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1. INTRODUCTION

Stability of solutions of differential equations is one of the most investigated qualita-

tive problems for various types of differential equations. Often Lyapunov functions

and different modifications of Lyapunov direct method are applied to study stability

properties of solutions without their obtaining in a closed form. One type of stability,

very useful in real world problems, is so called Lipschitz stability. Dannan and Elaydi

[3] introduced the notion of Lipschitz stability for ordinary differential equations. As

it is mentioned in [3] this type of stability is important only for nonlinear problems,

since it coincides with uniform stability in linear systems.

There are a few different real life processes and phenomena that are characterized

by rapidly changes in their state. We will emphasize on changes which duration of

action is not negligible short, i.e. these changes start impulsively at arbitrary fixed

points and remain active on finite initially given time intervals. The model of this
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situation is the non-instantaneous impulsive differential equation. E. Hernandez and

D. O’Regan ([5]) introduced this new class of differential equations where the im-

pulses are not instantaneous and they investigated the existence of mild and classical

solutions. We refer the reader for some recent results such as existence to [9], [10], to

stability [1], [7], [8], [11], [13], [14], to periodic boundary value problems [4],[12].

In this paper Lipschitz stability of solutions of nonlinear non-instantaneous impul-

sive differential equations with time dependent delay is defined and studied. Several

sufficient conditions for uniform Lipschitz stability and global uniform Lipschitz sta-

bility are obtained. Some examples illustrating the results are given. Some of the

obtained sufficient conditions are a generalization of some results for Lipschitz stabil-

ity of impulsive functional-differential equations ([2]).

2. PRELIMINARIES

In this paper we assume two increasing sequences of points {ti}∞i=1 and {si}∞i=0 are

given such that 0 < si < ti < si+1, i = 1, 2, . . . , and limk→∞ tk = ∞.

Let t0 ∈
∞
⋃

k=1

[tk, sk+1) be a given arbitrary point. Without loss of generality we

will assume that t0 ∈ [0, s1).

Consider the space PC0 of all piecewise continuous functions φ : [−r, 0] → R
n with

finite number of points of discontinuity τ ∈ (−r, 0) at which φ(τ) = limt→τ−0 φ(t),

endowed with the norm ||φ||0 = supt∈[−r,0]{||φ(t)|| : φ ∈ PC0} where ||.|| is a norm

in R
n.

Consider the space PC0 of all piecewise continuous functions φ : [−r, 0] → R with

finite number of points of discontinuity τ ∈ (−r, 0) at which φ(τ) = limt→τ−0 φ(t),

endowed with the norm |φ|0 = supt∈[−r,0]{|φ(t)| : φ ∈ PC0} where |.| is the absolute

value.

Consider the initial value problem (IVP) for the system of non-instantaneous im-

pulsive differential equations (NIDDE)

x
′

= f(t, xt) for t ∈
∞
⋃

k=0

(tk, sk+1].

x(t) = Φk(t, x(sk − 0)) for t ∈ (sk, tk], k = 1, 2, . . . ,

x(t0 + t) = φ(t), t ∈ [−r, 0]

(1)

where x, x0 ∈ R
n, f :

∞
⋃

k=0

[tk, sk+1]×R
n → R

n,Φk : [sk, tk]×R
n → R

n (k = 1, 2, 3, . . .),

φ ∈ PC0, xt(s) = x(t+ s) for s ∈ [−r, 0].

Remark 1. The functions Ψk are called impulsive functions and the intervals

(sk, tk], k = 1, 2, . . . are called intervals of non-instantaneous impulses.
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Remark 2. In the partial case sk = tk, k = 1, 2, . . . each interval of non-

instantaneous impulses is reduced to a point, and the problem (1) is reduced to

an IVP for an impulsive differential equation with points of jump tk and impulsive

condition x(tk + 0) = Ik(x(tk − 0)) ≡ Φk(tk, x(tk − 0)).

