence k=0. That is, x(t) → 0 as t → ∞ and hence U(t) → 0

as t → ∞.

Let δ(t) = t, t ≥ t0, we yields the corollary.
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Corollary 7. Suppose that (A1)− (A3) and (10) hold. Furthermore, assume that

lim sup
t→∞

t
∫

t1

(

Msαq(s)− 1

4

r(s)

sαλ(s)

)

ds = ∞. (19)

Then every solution of (1) is either oscillatory or tends to zero as t → ∞.

Next, we extend the results of Theorem 6, using the Kamanev-type condition to

the system under study.

Theorem 8. Assume that (A1)−(A3) and (10) hold. Moreover, assume there exists

a δ ∈ Cα([0,∞);R+) such that

lim sup
t→∞

1

tn

t
∫

t1

(t− s)n
(

sα−1Mq(s)δ(s)− (δ
′

(s))2+
s1−αr(s)

4δ(s)λ(s)

)

ds = ∞, (20)

where (δ
′

(s))+ as in Theorem 6. Then every solution of system (1) is either oscillatory

or lim
t→∞

x(t) = 0.

Proof. Assume that Case (I) of Lemma 4 holds, for t ≥ t0. Proceeding as in the

proof of Theorem 6, we obtain (15) for t ≥ t1. Multiplying by (t−s)n and integrating

from t1 to t, we get
∫ t

t1

(t− s)n
(

sα−1Mq(s)δ(s)− 1

4
(δ

′

(s))2+
s1−αr(s)

δ(s)λ(s)

)

ds

≤ −
∫ t

t1

(t− s)nw
′

(s)ds, (21)

≤ tn(1− t1
t
)nw(t1). (22)

Then

lim sup
t→∞

1

tn

∫ t

t1

(t− s)n(sα−1Mq(s)δ(s)− s1−α(δ
′

(s))2+r(s)

4δ(s)λ(s)
)ds ≤ w(t1). (23)

This contradicts (20).

We follow the exact same procedure, for case (II), as in Theorem 6.

Theorem 9. Assume that (A1) − (A3), and (10) hold. Furthermore, assume that

there exists a positive function δ ∈ Cα([0,∞);R+) such that

lim sup
t→∞

1

tn

t
∫

t1

(

(t− s)nsα−1Mq(s)δ(s)− 1

4

s1−αr(s)δ(s)

λ(s)(t − s)n
F 2(t, s)

)

ds = ∞, (24)

where F (t, s) = (t − s)n (δ
′

(s))+
δ(s) − n(t − s)n−1. Then every solution of system (1) is

either oscillatory or lim
t→∞

x(t) = 0.
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Proof. For case (I) of Lemma 4, we proceed as in the proof of Theorem 6, to obtain

(13), for t ≥ t0. Multiplying by (t− s)n and integrating from t1 to t and using (22),

we get

∫ t

t1

M(t− s)nsα−1q(s)δ(s)ds ≤ (t− t1)
nw(t1) +

∫ t

t1

((t− s)n
(δ

′

(s))+
δ(s)

− n(t− s)n−1)w(s)ds −
∫ t

t1

(t− s)n
sα−1λ(s)

r(s)δ(s)
w2(s)ds. (25)

Then, from (14), we have that

∫ t

t1

M(t− s)nsα−1q(s)δ(s)ds ≤ (t− t1)
nw(t1)

+
1

4

∫ t

t1

s1−αr(s)δ(s)

(t− s)nλ(s)

(

(t− s)n
(δ

′

(s))+
δ(s)

− n(t− s)n−1

)2

ds. (26)

Hence

lim sup
t→∞

1

tn

t
∫

t1

(

(t− s)nsα−1Mq(s)δ(s)− 1

4

s1−αr(s)δ(s)

λ(s)(t − s)n
F 2(t, s)

)

ds

≤ w(t1),

which contradicts (24).

For Case (II), we use the same arguments, as in the proof of Theorem 6.

Let

D0 = {(t, s) : t > s ≥ t0} , D = {(t, s) : t ≥ s ≥ t0} .

The function H ∈ C(D,R) is said to belong to the class R, if (T1) H(t, t) = 0 for

t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0.

(T2) H has a continuous nonpositive partial derivative on D0 with respect to s

such that h(t, s)
√

H(t, s) = −∂H
∂s

(t, s).

