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1. INTRODUCTION

In this paper, we consider the following fractional differential equations with impulsive

effects










tD
α
T (

c
0D

α
t u(t)) + k(t)u(t) = λf(t, u(t)), t ∈ [0, T ], t 6= tj ,

∆( tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, ...m,

u(0) = u(T ) = 0,

(1.1)

where α ∈ (12 , 1] and λ is a positive control parameter, f : [0, T ] × R → R and

Ij : R → R, j = 1, 2, ...m are continuous functions, k(t) ∈ C([0, T ]) and there exist

two positive constants k1 and k2 such that 0 < k1 ≤ k(t) ≤ k2, the left Caputo

fractional derivative and right Riemann-Liouville fractional derivative of order α are

represented by c
0D

α
t and tD

α
T , respectively, 0 = t0 < t1 < · · · < tm+1 = T and
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∆( tD
α−1
T (c0D

α
t u))(tj) = tD

α−1
T (c0D

α
t u)(t

+
j )− tD

α−1
T (c0D

α
t u)(t

−

j ),

where

tD
α−1
T (c0D

α
t u)(t

+
j ) = lim

t→t
+

j

tD
α−1
T (c0D

α
t u)(t),

tD
α−1
T (c0D

α
t u)(t

−

j ) = lim
t→t

−

j

tD
α−1
T (c0D

α
t u)(t).

In recent years, the fractional differential equations have obtained more and more

attention by many authors, see [ 1-13 ]. Some authors have made attempt to use

variational methods and critical point theory to discuss the existence of solutions for

boundary value problems of fractional differential equations, some interesting results

have been obtained, see[14-23] and the references therein.

More precisely, In[16], the following fractional Hamiltonian system with impulsive

effects has been considered










tD
α
T (

c
0D

α
t u(t)) +A(t)u(t) = ∇F (t, u(t)), t ∈ [0, T ], t 6= tj ,

∆( tD
α−1
T (c0D

α
t u

i))(tj) = Iij(u
i(tj)), i = 1, 2, ...N, j = 1, 2, ...l,

u(0) = u(T ) = (0, ..., 0) ∈ RN ,

(1.2)

where α ∈ (12 , 1], A : [0, T ]→MN×N(R) is a continuous map from the interval [0, T ]

to the set of N -order symmetric matrices, Iij : R → R, i = 1, 2, ...N, j = 1, 2, ...l are

continuous functions, assume that there exist a ∈ C(R+, R+) and b ∈ L1([0, T ], R+)

such that F : [0, T ]×RN → R satisfies following inequalities

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t),

for all x ∈ RN and a.e.t ∈ [0, T ]. The authors have obtained infinitely many solutions

under some sufficient conditions for the system (1.2) by applying variant Fountain

theorems .

In[20], the authors considered the following boundary value problem with impul-

sive effects










tD
α
T (

c
0D

α
t u(t)) + k(t)u(t) = f(t, u(t)), t ∈ [0, T ], t 6= tj ,

∆( tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, ...m,

u(0) = u(T ) = 0,

(1.3)

which is the same as (1.1) when λ = 1. By employing the Morse theory coupled

with local linking arguments, the authors proved that system (1.3) has at least one

nontrivial solution .

In[17,18], the following boundary value problem has been studied










tD
α
T (

c
0D

α
t u(t)) + a(t)u(t) = λf(t, u(t)), t ∈ [0, T ], t 6= tj ,

∆( tD
α−1
T (c0D

α
t u))(tj) = µIj(u(tj)), j = 1, 2, ...m,

u(0) = u(T ) = 0.

(1.4)
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By using variational methods and critical point theory, the authors have obtained at

least one solution and three solutions for the system (1.4).

Motivated by above [17, 18, 20], the main aim in this paper is intended to establish

infinitely many solutions for the system (1.1) by using variational methods and critical

point theory, which is totally different from [15, 16, 18]. It is worth pointing out that

our results generalize and improve some previous results.