The solution x(t; t0, φ) of IVP for NIDDE (1) is given by

x(t; t0, φ) =











φ(t− t0) for t ∈ (t0 − r, t0],

Xk(t) for t ∈ (tk, sk+1], k = 0, 1, 2, . . .,

Φk(t,Xk(sk − 0)) for t ∈ (sk, tk], k = 0, 1, 2, . . . ,

(2)

where

- for any k = 0, 1, 2, . . . the function Xk(t), t ∈ [tk, sk+1] is a solution of the

initial value problem for delay differential equation x′ = f(t, xt), x(tk + t) =

φk(t), t ∈ [−r, 0] with φk(t) = x(t+ tk; t0, φ) ∈ PC0 for t ∈ [−r, 0];

- on any interval (sk, tk], k = 1, 2, . . . the solution x(t; t0, φ) satisfies the algebraic

equation x(t; t0, φ) = Φk(t,Xk(sk − 0)).

Let J ⊂ R
+ be a given interval. We will use the following classes of functions

PC(J) = {u : J → R
n : u ∈ C(J/

∞
⋃

k=0

{sk},Rn) :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) <∞, u(sk + 0) = lim
t↓sk

u(t) <∞, k : sk ∈ J},

NPC1(J) = {u : J → R
n : u ∈ PC(J), u ∈ C1(J

⋂

∞
⋃

k=0

(tk, sk+1],R
n) :

u′(sk) = u′(sk − 0) = lim
t↑sk

u′(t) <∞, k : sk ∈ J}.

Remark 3. According to the above description any solution of (1) might have a

discontinuity at any point sk, k = 1, 2, . . . .

Introduce the following condition:

(H1). The function f ∈ C([0, s1]
∞
⋃

k=1

[tk, sk+1]× R
n,Rn) and f(t, 0) ≡ 0.

(H2). For any k = 1, 2, . . . the functions Φk ∈ C([sk, tk]× R
n,Rn) and Φk(t, 0) ≡ 0

for any t ∈ [sk, tk].
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Let J ⊂ R+, 0 ∈ J , ρ > 0. We will use the following sets:

M(J) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a−1(αr) ≤ rqa(α), r ∈ J, for some function qa : qa(α) ≥ 1, if α ≥ 1},
K(J) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a(r) ≤ Kar for a constant Ka > 0},
Sρ = {x ∈ R

n : ||x|| ≤ ρ}.

Remark 4. The function a(u) = K1u, K1 > 0 is from the class K(R+) with

Ka = K1. The function a(u) = K2
√
u, K2 > 0 is from the class M ([0, 1]) with

qa(α) =
α2

K2
2

.

We will use the class Λ of Lyapunov functions, defined and used for impulsive

differential equations in [6].

Definition 1. Let J ⊂ R+ be a given interval, and ∆ ⊂ R
n be a given set. We will

say that the function V (t, x) : J ×∆ → R+, belongs to the class Λ(J,∆) if:

- The function V (t, x) is a continuous on J/{tk ∈ J}×∆ and it is locally Lipschitz

with respect to its second argument;

- For each sk ∈ J and x ∈ ∆ there exist finite limits

V (sk, x) = V (sk − 0, x) = lim
t↑sk

V (t, x) and V (sk + 0, x) = lim
t↓sk

V (t, x).

For any t ∈ [tk, sk+1], k = 0, 1, 2, . . . , we define the Dini derivative of the function

V (t, x) ∈ Λ(J,∆) among the delay non-instantaneous impulsive differential equation

(1) by

D+V (t, φ(0)) = lim
h→0+

sup
1

h
{V (t, x)− V (t− h, φ(0)− hf(t, φ0))},

where φ ∈ PC0 and φ0(s) = φ(s), s ∈ [−r, 0].

3. MAIN RESULTS

We define Lipschitz stability ([3]) for delay differential equations with non-instantaneous

impulses.

Definition 2. (Lipschitz Stability) The zero solution of (1) is said to be

- uniformly Lipschitz stable if there exists M ≥ 1 and δ > 0 such that for any

t0 ≥ 0 and any initial function φ ∈ PC0 the inequality ||φ||0 < δ implies

|x(t; t0, φ)| ≤M ||φ||0 for t ≥ t0;
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- globally uniformly Lipschitz stable if there exists M ≥ 1 such that for any

t0 ≥ 0 and any initial function φ ∈ PC0 the inequality ||φ||0 < ∞ implies

|x(t; t0, φ)| ≤M ||φ||0 for t ≥ t0.