Theorem 10. Assume that (A1) − (A3), and (10) hold. Furthermore, assume that

there exists a function δ ∈ Cα([0,∞);R+) and H ∈ R such that

lim sup
t→∞

1

H(t, t0)

t
∫

t1

(

H(t, s)sα−1Mq(s)δ(s)

− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds = ∞, (27)

where G(t, s) = H(t, s) (δ
′

(s))+
δ(s) − h(t, s)

√

H(t, s). Then every solution of system (1)

is either oscillatory or x(t) → 0 as t → ∞.



α-FRACTIONAL DIFFERENTIAL SYSTEM 883

Proof. Proceeding as in the proof of Theorem 6, for case (I), we obtain (13), for

t ≥ t1. Multiplying by H(t, s) and integrating from t1 to t, we get

∫ t

t1

MH(t, s)sα−1q(s)δ(s)ds ≤ H(t, t1)w(t1)

+

∫ t

t1

(

∂H

∂s
(t, s)w(s) +H(t, s)

(

(δ
′

(s))+
δ(s)

w(s) − sα−1λ(s)

r(s)δ(s)
w2(s)

))

ds. (28)

≤ H(t, t1)w(t1) +

∫ t

t1

(

H(t, s)
(δ

′

(s))+
δ(s)

− h(t, s)
√

H(t, s)

)

w(s)

−
∫ t

t1

H(t, s)
sα−1λ(s)

r(s)δ(s)
w2(s)ds. (29)

Using (14), we get

lim sup
t→∞

1

H(t, t1)

t
∫

t1

(

H(t, s)sα−1Mq(s)δ(s)

− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds ≤ w(t1), (30)

which contradicts (27).

The proof for Case (II) is as in Theorem 6.

The following result establishes a modified oscillation criterion, excluding condi-

tion (27).

Theorem 11. Assume that all the conditions of Theorem 6 hold, except from (27).

Let

0 < inf
s≥t0

(

lim inf
t→∞

H(t, s)

H(t, t0)

)

≤ ∞, (31)

and

lim sup
t→∞

1

H(t, t0)

t
∫

t0

MH(t, s)sα−1q(s)δ(s)ds < ∞. (32)

Moreover, let some φ ∈ C([t0,∞);R+) such that

lim sup
t→∞

t
∫

t0

sα−1φ2(s)λ(s)

r(s)δ(s)
ds = ∞, (33)

and for all T ≥ t0 large enough

lim sup
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)sα−1Mq(s)δ(s)
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− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds ≥ φ(T ), (34)

where H(t,s) and G(t,s) are defined in Theorem 10. Then every solution of system

(1) is either oscillatory or x(t) → 0 as t → ∞.

Proof. Proceeding as in Theorem 10, for case (I), we get (30), with t1 = T . Therefore

lim sup
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)sα−1Mq(s)δ(s)

− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds ≤ w(T ).

From (34), we obtain

φ(T ) ≤ w(T ) for all T ≥ t0, (35)

and

φ(t0) ≤ lim inf
t→∞

1

H(t, t0)

t
∫

t0

(

H(t, s)sα−1Mq(s)δ(s)

− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds.

By (32),

lim sup
t→∞

1

4H(t, t0)

t
∫

t0

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)ds < ∞. (36)

Now, we define the functions χ(t) and Ψ(t) as

χ(t) =
1

H(t, t0)

t
∫

t0

G(t, s)w(s)ds (37)

and

Ψ(t) =
1

H(t, t0)

t
∫

t0

H(t, s)
sα−1λ(s)

r(s)δ(s)
w2(s)ds. (38)

Then, from (29), it follows that

Ψ(t)− χ(t) ≤ w(t0)−
1

H(t, t0)

t
∫

t0

H(t, s)sα−1Mq(s)δ(s)ds < w(t0), (39)
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so that

lim sup
t→∞

(Ψ(t)− χ(t)) ≤ w(t0).

Thus, there exists an increasing sequence {tk}∞k=0 with tk → ∞ as k → ∞ so that

lim sup
t→∞

(Ψ(t)− χ(t)) = lim
k→∞

(Ψ(tk)− χ(tk)).