The organization of this paper is as follows. In Section 2, some preliminaries and

results which are applied in the later paper are presented. In Section 3, the proof of

main results are given. In Section 4, we give some examples to show our results.

2. PRELIMINARIES

In this section, we list some lemmas and results that we shall use in the rest of the

paper. For more details, please refer to the references [23-26].

We denote Br be the open ball in X with the radius r and centered at 0 and its

boundary defined by ∂Br.

Definition 2.1. Let E be a real Banach space and ϕ ∈ C1(E,R) satisfy the Palais-

Smale condition, i.e., every sequence {uj} ⊂ E for which {ϕ(uj)} is bounded and

ϕ
′

(uj)→ 0 as j → 0 possesses a convergent subsequence in E and ϕ(0) = 0.

Theorem 2.1. (see [24]) Let E be a real Banach space, and let ϕ ∈ C1(E,R) be even

satisfying the Palais-Smale condition and ϕ(0) = 0. If E = V
⊕

Υ, where V is finite

dimensional, and ϕ satisfies that:

(i) There exist constants ρ, η > 0 such that ϕ|∂Br∩Υ ≥ η;

(ii) For each finite dimensional subspace W ⊂ E, there is R = R(W ) such that

ϕ(u) ≤ 0 for all u ∈ W with ‖u‖ ≥ R.

Then ϕ possesses an unbounded sequence of critical values.

For any fixed t ∈ [0, T ] and 1 ≤ p <∞, define

‖x‖∞ = max
t∈[0,T ]

|x(t)|, ‖x‖Lp([0,t]) = (

∫ t

0

|x(s)|pds)
1
p , ‖x‖Lp = (

∫ T

0

|x(s)|pds)
1
p . (2.1)

Lemma 2.1. Let 0 < α ≤ 1, 1 ≤ p <∞ and f ∈ Lp([0, T ], R). Then we have

‖ 0D
−α
ξ f‖Lp([0,t]) ≤M∗‖f‖Lp([0,t]), ξ ∈ [0, t], t ∈ [0, T ], (2.2)

where 0D
−α
t is left Riemann-Liouville fractional integral of order α and

M∗ =







tα

Γ(α+1) , α ≤
1
p
,

tα

Γ(α)[q(α−1)+1]
1
q

, α > 1
p
,
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where 1
p
+ 1

q
= 1.

Proof. If α > 1
p
, from 1

p
+ 1

q
= 1, we immediately obtain q(α−1)+1 = 1

p−1 (pα−1) > 0

and by (2.1), we have

‖ 0D
−α
ξ f‖Lp([0,t]) =

1

Γ(α)

(

∫ t

0

|

∫ ξ

0

(ξ − τ)α−1f(τ)dτ |pdξ
)

1
p

,

since

|

∫ ξ

0

(ξ − τ)α−1f(τ)dτ | ≤

∫ ξ

0

(ξ − τ)α−1|f(τ)|dτ

≤ (

∫ ξ

0

[(ξ − τ)α−1]qdτ)
1
q ·

(

∫ ξ

0

|f(τ)|pdτ
)

1
p

=
[ 1

q(α− 1) + 1
· ξq(α−1)+1

]
1
q

·
(

∫ ξ

0

|f(τ)|pdτ
)

1
p

≤
tα−1+ 1

q

[q(α− 1) + 1]
1
q

·
(

∫ t

0

|f(τ)|pdτ
)

1
p

,

so

‖ 0D
−α
ξ f‖Lp([0,t]) ≤

1

Γ(α)
·

tα−1+ 1
q

[q(α − 1) + 1]
1
q

·
[

∫ t

0

(

∫ t

0

|f(τ)|pdτ)
]

1
p

=
1

Γ(α)
·

tα−1+ 1
q

[q(α − 1) + 1]
1
q

· t
1
p ·

(

∫ t

0

|f(τ)|pdτ
)

1
p

=
tα

Γ(α)[q(α − 1) + 1]
1
q

‖f‖Lp([0,t]).