We study the Lipschitz stability using the following scalar comparison differential

equation with non-instantaneous impulses:

u
′

= g(t, u) for t ∈
∞
⋃

k=0

(tk, sk+1],

u(t) = Ψk(t, u(sk − 0)) for t ∈ (sk, tk], k = 1, 2, . . . ,

(3)

where u, u0 ∈ R, g : [0, s1]
∞
⋃

k=1

[tk, sk+1]×R → R,Ψk : [sk, tk]×R → R (k = 1, 2, 3, . . .).

We introduce the following condition

(H3). The function g(t, u) ∈ C([0, s1]
∞
⋃

k=1

[tk, sk+1]×R+,R+), g(t, 0) = 0, is increasing

in its second argument and for any k = 1, 2, . . . the functions Ψk : [sk, tk]×R+ → R+

are non-decreasing with respect to their second argument and Ψk(t, 0) = 0.

We will consider some scalar differential equations with non-instantaneous im-

pulses which could be used as comparison equations.

Example 1. Let t0 ≥ 0 be an arbitrary point and without loss of generality we

can assume 0 ≤ t0 < s0. Consider the IVP for the scalar differential equation with

non-instantaneous impulses

u′ = 0 for t ∈
∞
⋃

k=0

(tk, sk+1],

u(t) = Cku(sk − 0) for t ∈ (sk, tk], k = 1, 2, . . . ,

u(t0) = u0,

(4)

here Ck are constants.

The solution of (4) is

u(t; t0, u0) =

{

u0 for t ∈ (t0, s1],

u0
∏k

i=1 Ci for t ∈ (sk, sk+1], k = 1, 2, . . . .
(5)

If lim
k→∞

∏k
i=1 |Ci| = ∞ then the solution is unbounded.

If lim
k→∞

∏k
i=1 |Ci| = C <∞ then the solution is globally uniformly Lipschitz stable.

For example, if |Ck| ≤ 1 then the solution is globally uniformly Lipschitz stable

with M = max{1, C}.
The above example shows the presence of impulses can change totally the behavior

of the solution.
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Note the condition (H3) is not satisfied for (4).

Example 2. Let t0 ≥ 0 be an arbitrary point and without loss of generality we

can assume 0 ≤ t0 < s1. Consider the IVP for the scalar differential equation with

non-instantaneous impulses

u′ = Au for t ∈
∞
⋃

k=0

(tk, sk+1],

u(t) = Ψk(t)u(sk − 0) for t ∈ (sk, tk], k = 1, 2, . . . ,

u(t0) = u0,

(6)

where A > 0 is a constant, Ψk ∈ C([sk, tk], [0, 1] are such that

Ψk(tk)e
A(sk−tk−1) ≤ 1 for k = 1, 2, . . . . (7)

Note the functions Ψk(t) = e−A(t−tk−1) ∈ [0, 1], t ∈ [sk, tk], k = 1, 2, . . . , satisfy

the inequality (7).

Note if A > 0 and inequalities (7) hold then the condition (H3) is satisfied for the

scalar equation (6).

Assume that sup{sk+1 − tk : k = 0, 1, 2, . . .} = µ <∞.

The solution of (6) is

u(t; t0, u0) =














u0e
A(t−t0) for t ∈ (t0, s1],

u0Ψk(t)e
A(sk−tk−1)

∏k−1
i=1

(

Ψi(ti)e
A(si−ti−1)

)

for t ∈ (sk, tk], k = 1, 2, . . .

u0
∏k

i=1

(

Ψi(ti)e
A(si−ti−1)

)

eA(t−tk) for t ∈ (tk, sk+1], k = 1, 2, . . . .