From this

Ψ(tk)− χ(tk) < w(t0), k = 1, 2, .... (40)

We have to show that

t
∫

t0

sα−1λ(s)

r(s)δ(s)
w2(s)ds < ∞. (41)

If not,

t
∫

t0

sα−1λ(s)

r(s)δ(s)
w2(s)ds = ∞. (42)

By (31), there is a constant η > 0 satisfying

H(t, s)

H(t, t0)
> η > 0 for all s ≥ t0 for large t. (43)

Let γ > 0 be an arbitrary constant. Then from (42), assuming t2 is very large, we get

t
∫

t0

sα−1λ(s)

r(s)δ(s)
w2(s)ds ≥ γ

η
for all t ≥ t2.

Therefore, for t ≥ t1, we have

Ψ(t) =
1

H(t, t0)

t
∫

t0

−∂H(t, s)

∂s





s
∫

t0

τα−1λ(τ)

r(τ)δ(τ)
w2(τ)dτ



 ds

≥ 1

H(t, t0)

t
∫

t1

−∂H(t, s)

∂s





s
∫

t1

τα−1λ(τ)

r(τ)δ(τ)
w2(τ)dτ



 ds

≥ γ

η

1

H(t, t0)

t
∫

t1

−∂H(t, s)

∂s
ds =

γ

η

H(t, t1)

H(t, t0)
.
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By (43), Ψ(t) ≥ γ. Since γ is arbitrary, Ψ(t) → ∞ as t → ∞. Therefore, Ψ(tk) → ∞
as k → ∞. In view of (40),

lim
k→∞

χ(tk) = ∞, (44)

and for large k,

χ(tk)

Ψ(tk)
− 1 ≥ −w(t0)

Ψ(tk)
≥ −c,

since w(t0)/Ψ(tk) → 0 as k → ∞. Thus

χ(tk)

Ψ(tk)
> 1− c for some 0 < c < 1 for all large k,

By (44),

lim
k→∞

χ2(tk)

Ψ(tk)
= ∞. (45)

On the other hand, using Holders inequality, for k=1,2,...

χ(tk) =
1

H(tk, t0)

tk
∫

t0

F (tk, s)w(s)ds

=
1

H(tk, t0)

tk
∫

t0

√

H(tk, s)w(s)

(

sα−1λ(s)

r(s)δ(s)

)
1
2
(

r(s)δ(s)

sα−1λ(s)

)
1
2 G(tk, s)
√

H(tk, s)
ds

≤ 1

H(tk, t0)

(

tk
∫

t0

H(tk, s)w
2(s)

sα−1λ(s)

r(s)δ(s)
ds

)
1
2
(

tk
∫

t0

r(s)δ(s)

sα−1λ(s)

G2(tk, s)

H(tk, s)
ds

)
1
2

≤ 1

H(tk, t0)

(

Ψ(tk)H(tk, t0)

)
1
2
(

tk
∫

t0

r(s)δ(s)

sα−1λ(s)

G2(tk, s)

H(tk, s)
ds

)
1
2

and

χ2(tk)

Ψ(tk)
≤ 1

H(tk, t0)

tk
∫

t0

r(s)δ(s)

sα−1λ(s)

G2(tk, s)

H(tk, s)
ds.

From (45),

lim
k→∞

1

H(tk, t0)

tk
∫

t0

r(s)δ(s)

sα−1λ(s)

G2(tk, s)

H(tk, s)
ds = ∞,

which gives

lim sup
t→∞

1

H(t, t0)

t
∫

t0

s1−αr(s)δ(s)

λ(s)

G2(t, s)

H(t, s)
ds = ∞,
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which contradicts to (36). Hence (41) holds. From (35), we have

∞
∫

t0

sα−1φ2(s)λ(s)

r(s)δ(s)
ds ≤

∞
∫

t0

sα−1w2(s)λ(s)

r(s)δ(s)
ds < ∞, (46)

which contradicts (33).

For case (II), we proceed as in the proof of Theorem 6, for that case.

4. EXAMPLES

In this section, we present some examples to illustrate the effectiveness of our results.

Example 12. Consider the system of α-fractional differential equations

Dα(x(t)) = t1−αf(y(t)),

Dα(y(t)) = −t1−αg(z(t)), (47)

Dα(z(t)) = h(x(t)), t ≥ t0.

Here a(t) = t1−α, b(t) = t1−α, c(t) = 1, f(y) = y3, g(z) = z(1 + z2) and h(x) = x.

