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1. INTRODUCTION

In this paper we introduce a modification of the familiar cut function by replacing

the linear part in its definition by a polynomial of degree p+ 1 obtaining thus a dif-

ferentiable sigmoid function called generalized cut function of degree p + 1 (GCFP).

We then discuss some computational, modelling and approximation issues related to
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several classes of sigmoid functions. Sigmoid functions find numerous applications in

various fields related to life sciences, chemistry, physics, artificial intelligence, etc. In

fields such as signal processes, pattern recognition, machine learning, artificial neural

networks, sigmoid functions are also known as “activation functions”. A practically

important class of sigmoid functions is the class of cut functions including the Heav-

iside step function as a limiting case. Cut functions are continuous but they are not

differentiable at the two endpoints of the interval where they increase; step functions

are not continuous but they are Hausdorff continuous (H-continuous). Section 2 con-

tains preliminary definitions and motivations. In Section 3 we study the uniform and

Hausdorff approximation [10] of the (GCFP) by hyper–log–logistic functions. We find

an expression for the error of the best uniform approximation. Numerical examples

are presented throughout the paper using the computer algebra systemMATHEMAT-

ICA.

2. PRELIMINARIES

2.1. SIGMOID FUNCTIONS

In this work we consider sigmoid functions of a single variable defined on the real line,

that is functions of the form R −→ R. Sigmoid functions can be defined as bounded

monotone non-decreasing functions on R. One usually makes use of normalized sig-

moid functions defined as monotone non-decreasing functions s(t), t ∈ R, such that

lim s(t)t→−∞ = 0 and lim s(t)t→∞ = 1 (in some applications the left asymptote is

assumed to be −1: lim s(t)t→−∞ = −1).

In the fields of neural networks and machine learning sigmoid-like functions of

many variables are used, familiar under the name activation functions.

2.2. THE CUT AND THE STEP FUNCTIONS

The cut function is the simplest piece-wise linear sigmoid function. Let ∆ = [γ −

δ, γ + δ] be an interval on the real line R with centre γ ∈ R and radius δ ∈ R. A cut

function is defined as follows:

Definition 1. The cut function cγ,δ is defined for t ∈ R by

cγ,δ(t) =























0, if t < γ − δ,

t− γ + δ

2δ
, if |t− γ| < δ,

1, if t > γ + δ.

(1)
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Note that the slope of function cγ,δ(t) on the interval ∆ is 1/(2δ) (the slope is

constant in the whole interval ∆).

Two special cases and a limiting case are of interest for our discussion in the sequel.

Special case 1. For γ = 0 we obtain the special cut function on the interval

∆ = [−δ, δ]:

c0,δ(t) =























0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

(2)

Special case 2. For γ = δ we obtain the special cut function on the interval

∆ = [0, 2δ]:

cδ,δ(t) =























0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

(3)

A limiting case. If δ → 0, then cδ,δ tends (in Hausdorff sense) to the Heaviside

step function

c0 = c0,0(t) =















0, if t < 0,

[0, 1], if t = 0,

1, if t > 0,

(4)

which is an interval-valued function [2], [3], [7], [11].

To prove that (3) tends to (4) let h be the H-distance using a square (box) unit

ball between the step function (4) and the cut function (3).

By the definition of H-distance h is the side of the unit square, hence we have

1− cδ,δ(h) = h, that is 1− h/(2δ) = h, implying

h =
2δ

1 + 2δ
= 2δ + O(δ2).

For the sake of simplicity throughout the paper we shall work with the special

cut function (3) instead of the more general (arbitrary shifted) cut function (1); this

special choice will not lead to any loss of generality concerning the results obtained.

2.3. THE GENERALIZED CUT SIGMOID FUNCTION

OF DEGREE P + 1.

The generalized cut function of degree p+ 1 (GCFP) is obtained by substituting the

linear function in the definition of the cut function by a polynomial of degree p+ 1.
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Figure 1: The (GCFP) function (7) with δ = 0.6 and p = 2.

Let us define first a special case of the (GCFP). Consider the function

C
∗

0,δ(t) =



















−1, if t < −δ,

kt ((p+ 1)δp − tp), if −δ ≤ t ≤ δ,

1, if δ < t,

(5)

for some k, δ > 0, p when p is an even number. From C
∗ ′

0,δ(t) = k(p + 1)(δp − tp) we

obtain C
∗ ′

0,δ(t) ≥ 0, for −δ ≤ t ≤ δ, as well as C
∗ ′

0,δ(±δ) = 0.

Let us choose k so that C
∗

0,δ(δ) = 1. We have C
∗

0,δ(δ) = kpδp+1 = 1, hence

k =
1

pδp+1
.

Substituting k in (5) we obtain

C
∗

0,δ(t) =























−1, if t < −δ,

1

pδp+1
t ((p+ 1)δp − tp), if −δ ≤ t ≤ δ,

1, if δ < t,

(6)

noticing that the slope of (6) at t = 0 is κ =
p+ 1

pδ
.

Besides we have C
∗

0,δ(−δ) = −1 and (6) is differentiable at the points ±δ.

From presentation (6) we can pass to the normalized (GCFP) having as left asymp-
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Figure 2: The (GCFP) function (7) with δ = 0.8 and p = 4.

Figure 3: The (GCFP) function (8) with δ = 0.3, γ = 0.5 and p = 2.
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tote 0 instead of −1:

C∗

0,δ(t) =























0, if t < −δ,

1

2pδp+1
t ((p+ 1)δp − tp) + 1

2 , if −δ ≤ t ≤ δ,

1, if δ < t.