(8)

From the range of the functions Ψk(t), inequalities (7) and equality (8) it follows

the zero solution of (6) is globally uniformly Lipschitz stable with M1 = eAµ (see

Figures 1,2,3 for sk = 2k− 1, tk = 2k, A = 1, Ψk(t) = e−t+2k−2, t ∈ [2k− 1, 2k], k =

1, 2, . . . , and M1 = e .

The above example shows the presence of impulses can change totally the behavior

of the solution.

Lemma 1. Let the scalar function m ∈ NPC1([t0− r,∞)) and satisfies the inequal-

ities

m′(t) ≤ g(t, |mt|0) for t ∈
∞
⋃

k=0

(tk, sk+1],

m(t) ≤ Ψk(t,m(sk − 0)) for t ∈ (sk, tk], k = 1, 2, . . . .

(9)
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Figure 1: Example 2. Graph of the solution of(6) with t0 = 0 and u0 = 1,

u0 = 0.4.

Figure 2: Example 2. Graph of the solution of (6) with t0 = 2.2 and u0 = 1,

u0 = 0.4.

Figure 3: Example 2. Graph of the solution of (6) with t0 = 2.2 and u0 = 1,

u0 = 1.4.

where g ∈ C(
∞
⋃

k=0

(tk, sk+1]×R+,R+), Ψk ∈ C([sk, tk],R+ and u(t; t0, u0) is a solution
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of (3) with u0 ≥ |mt0 |0 = sups∈[−r,0] |m(t0 + s)|.
Then m(t) ≤ u(t; t0, u0) for t ≥ t0.

Proof. We use induction to prove Lemma 1.

The function m(t) ∈ C1([t0, s1] ∩ [t0, T ],∆). We will prove that for t ∈ [t0, s1] ∩
[t0, T ] the inequality

m(t) ≤ u(t; t0, u0) (10)

holds.

Case 1. Let t ∈ [t0, s1] ∩ [t0, T ]. We will prove that

m(t) < u(t; t0, u0, ε) (11)

holds where ε > 0 is an arbitrary number and u(t; t0, u0, ε) is a solution of

u′(t) = g(t, u) + ε, t ∈ [t0, s1] ∩ [t0, T ], u(0) = u0 + ε.

Note the inequality m(t0) ≤ |m(t0)| ≤ sups∈[−r,0]|m(t0 + s)| = |mt0 |0 ≤ u0 <

u0 + ε = u(t0; t0, u0, ε) holds.

Assume inequality (11) is not true, i.e. there exists a point t∗ ∈ (t0, s1] ∩ (t0, T ]

such that

m(t) < u(t; t0, u0, ε), t ∈ [t0, t
∗), m(t∗) = u(t∗; t0, u0, ε). (12)

Therefore m′(t∗) ≥ u′(t∗; t0, u0, ε) = g(t∗, u(t∗; t0, u0, ε)) + ε > g(t∗, u(t∗; t0, u0, ε)) =

g(t∗,m(t∗)).

If t∗ > t0 + r then since g(t, u) ≥ 0 the solution u(t; t0, u0, ε) is nondecreasing on

[t0, t
∗]. Therefore m(t) < u(t; t0, u0, ε) ≤ u(t∗; t0, u0, ε) = m(t∗) for t ∈ [t∗ − r, t∗]

and |mt∗ |0 = m(t∗). Then according to the first inequality of (9) we get m′(t∗) ≤
g(t∗, |mt∗ |0) = g(t∗,m(t∗)). The obtained contradiction proves the inequality (11).

If t∗ ≤ t0 + r then for t ∈ [t0, t
∗] we get m(t) < u(t; t0, u0, ε) ≤ u(t∗; t0, u0, ε) =

m(t∗). For t ∈ [t∗ − r, t0] we get m(t) ≤ |mt0 |0 ≤ u0 ≤ u(t∗; t0, u0, ε) = m(t∗).

Therefore, m(t) ≤ m(t∗) for t ∈ [t∗ − r, t∗] and we proceed as above.

Since ε > 0 is an arbitrary number and limε→0u(t; t0, u0, ε) = u(t; t0, u0) from

inequality (11) it follows the validity of (10) in [t0, s1] ∩ [t0, T ].