It is easy to see that Dαf(y) = 3y1−αy2 ≥ 3ǫ1−α = K > 0, Dαg(z) = z1−α(1+3z2) >

z1−α ≥ ǫ1−α = L > 0 for some ǫ > 0, h(x)/x = 1 = M > 0, q(t) = 3ǫ4−2α,

p(t) = r(t) = t1−α and λ(t) = t− t1.

If we take δ(t) = 1 then δ
′

(t) = 0. Consider

lim sup
t→∞

t
∫

t1

(

sα−1Mq(s)δ(s)− 1

4
(δ

′

(s))2+
s1−αr(s)

δ(s)λ(s)

)

ds

= lim sup
t→∞

t
∫

t1

3sα−1ǫ4−2αds → ∞ as t → ∞.

Also from (10), the inner integral becomes

∞
∫

ζ

sα−1q(s)ds =

∞
∫

ζ

sα−13ǫ4−2αds → ∞.

All the conditions of Theorem 6 are satisfied. Hence every solution of (47) is either

oscillatory or tends to zero.

Example 13. Consider the α-fractional differential system

D
1
2 (x(t)) =

√
te2tf(y(t)),
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D
1
2 (y(t)) = −

√
te−2tg(z(t)), (48)

D
1
2 (z(t)) =

√
th(x(t)), t ≥ t0.

Here α = 1
2 , a(t) =

√
te2t, b(t) =

√
te−2t, c(t) =

√
t, f(y) = y, g(z) = z and

h(x) = x.

It is easy to see that D
1
2 f(y) = y

1
2 ≥ √

ǫ = K > 0, D
1
2 g(z) = z

1
2 ≥ √

ǫ = L > 0

for some ǫ > 0, h(x)/x = 1 = M > 0. From (A3), we have

∞
∫

t0

sα−1 1

p(s)
ds =

∞
∫

t0

s
1
2
−1s

1
2 e−2sds < ∞.

Some conditions of Theorem 6 are not satisfied, infact (A3) fails to hold. Thus,

(x(t), y(t), z(t)) = (et, e−t, et) is a nonoscillatory solution of (48).

Example 14. Consider the α-fractional differential system

Dα(x(t)) = f(y(t)),

Dα(y(t)) = −g(z(t)), (49)

Dα(z(t)) = h(x(t)), t ≥ t0.

Here a(t) = b(t) = c(t) = 1, f(y) = y, g(z) = z and h(x) =
√
1− x2.

It is easy to see that Dαf(y) = y1−α ≥ ǫ1−α = K > 0, Dαg(z) = z1−α ≥ ǫ1−α =

L > 0, h(x)/x =
√
1−x2

x
≥

√
1−ǫ2

ǫ
= M > 0 for some 0 < ǫ < 1, q(t) = ǫ2−2α,

p(t) = r(t) = 1.

If we take δ(t) = 1 then δ
′

(t) = 0 and n=2. Consider

lim sup
t→∞

1

tn

t
∫

t1

(t− s)n
(

sα−1Mq(s)δ(s)− 1

4
(δ

′

(s))2+
s1−αr(s)

δ(s)λ(s)

)

ds

= lim sup
t→∞

1

t2

t
∫

t1

(t− s)2sα−1

√
1− ǫ2

ǫ
ǫ2−2αds → ∞ as t → ∞.

That is, all conditions of Theorem 8 are satisfied. Therefore, every solution of (49) is

either oscillatory or tends to zero. For example,

(x(t), y(t), z(t)) = (sin(
1

α
tα), cos(

1

α
tα), sin(

1

α
tα))

is such a solution.

Example 15. Consider the α-fractional differential system

D
1
3 (x(t)) = t

2
3 f(y(t)),

D
1
3 (y(t)) = −t

2
3 g(z(t)), (50)
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D
1
3 (z(t)) = t

2
3h(x(t)), t ≥ t0.

Here a(t) = b(t) = c(t) = t
2
3 , f(y) = y, g(z) = z and h(x) =

√
1− x2.

It is easy to see that D
1
3 f(y) = y

2
3 ≥ ǫ

2
3 = K > 0, D

1
3 g(z) = z

2
3 ≥ ǫ

2
3 = L > 0,

h(x)/x =
√
1−x2

x
≥

√
1−ǫ2

ǫ
= M > 0 for some 0 < ǫ < 1, q(t) = ǫ

4
3 t

2
3 , p(t) = r(t) = 1

t
2
3

,

λ(t) = t− t1 and F (t, s) = −2(t− s).