If α ≤ 1
p
, by Lemma 3.1 of [23], we have

‖ 0D
−α
ξ f‖Lp([0,t]) ≤

tα

Γ(α+ 1)
‖f‖Lp([0,t]).

Let

M∗ =







tα

Γ(α+1) , α ≤
1
p
,

tα

Γ(α)[q(α−1)+1]
1
q

, α > 1
p
,

we obtain ‖ 0D
−α
ξ f‖Lp([0,t]) ≤M∗‖f‖Lp([0,t]).

Remark 2.1. (i) When 1
2 < α ≤ 1 and p ≥ 2, we have M∗ = tα

Γ(α)[q(α−1)+1]
1
q

.

(ii) When α > 1
p
, it is clear to see 1

[q(α−1)+1]
1
q

< 1
α
. So M∗ in our paper is better

than that of Lemma 3.1 in [23], which is defined as M∗ = tα

Γ(α+1) , thus we improve

and extend some previous results.
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Let C∞

0 ([0, T ], R) be the function space with u ∈ C∞

0 ([0, T ], R) and u(0) = u(T ) =

0. By Lemma 2.1, we have u ∈ Lp([0, T ], R) and c
0D

α
t u ∈ Lp([0, T ], R) for any

u ∈ C∞

0 ([0, T ], R) and 1 < p < ∞, so we choose a set of space E
α,2
0 and denote

E
α,2
0 = Eα

0 for convenience.

Definition 2.2. Let 0 < α ≤ 1, the fractional derivative space Eα
0 is defined by the

closure of C∞

0 ([0, T ], R) with respect to the weighted norm

‖u‖α = (

∫ T

0

|c0D
α
t u(t)|

2dt+

∫ T

0

|u(t)|2dt)
1
2 , u ∈ Eα

0 . (2.3)

From [23], we know the space Eα
0 is a reflexive and separable Banach space for

0 < α ≤ 1, then for k(t) ∈ C([0, T ]) with 0 < k1 ≤ k(t) ≤ k2, the equivalent norm in

Eα
0 is

‖u‖k,α = (

∫ T

0

|c0D
α
t u(t)|

2dt+

∫ T

0

k(t)|u(t)|2dt)
1
2 , u ∈ Eα

0 , (2.4)

which we also denote ‖.‖k,α = ‖.‖α for convenience.

Definition 2.3. We say that u ∈ Eα
0 is a weak solution of (1.1) if the following

equality

∫ T

0

(c0D
α
t u(t)

c
0D

α
t v(t) + k(t)u(t)v(t))dt +

m
∑

j=1

Ij(u(tj))v(tj) = λ

∫ T

0

f(t, u(t))v(t)dt

(2.5)

holds for every v ∈ Eα
0 .

Consider the functional ϕ : Eα
0 → R as follow:

ϕ(u) =
1

2
‖u‖2α +

m
∑

j=1

∫ u(tj)

0

Ij(s)ds− λ

∫ T

0

F (t, u(t))dt, (2.6)

owing to the continuity of f and Ij(j = 1, · · · ,m), we immediately deduce that ϕ is

continuous and differentiable and we have

< ϕ
′

(u), v >=

∫ T

0

(c0D
α
t u(t)

c
0D

α
t v(t) + k(t)u(t)v(t))dt +

m
∑

j=1

Ij(u(tj))v(tj)

− λ

∫ T

0

f(t, u(t))v(t)dt. (2.7)

Then we obviously deduce that the weak solutions of the system (1.1) are the critical

points of ϕ.

Lemma 2.2. Let 1
2 < α ≤ 1 and p ≥ 2, for any u ∈ Eα

0 , we have

‖u‖Lp ≤
Tα

Γ(α)[q(α − 1) + 1]
1
q

(

∫ T

0

|c0D
α
t u(t)|

pdt
)

1
p

(2.8)
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and

‖u‖∞ ≤
Tα− 1

p

Γ(α)(2α− 1)
1
2

(

∫ T

0

|c0D
α
t u(t)|

pdt
)

1
p

. (2.9)

Proof. By Lemma 2.1, as the similar proof of Proposition 3.2 of [23], we immediately

know (2.8) and (2.9) hold.