Case 2. Let T > s1. From the Case 1, inequality (10) for t = s1 and the second

inequality of (9) we obtain

m(t) ≤ Ψ1(t,m(s1 − 0)) ≤ Ψ1(t, u(s1 − 0; t0, u0)) = u(t; t0, u0), t ∈ (s1, t1] ∩ [t0, T ],

(13)

i.e. inequality (10) holds in (s1, t1] ∩ [t0, T ].
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Case 3. Let T > t1. Since the inequality (10) holds in [t0 − r, t1] it follows that

|mt1 |0 ≤ u(t1; t0, u0) = u∗0. As in Case 1 we prove the validity of inequality (10) on

(t1, s2] ∩ [t0, T ] replacing t0 by t1, s1 by s2 and u0 by u∗0.

Continue this process and an induction argument proves the claim of Lemma 1 is

true for t ∈ [t0, T ].

Theorem 1. Assume the following conditions are satisfied:

1. Conditions (H1), (H2), (H3) are satisfied.

2. For any point t ∈ [0, s1]
∞
⋃

k=1

(tk, sk+1) and any function ψ ∈ PC0 : ||ψ||0 ≤
ρ, ρ > 0 is a given nuumber, the inequality

||f(t, ψ0)|| ≤ g(t, ||ψ||0)

holds with ψ0(s) = ψ(s) for s ∈ [−r, 0].

3. The zero solution of (3) is uniformly Lipschitz stable (uniformly globally Lips-

chitz stable).

Then the zero solution of (1) is uniformly Lipschitz stable (uniformly globally

Lipschitz stable).

Proof. Let the zero solution of (3) be uniformly Lipschitz stable. From condition

3 there exist M ≥ 1, δ1 > 0 such that for any t0 ∈ [0, s1]
∞
⋃

k=1

[tk, sk+1) and any

u0 ∈ R : |u0| < δ1 the inequality

|u(t; t0, u0)| ≤M |u0| for t ≥ t0 (14)

holds, where u(t; t0, u0) is a solution of (3).

Let δ2 = min{ρ, δ1}. Let t0 ∈ [0, s1]
∞
⋃

k=1

[tk, sk+1) be the initial point and the initial

function φ ∈ PC0 be such that ||φ||0 ≤ δ2. Consider the solution x(t; t0, φ) of (1).

Therefore, ||φ||0 < δ2 ≤ ρ, i.e. φ(τ) ∈ Sρ, τ ∈ [−r, 0]. Let u∗0 = ||φ||0. From the

choice of the initial function φ we get u∗0 ≤ δ1. Therefore, the function u∗(t) satisfies

(14) for t ≥ t0 with u0 = u∗0, where u
∗(t) = u(t; t0, u

∗
0) is a solution of (3).

Define the function m(t) = ||x(t; t0, φ)|| for t ≥ t0 − r. From condition 2 of

Theorem 1 it follows the conditions of Lemma 1 are satisfied and therefore m(t) =

||x(t; t0, φ)|| ≤ u∗(t) ≤M |u∗0| =M ||φ||0 for t ≥ t0.

We will prove the following comparison result for non-instantaneous impulsive

delay differential equations:

Lemma 2. Assume the following conditions are satisfied:
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1. Conditions (H1), (H2), (H3) are satisfied.

2. The function x∗(t) = x(t; t0, φ) ∈ NPC1([t0, T ],∆) is a solution of (1), where

T ≥ t0 is a given constants, ∆ ⊂ R
n.

3. The function V ∈ Λ([t0 − r, T ],∆) is such that

(i) for any point t ∈ [t0, T ]∩(
∞
⋃

k=0

(tk, sk+1)) such that V (t, x∗(t)) ≥ V (s, x∗(s))

for s ∈ [−r, 0] the inequality D+V (t, x∗(t)) ≤ g(t, V (t, x∗(t))) holds;

(ii) for all k = 1, 2, 3, . . . the inequality

V (t,Φk(t, x
∗(sk−0))) ≤ Ψk(t, V (sk−0, x∗(sk−0))) for t ∈ [t0, T ]∩(sk, tk]

holds.