If we take δ(t) = 1 then δ
′

(t) = 0 and n=2. Consider

lim sup
t→∞

1

tn

t
∫

t1

(

(t− s)nsα−1Mq(s)δ(s)− 1

4

s1−αr(s)δ(s)

λ(s)(t − s)n
F 2(t, s)

)

ds

= lim sup
t→∞

1

t2

t
∫

t1

(

(t− s)2s
1
3
−1

√
1− ǫ2

ǫ
ǫ

4
3 s

2
3 −

s1−
1
3

1

s
2
3

4(t− s)2

4(s− t1)(t− s)2

)

ds

→ ∞ as t → ∞.

That is, all conditions of Theorem 9 are satisfied. Therefore, every solution of (50) is

either oscillatory or tends to zero. For example, (x(t), y(t), z(t)) = (sin t, cos t, sin t)

is such a solution.

Remark 16. In the previous example, for the choice ofH(t, s) = (ln t
s
)n and h(t, s) =

n
s
(ln t

s
)(

n

2
−1), one can verify all the conditions of Theorem 10 are satisfied. Thus, every

solution of system (50) is either oscillatory or tends to zero.

Example 17. Consider the system of α-fractional differential equations

D
1
4 (x(t)) =

1

t
1
4

f(y(t)),

D
1
4 (y(t)) = − 1

t
1
4

g(z(t)), (51)

D
1
4 (z(t)) =

1

t
1
4

h(x(t)), t ≥ t0.

Here a(t) = b(t) = c(t) = 1

t
1
4

, f(y) = y, g(z) = z and h(x) =
√
1− x2.

It is easy to verify that D
1
4 f(y) = y

3
4 ≥ ǫ

3
4 = K > 0, D

1
4 g(z) = z

3
4 ≥ ǫ

3
4 = L > 0,

h(x)/x =
√
1−x2

x
≥

√
1−ǫ2

ǫ
= M > 0 for some 0 < ǫ < 1, q(t) = ǫ

3
2 t−

1
4 , p(t) = r(t) =

t
1
4 , λ(t) = ln(t/t1).

If we choose δ(s) = s2

(t−s)2 then δ
′

(s) = 2st
(t−s)3 , G(t, s) = 2

s
(t − s)2, H(t, s) =

(

t
∫

s

du
θ(u)

)n

, n=2, θ(u) = 1 and φ(s) = 1. Now,

lim sup
t→∞

1

H(t, t0)

t
∫

t0

MH(t, s)sα−1q(s)δ(s)ds



890 G.E. CHATZARAKIS, M. DEEPA, N. NAGAJOTHI, AND V. SADHASIVAM

= lim sup
t→∞

1

(t− t0)2

t
∫

t0

√
1− ǫ2

ǫ
(t− s)2s

1
4
−1ǫ

3
2 s−

1
4

s2

(t− s)2
ds < ∞.

Hence,

lim sup
t→∞

t
∫

t0

sα−1φ2(s)λ(s)

r(s)δ(s)
ds = lim sup

t→∞

t
∫

t0

s
1
4
−1 ln(s/t1)

s
1
4

(t− s)2

s2
ds

≥ lim sup
t→∞

(t− t0)
2

t30

t
∫

t0

ln(s/t1)ds → ∞ as t → ∞

and

lim sup
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)sα−1Mq(s)δ(s)− 1

4

s1−αr(s)δ(s)

λ(s)H(t, s)
G2(t, s)

)

ds

=
1

(t− T )2

t
∫

T

(

(t− s)2s
1
4
−1

√
1− ǫ2

ǫ
ǫ

3
2 s−

1
4

s2

(t− s)2

− 1

4

s1−
1
4 s

1
4

s2

(t−s)2

ln(s/t1)(t− s)2
4

s2
(t− s)4

)

ds

=
1

(t− T )2

t
∫

T

(

√

ǫ(1− ǫ2)s+
s

ln( t1
s
)

)

ds

≥ 1

2(t− T )2

√

ǫ(1− ǫ2)

t
∫

T

sds ≥ 1 = φ(T ) as t → ∞.

That is, all conditions of Theorem 11 are satisfied. Therefore, every solution of

(51) is either oscillatory or tends to zero. For example,

(x(t), y(t), z(t)) = (sin(ln t), cos(ln t), sin(ln t))

is such a solution.
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