Corollary 2.1. Let u ∈ Eα
0 , then we have

‖u‖L2 ≤
Tα

Γ(α)(2α − 1)
1
2

‖u‖α. (2.10)

Proof. From (2.8), for any u ∈ Eα
0 we easily have

‖u‖L2 ≤
Tα

Γ(α)(2α− 1)
1
2

[

∫ T

0

|c0D
α
t u(t)|

2dt) +

∫ T

0

k(t)|u(t)|2dt
]

1
2

=
Tα

Γ(α)(2α− 1)
1
2

‖u‖α = M̂‖u‖α,

where M̂ = Tα

Γ(α)(2α−1)
1
2

.

Corollary 2.2. Let u ∈ Eα
0 , then we have

‖u‖∞ ≤
Tα− 1

2

Γ(α)(2α − 1)
1
2

‖u‖α. (2.11)

Proof. From (2.9), for any u ∈ Eα
0 we easily have

‖u‖∞ ≤
Tα− 1

2

Γ(α)(2α− 1)
1
2

[

∫ T

0

|c0D
α
t u(t)|

2dt+

∫ T

0

k(t)|u(t)|2dt
]

1
2

=
Tα− 1

2

Γ(α)(2α− 1)
1
2

‖u‖α = M̌‖u‖α,

where M̌ = T
α−

1
2

Γ(α)(2α−1)
1
2

.

Lemma 2.3. (see [23]) Let 1
2 < α ≤ 1, assume that the sequence {uk} converges

weakly to u ∈ Eα
0 , i.e., uk ⇀ u. Then we have that {uk} converges strongly to

u ∈ C([0, T ], R), i.e., ‖uk − u‖∞ → 0 as k →∞.

Lemma 2.4. The functional u ∈ Eα
0 is a weak solution of (1.1) if and only if u is a

classical solution of (1.1).

Proof. The proof is similar as to the proof of [17, Lemma 2.1], where λ = 1, we omit

it here.

In order to begin our main results, we also need the following conditions:
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(A1) There exists µ > 2, such that for all t ∈ [0, T ] and u ∈ R \ {0},

0 < µF (t, u) ≤ f(t, u)u,

where F (t, u) =
∫ u

0 f(t, s)ds.

(A2) f(t, u) and Ij(u) are odd about u.

(A3) There exist cj , dj > 0 and δj ∈ [0, 1) such that for any u ∈ R and j = 1, 2, ...m,

we have

|Ij(u)| ≤ cj + dj |u|
δj . (2.12)

(A4) There exist constants Lj > 0, such that for any u, v ∈ R, j = 1, 2, ...m, we have

|Ij(u)− Ij(v)| ≤ Lj |u− v|, (2.13)

where 0 <
∑m

j=1 Lj <
µ−2

2M̌2(µ+1)
and M̌ is defined in Corollary 2.2.

(A5) The following inequality

(
1

2M̌2
−

λM1M̂
2

M̌2
)−

m
∑

j=1

(cj + dj) > 0 (2.14)

holds, where M̌ is defined in Corollary 2.1 and M1 = sup{F (t, u)|t ∈ [0, T ], |u| =

1} > 0.

(A6) The following inequality

1

2M̌2
− 2

m
∑

j=1

Lj −
λM1M̂

2

M̌2
− 2

m
∑

j=1

|Ij(0)| > 0 (2.15)

holds.

Lemma 2.5.[26] If (A1) and (A2) hold, then the following inequalities

F (t, u) ≤ F (t,
u

|u|
)|u|µ, 0 < |u| ≤ 1,

F (t, u) ≥ F (t,
u

|u|
)|u|µ, |u| ≥ 1

hold, which implies that f is superquadratic at infinity, subquadratic at the origin.
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3. MAIN RESULTS

Theorem 3.1. Suppose that (A1), (A2), (A3) and (A5) hold, then the system (1.1)

has infinitely many classical solutions.