If supt∈[t0−r,t0] V (t, φ(t − t0)) ≤ u0, then the inequality V (t, x∗(t)) ≤ r(t) for

t ∈ [t0, T ] holds, where r(t) = r(t; t0, u0) is the maximal solution of (3) with u0.

Proof. We use induction to prove Lemma 1. Define a function m(t) = V (t, x∗(t)), t ≥
t0 − r.

The function m(t) ∈ C1([t0, s1] ∩ [t0, T ],∆). We will prove that for t ∈ [t0, T ] the

inequality

m(t) ≤ r(t; t0, u0) (15)

holds.

Case 1. Let t ∈ [t0, s1] ∩ [t0, T ]. We will prove that

m(t) < r(t; t0, u0) + ε (16)

holds where ε > 0 is an arbitrary number.

Assume it is not true, i.e. there exists a point t∗ ∈ (t0, s1] ∩ (t0, T ] such that

m(t) < r(t; t0, u0) + ε, t ∈ [t0, t
∗), m(t∗) = r(t∗; t0, u0) + ε. (17)

Therefore m′(t∗) ≥ r′(t∗; t0, u0) = g(t∗, r(t∗; t0, u0)).

If t∗ > t0 + r then since g(t, u) ≥ 0 the solution r(t; t0, u0) is nondecreasing on

[t0, t
∗]. Thereforem(t) < r(t; t0, u0)+ε ≤ r(t∗; t0, u0)+ε = m(t∗) for t ∈ [t∗−r, t∗] and

according to condition 3(i) we get m′(t∗) = D+V (t∗, x∗(t∗)) ≤ g(t∗, V (t∗, x∗(t∗)) =

g(t∗,m(t∗)) = g(t∗, r(t∗; t0, u0) + ε) < g(t∗, r(t∗; t0, u0)). The obtained contradiction

proves the inequality (16).

If t∗ ≤ t0 + r then for t ∈ [t0, t
∗] we get m(t) < r(t; t0, u0) + ε ≤ r(t∗; t0, u0) + ε =

m(t∗). For t ∈ [t∗−r, t0] we getm(t) = V (t, φ(t−t0)) ≤ supτ∈[t0−r,t0] V (τ, φ(τ−t0)) ≤
u0 ≤ r(t∗; t0, u0) < r(t∗; t0, u0)+ε = m(t∗). Therefore,m(t) ≤ m(t∗) for t ∈ [t∗−r, t∗]
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and we proceed as above. Since ε > 0 is an arbitrary number from inequality (16) it

follows the validity of (15) on [t0, s1] ∩ [t0, T ].

Case 2. Let T > s1. From the Case 1, inequality (15) for t = s1, conditions (H3)

and condition 3(ii) we obtain

m(t) = V (t, x∗(t)) = V (t,Φ1(t, x
∗(s1 − 0)) ≤ Ψ1(t, V (s1 − 0, x∗(s1 − 0)))

= Ψ1(t,m(s1 − 0)) ≤ Ψ1(t, r(s1 − 0; t0, u0))

= r(t; t0, u0), t ∈ (s1, t1] ∩ [t0, T ],

(18)

i.e. inequality (15) holds on (s1, t1] ∩ [t0, T ].

Case 3. Let T > t1. Since the inequality (15) holds in [t0 − r, t1] it follows that

sups∈[t1−r,t1] V (s, x∗(s)) ≤ r(t1; t0, u0) = u∗0. As in Case 1 we prove the validity of

inequality (15) on (t1, s2] ∩ [t0, T ] replacing t0 by t1, s1 by s2 and u0 by u∗0.

Continue this process and an induction argument proves the claim of Lemma 2 is

true for t ∈ [t0, T ].