(7)

Note that the (steepest) slope of (7) at t = 0 is now κ =
p+ 1

2pδ
.

Our last step is to generalize the function (7) up to a function cγ,δ(t) shifted by γ.

This can be acheved by substituting t by t− γ in (7) as follows:

C∗

0,δ(t) =



































0, if t < γ − δ,

1

2pδp+1
(t− γ) ((p+ 1)δp − (t− γ)p) + 1

2 ,

if γ − δ ≤ t ≤ γ + δ,

1, if γ + δ < t.

(8)

Definition 2. Define the logistic (Verhulst) function v on R as [12]

vγ,k(t) =
1

1 + e−4k(t−γ)
. (9)

Note that the logistic function (9) has an inflection at its “centre” (γ, 1/2) and its

slope at γ is equal to k.

In [1] we prove the following proposition

Proposition 3. The function vk(t) defined by (9) with k = p+1
2pδ : i) is the logistic

function of best uniform one-sided approximation to function C∗

0,δ(t) defined by (7);

ii) approximates the (GSFP) function C∗

0,δ(t) in uniform metric with an error

ρ = ρ(C∗, v) =
1

1 + e
2(p+1)

p

. (10)

3. APPROXIMATION OF THE (GCFP) SIGMOID FUNCTION BY

HYPER–LOG–LOGISTIC FUNCTION

Definition 4. Define the hyper-log–logistic function N on R as:

Nγ,β,k(t) = 1−
1

1 +
(

1 + 4k(t−γ)
β

)β
. (11)
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Figure 4: The approximation of the (GCFP) function (7) by hyper–log–

logistic function with δ = 0.25, β = 10 and p = 4.

Figure 5: The approximation of the (GCFP) function (7) by hyper–log–

logistic function with δ = 0.15, β = 100 and p = 6.
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Note that the logistic function (11) has an inflection at its “centre” (γ, 1/2) and

its slope at γ is equal to k.

Proposition 5. The function Nγ,β,k(t) defined by (11) with k = p+1
2pδ : i) is the

hyper–log–logistic function of best uniform one-sided approximation to function C∗

0,δ(t)

defined by (7); ii) approximates the (GSFP) function C∗

0,δ(t) in uniform metric with

an error

ρ1 = ρ1(C
∗, N) = 1−

1

1 +
(

1− 2(p+1)
pβ

)β
. (12)

Proof. Let us choose k so that the slope of (11) is k = p+1
2pδ .

Then, noticing that the largest uniform distance between the (GCFP) and hyper–

log–logistic functions is achieved at the endpoints of the underlying interval [−δ, δ],

we have:

ρ = N0,β,k(−δ)− C∗

0,δ(−δ) = (13)

1−
1

1 +
(

1− 4kδ
β

)β
= 1−

1

1 +
(

1− 2(p+1)
pβ

)β
= B(p, β).

This completes the proof of the proposition.

Some computational examples using relation (13) for various p and β are presented

in Table 1.

p β B(p, β) from (13)

6 10 0.0655569

6 100 0.0861965

6 10000 0.0883777

6 100000 0.0883975

6 1000000 0.0883995

10 100000 0.0997483

10 1000000 0.0997503

Table 1: The function B(p, β) computed by (13) for various p and β.

Evidently

lim
β→∞

B(p, β) = 1−
1

1 + e−
2(p+1)

p

=
1

1 + e
2(p+1)

p

and we have the result from first Proposition.
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Figure 6: The functions F (h) and G(h) for k = 4, β = 60, p = 2.

Using δ = p+1
2pk we can write δ + h = p+1+2pkh

2pk , resp.:

N(−δ − h) = 1−
1

1 +
(

1− 2
pβ

(p+ 1+ 2pkh)
)β

. (14)

The H-distance h using square unit ball (with a side h) satisfies the relation

N(−δ − h) = h, (15)

Let

p1 = −1 +
1

1 +
(

1− 2
β
− 2

pβ

)β
;

q1 = 1 +
4k

(

1− 2
β
− 2

pβ

)β−1

(

1 +
(

1− 2
β
− 2

pβ

)β
)2 ;

r = −2.1
q1
p1

; (p1 < 0; q1 > 0; r > 0).

Proposition 6. For the H-distance h = h(k, p, β) between the generalized cut and

the hyper–log–logistic functions the following holds for r > e2.1:

h1 =
1

r
< h(k, p, β) <

ln r

r
= h2. (16)

Proof. From (15) we have

1− h =
1

1 +
(

1− 2
pβ

(p+ 1 + 2pkh)
)β
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Let us examine the function

F (h) =
1

1 +
(

1− 2
pβ

(p+ 1 + 2pkh)
)β

− 1 + h.

From F ′(h) > 0 we conclude that function F is strictly monotone increasing.

Consider function

G(h) = p1 + q1h.

using the Taylor expansion G(h)− F (h) = O(h2).

Hence G(h) approximates F (h) with h → 0 as O(h2) (see, Fig. 6).

In addition G′(h) > 0, hence function G is monotone increasing.

Further, for r > e2.1

G

(

1

r

)

< 0, G

(

ln r

r

)

> 0.

This completes the proof of the proposition.

Example. For k = 4, β = 60, p = 2 from nonlinear equation (15) we find for the

H–distance h = 0.0279277. From the two–sided bounds (16) we have h1 = 0.0122709

and h2 = 0.0539983.

For other results, see [9], [8], [4], [6], [5], [13]-[44].
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