Proof. It is clear to see that ϕ ∈ C1(Eα
0 , R) is an even functional and ϕ(0) = 0.

Then we will apply Theorem 2.1 to show Theorem 3.1.

Firstly, we need to prove that ϕ satisfies the P.S. condition. Let {uk} ⊂ Eα
0 such

that {ϕ(uk)} be a bounded sequence and limk→∞ ϕ
′

(uk) = 0. Assume that there

exists a constant C1 such that

|ϕ(uk)| ≤ C1, ‖ϕ
′

(uk)‖α ≤ C1. (3.1)

From (2.6) and (A1), we have

‖uk‖
2
α = 2ϕ(uk)− 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds+ 2λ

∫ T

0

F (t, uk(t))dt

≤ 2ϕ(uk)− 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds+
2λ

µ

∫ T

0

f(t, uk(t))uk(t)dt,

together with (2.7) we immediately have

(1 −
2

µ
)‖uk‖

2
α ≤ 2ϕ(uk)− 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds +
2λ

µ

∫ T

0

f(t, uk(t))uk(t)dt

−
2

µ
ϕ

′

(uk)uk +
2

µ

m
∑

j=1

Ij(uk(tj))uk(tj)−
2λ

µ

∫ T

0

f(t, uk(t))uk(t)dt

= 2ϕ(uk)−
2

µ
ϕ

′

(uk)uk − 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds

+
2

µ

m
∑

j=1

Ij(uk(tj))uk(tj).

By (2.11), (3.1) and (A3), we obtain

(1−
2

µ
)‖uk‖

2
α ≤ 2C1 + 2‖uk‖∞

m
∑

j=1

(cj + dj‖uk‖
δj
∞
)

+
2

µ
C1‖uk‖∞ +

2

µ
‖uk‖∞

m
∑

j=1

(cj + dj‖uk‖
δj
∞
)

≤ 2C1 + 2M̌‖uk‖α

m
∑

j=1

(cj + djM̌
δj‖uk‖

δj
α )

+
2

µ
C1‖uk‖α +

2M̌

µ
‖uk‖α

m
∑

j=1

(cj + djM̌
δj‖uk‖

δj
α ),
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this implies that {uk} is bounded in Eα
0 . Since E

α
0 is a reflexive space, we may choose

a weakly convergent subsequence, we denote {uk} and uk ⇀ u in Eα
0 , then we will

prove that uk → u in Eα
0 . By (2.6), we have

〈ϕ
′

(uk)− ϕ
′

(u), uk − u〉 ≤ ‖ϕ
′

(uk)‖α‖uk − u‖α − 〈ϕ
′

(uk), uk − u〉 → 0 (3.2)

as k → ∞. On the other hand, by Lemma 2.3, we know ‖uk − u‖∞ → 0 as k → ∞,

since

0 ← 〈ϕ
′

(uk)− ϕ
′

(u), uk − u〉

= ‖uk − u‖2α − λ

∫ T

0

[f(t, uk)− f(t, u)](uk − u)dt

+

m
∑

j=1

[Ij(uk(tj))− Ij(u(tj))](uk(tj)− u(tj))

≥ ‖uk − u‖2α − λ|

∫ T

0

[f(t, uk)− f(t, u)]dt|‖uk − u‖∞

−

m
∑

j=1

[Ij(uk(tj))− Ij(u(tj))]‖uk − u‖∞,

by (3.2), we immediately deduce that ‖uk − u‖α → 0 as k → ∞, this implies that

{uk} converges strongly to u ∈ Eα
0 . So ϕ satisfies the P.S. condition.

Next, we will show that the condition (i) of Theorem 2.1 holds. Assume that

V = R and Υ = {u ∈ Eα
0 |

∫ T

0
u(t)dt = 0}, then Eα

0 = V ⊕Υ, where dimV = 1 < +∞.

Suppose that 0 < ‖u‖∞ ≤ 1, from (A1) and Lemma 2.5, we deduce that

∫ T

0

F (t, u(t))dt ≤

∫ T

0

F (t,
u

|u|
)|u|µdt ≤M1

∫ T

0

|u|2dt ≤M1M̂
2‖u‖2α. (3.2)

By (2.6), (2.10), (2.11) (3.2) and (A3), we have

ϕ(u) =
1

2
‖u‖2α +

m
∑

j=1

∫ u(tj)

0

Ij(s)ds− λ

∫ T

0

F (t, u(t))dt

≥
1

2
‖u‖2α − M̌‖u‖α

m
∑

j=1

(cj + djM̌
δj‖u‖δjα )− λM1M̂

2‖u‖2α

= (
1

2
− λM1M̂

2)‖u‖2α −

m
∑

j=1

(cjM̌‖u‖α + djM̌
δj+1‖u‖δj+1

α ).

Selecting

‖u‖α = ρ :=
1

M̌
,

from (2.11), we have 0 < ‖u‖∞ ≤ 1. So

ϕ(u) ≥ (
1

2M̌2
−

λM1M̂
2

M̌2
)−

m
∑

j=1

(cj + dj),
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let η = ( 1
2M̌2
− λM1M̂

2

M̌2
)−

∑m
j=1(cj + dj), then from (2.14), we have ϕ(u) ≥ η > 0 for

any u ∈ ∂Bρ ∩Υ.

At last, we will prove that the condition (ii) of Theorem 2.1 holds. By (A1), let

M2 > 0 such that for any u ≥M2 > 0 and t ∈ [0, T ], we have

(
F (t, u)

uµ
)
′

u =
uµf(t, u)− µuµ−1F (t, u)

u2µ
=

uf(t, u)− µF (t, u)

uµ+1
≥ 0,

it implies that F (t,u)
uµ is increasing for u, so we deduce that

F (t, u)

uµ
≥

F (t,M2)

M
µ
2

≥ C2,

where C2 = M
−µ
2 mint∈[0,1]{F (t,M2)}, this yields F (t, u) ≥ C2|u|

µ for any u ≥

M2 > 0 and t ∈ [0, T ]. Using the same argument, we have F (t, u) ≥ C3|u|
µ for

any u ≤ −M2 and t ∈ [0, T ], where C3 > 0. Owing to the continuity of F (t, u) on

[0, T ]× [−M2,M2], then there exists C5 > 0 such that F (t, u) ≥ C4|u|
µ − C5 for any

(t, u) ∈ [0, T ]× [−M2,M2], where C4 = min{C2, C3}. So we obtain

F (t, u) ≥ C4|u|
µ − C5 (3.3)

for any (t, u) ∈ [0, T ]× R. Let N1 is any finite dimensional subspace in Eα
0 , then for

each ξ ∈ R \ {0} and u ∈ N1 \ {0}, combining with (2.6), (2.11), (2.12) and (3.3), we

obtain

ϕ(ξu) =
1

2
‖ξu‖2α +

m
∑

j=1

∫ ξu(tj)

0

Ij(s)ds− λ

∫ T

0

F (t, ξu(t))dt

≤
1

2
‖ξu‖2α + ‖ξu‖αM̌

m
∑

j=1

(cj + djM̌
δj‖ξu‖δjα )− λ

∫ T

0

(C4|ξu|
µ − C5)dt,

=
1

2
‖ξu‖2α + ‖ξu‖αM̌

m
∑

j=1

(cj + djM̌
δj‖ξu‖δjα ) + λTC5 − λ

∫ T

0

C4|ξu|
µdt.

Let ω ∈ N1 such that ‖ω‖α = 1, since µ > 2, the above inequality implies that

there exists a sufficiently large ξ such that ‖ξω‖α > ρ and ϕ(ξu) < 0. Since N1 is

a finite dimensional subspace in Eα
0 , there exists T (N1) > 0, such that ϕ(u) ≤ 0 on

N1 \BT (N1). By Theorem 2.1, ϕ has infinitely many critical points that is the system

(1.1) has infinitely many classical solutions.

Theorem 3.2. Suppose that (A1), (A2), (A4) and (A6) hold, then the system (1.1)

has infinitely many classical solutions.

Proof. It is obvious to see that ϕ ∈ C1(Eα
0 , R) is an even functional and ϕ(0) = 0.

Then we will apply Theorem 2.1 to show Theorem 3.2.
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Firstly, we need to prove that the functional ϕ satisfies the P.S. condition. As in

the proof of Theorem 3.1, by (2.6), (2.7), (2.11), (3.1) together with (A1) and (A4),

we have

(1−
2

µ
)‖uk‖

2
α ≤ 2ϕ(uk)− 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds+
2λ

µ

∫ T

0

f(t, uk(t))uk(t)dt

−
2

µ
ϕ

′

(uk)uk +
2

µ

m
∑

j=1

Ij(uk(tj))uk(tj)−
2λ

µ

∫ T

0

f(t, uk(t))uk(t)dt

= 2ϕ(uk)−
2

µ
ϕ

′

(uk)uk − 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds+
2

µ

m
∑

j=1

Ij(uk(tj))uk(tj),

≤ 2ϕ(uk) +
2

µ
ϕ

′

(uk)uk + 2

m
∑

j=1

∫ uk(tj)

0

Ij(s)ds+
2

µ

m
∑

j=1

Ij(uk(tj))uk(tj)

≤ 2C1 + 2‖uk‖∞

m
∑

j=1

(|Ij(0)|+ Lj‖uk‖∞)

+
2

µ
C1‖uk‖∞ +

2

µ
‖uk‖∞

m
∑

j=1

(|Ij(0)|+ Lj‖uk‖∞)

≤ 2C1 + 2M̌‖uk‖α

m
∑

j=1

(|Ij(0)|+ LjM̌‖uk‖α)

+
2

µ
C1M̌‖uk‖α +

2M̌

µ
‖uk‖α

m
∑

j=1

(|Ij(0)|+ M̌Lj‖uk‖α),

then we have

[1−
2

µ
− 2(1 +

1

µ
)M̌2

m
∑

j=1

Lj]‖uk‖
2
α ≤ 2C1 + [

2C1M̌

µ
+ 2M̌(1 +

1

µ
)

m
∑

j=1

|Ij(0)|]‖uk‖α,

from (A4), we deduce that 1− 2
µ
− 2(1 + 1

µ
)M̌2

∑m
j=1 Lj > 0, this implies that {uk}

is bounded in Eα
0 . The rest of the proof of the P.S. condition is similar to that in

Theorem 3.1, we omit it here.

Next, we will show that the condition (i) of Theorem 2.1 holds. As in the proof

of Theorem 3.1, by (2.6), (2.10), (2.11), (3.2) together with (A4), we have

ϕ(u) =
1

2
‖u‖2α +

m
∑

j=1

∫ u(tj)

0

Ij(s)ds − λ

∫ T

0

F (t, u(t))dt

≥
1

2
‖u‖2α − 2M̌‖u‖α

m
∑

j=1

(|Ij(0)|+ LjM̌‖u‖α)− λM1M̂
2‖u‖2α,

= (
1

2
− 2M̌2

m
∑

j=1

Lj − λM1M̂
2)‖u‖2α − 2M̌

m
∑

j=1

|Ij(0)|‖u‖α.
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Selecting

‖u‖α = ρ :=
1

M̌
,

from (2.11), we have 0 < ‖u‖∞ ≤ 1. So

ϕ(u) ≥
1

2M̌2
− 2

m
∑

j=1

Lj −
λM1M̂

2

M̌2
− 2

m
∑

j=1

|Ij(0)|,

let η = 1
2M̌2
− 2

∑m
j=1 Lj −

λM1M̂
2

M̌2
− 2

∑m
j=1 |Ij(0)|, then from (2.15), we have ϕ(u) ≥

η > 0 for any u ∈ ∂Bρ ∩Υ.

At last, we will prove that the condition (ii) of Theorem 2.1 holds. As in the proof

of Theorem 3.1, we assume that N1 is any finite dimensional subspace in Eα
0 , then

for each ξ ∈ R \ {0} and u ∈ N1 \ {0}, combining with (2.6), (2.11), (2.13) and (3.3),

we obtain

ϕ(ξu) =
1

2
‖ξu‖2α +

m
∑

j=1

∫ ξu(tj)

0

Ij(s)ds − λ

∫ T

0

F (t, ξu(t))dt

≤
1

2
‖ξu‖2α + M̌‖ξu‖α

m
∑

j=1

(|Ij(0)|+ LjM̌‖ξu‖α)− λ

∫ T

0

(C4|ξu|
µ − C5)dt,

= (
1

2
+ M̌2

m
∑

j=1

Lj)‖ξu‖
2
α + M̌

m
∑

j=1

|Ij(0)|‖ξu‖α + λTC5 − λ

∫ T

0

C4|ξu|
µdt.

Let ω ∈ N1 such that ‖ω‖α = 1, since µ > 2, the above inequality implies that

there exists a sufficiently large ξ such that ‖ξω‖α > ρ and ϕ(ξu) < 0. Since N1 is

a finite dimensional subspace in Eα
0 , there exists T (N1) > 0, such that ϕ(u) ≤ 0 on

N1 \BT (N1). By Theorem 2.1, ϕ has infinitely many critical points that is the system

(1.1) has infinitely many classical solutions.

4. SOME EXAMPLES

In this part, we will give corresponding examples to illustrate the main results in our

paper.

Example 4.1. Let T = k(t) = 1, λ = 1
10 , α = 0.75, then consider the following

fractional differential equations:










tD
0.75
1 (c0D

0.75
t u(t)) + u(t) = 1

10f(t, u(t)), t ∈ [0, 1], t 6= tj

∆( tD
−0.25
1 (c0D

0.75
t u))(tj) = Ij(u(tj)), j = 1, 2, ...m,

u(0) = u(1) = 0,

(4.1)

where f(t, u) = u3+ tu5 and Ij(u) =
1
20 |u|

1
2 sinu, j = 1, 2, then we obtain that f(t, u)

and Ij(u) are odd about u, so (A2) holds. Then we assume µ = 4, cj = 0, dj =
1
20 , δj =



IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS 985

1
2 , then by verification, we obtain that (A1) and (A3) hold. By simple calculations, we

know M̂ = M̌ ≈ 1.154068,M1 = 1 and ( 1
2M̌2
− λM1M̂

2

M̌2
)−

∑m
j=1(cj+dj) ≈ 0.175410 >

0, so (A5) holds. By Theorem 3.1, the system (4.1) has infinitely many solutions.

Example 4.2. Let T = k(t) = 1, λ = 1
10 , α = 0.8, then consider the following

fractional differential equations:











tD
0.8
1 (c0D

0.8
t u(t)) + u(t) = 1

10f(t, u(t)), t ∈ [0, 1], t 6= tj

∆( tD
−0.2
1 (c0D

0.8
t u))(tj) = Ij(u(tj)), j = 1, 2, ...m,

u(0) = u(1) = 0,

(4.2)

where f(t, u) = u3 + tu5 and Ij(u) =
1
24 |u| sinu, j = 1, 2, then we obtain that f(t, u)

and Ij(u) are odd about u, so (A2) holds. Then we assume µ = 4, Lj = 1
24 . By a

simple calculation, we know M̂ = M̌ ≈ 1.501531, M1 = 1, µ−2
2M̌2(µ+1)

−
∑m

j=1 Lj ≈

0.079319 > 0 and 1
2M̌2
− 2

∑m
j=1 Lj −

λM1M̂
2

M̌2
− 2

∑m
j=1 |Ij(0)| ≈ 0.139963 > 0, so we

immediately have (A1), (A4) and (A6) hold. By Theorem 3.1, the system (4.2) has

infinitely many solutions.
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