Theorem 2. Let the following conditions be satisfied:

1. Conditions (H1) - (H3) are fulfilled.

2. There exist a function V (t, x) ∈ Λ([−r,∞),Rn) and

(i) the inequalities

b(||x||) ≤ V (t, x) ≤ a(||x||), x ∈ Sρ, t ∈ [−r,∞)

holds, where b ∈ K([0, ρ]), a ∈ M([0, ρ]), ρ > 0;

(ii) for any function ψ ∈ PC0 : ||ψ||0 ∈ Sρ and any point t ∈ [0, s1]
∞
⋃

k=1

(tk, sk+1)

such that V (t+ τ, ψ(τ)) ≤ V (t, ψ(0)) for τ ∈ [−r, 0] the inequality

D+V (t, ψ(0)) ≤ g(t, V (t, ψ(0)))

holds;

(iii) for any k = 1, 2, . . . the inequality

V (t,Φk(t, y)) ≤ Ψk(t, V (sk − 0, y)), t ∈ (sk, tk+1], y ∈ Sρ

holds.

3. The zero solution of (3) is uniformly Lipschitz stable (uniformly globally Lips-

chitz stable).

Then the zero solution of (1) is uniformly Lipschitz stable (uniformly globally

Lipschitz stable).
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Proof. Let the zero solution of (3) be uniformly Lipschitz stable. From condition

3 there exist M ≥ 1, δ1 > 0 such that for any t0 ∈ [0, s1]
∞
⋃

k=1

[tk, sk+1) and any

u0 ∈ R : |u0| < δ1 the inequality

|u(t; t0, u0)| ≤M |u0| for t ≥ t0 (19)

holds, where u(t; t0, u0) is a solution of (3) .

From the inclusions b ∈ K([0, ρ]) and a ∈ M([0, ρ]) there exist a function qb(u)

and a positive constant Ka. Choose M1 ≥ 1 such that M1 > qb(M)Ka and δ2 ≤ ρ
M1

.

Therefore, δ2 ≤ ρ.

Let δ = min
{

δ1, δ2,
δ1
Ka

}

. Choose the initial function φ ∈ PC0 : ||φ||0 < δ.

Therefore, ||φ||0 < δ ≤ δ2 ≤ ρ, i.e. φ(τ) ∈ Sρ, τ ∈ [−r, 0]. Let t ∈ [0, s1]
∞
⋃

k=1

[tk, sk+1)

be an arbitrary point. Without loss of generality we can assume t0 ∈ [0, s1). Consider

the solution x(t) = x(t; t0, φ) of system (1) for the chosen initial data. Let u∗0 =

supt∈[t0−r,t0] V (t, φ(t−t0)). From the choice of the initial function φ and the properties

of the function a(u) applying condition 2(i) we get u∗0 = supt∈[t0−r,t0] V (t, φ(t− t0)) ≤
a(||φ||0) ≤ Ka||φ||0 < Kaδ ≤ δ1. Therefore, the function u∗(t) satisfies (19) for t ≥ t0

with u0 = u∗0, where u
∗(t) = u(t; t0, u

∗
0) is a solution of (3).

We will prove

||x(t)|| ≤M1||φ||0, t ≥ 0. (20)

Assume (20) is not true. Therefore, there exists a point T > t0 such that ||x(t)|| ≤
M1||φ||0 for t ∈ [t0, T ] and ||x(T )|| = M1||φ||0, ||x(t)|| > M1||φ||0 for t ∈ (T, T +

η), η > 0 is enough smalll number. Then for t ∈ [t0, T ] the inequalities ||x(t)|| ≤
M1||φ||0 < M1δ ≤M1δ2 ≤ ρ hold, i.e. x(t) ∈ Sρ for t ∈ [t0, T ].

Define the function ψ(τ) = x(τ + T ), τ ∈ [−r, 0]. Then ψ ∈ PC0, φ(τ) ∈ Sρ and

V (T, ψ(0)) ≥ V (τ + T, ψ(τ)), τ ∈ [−r, 0].
Using condition 2(ii) and applying Lemma 1 on [t0, T ] for ∆ = Sρ we get

(t, x∗(t)) ≤ u∗(t) for t ∈ [t0, T ]

or

V (T, x∗(T )) ≤ u∗(T ) for t ∈ [t0, T ]. (21)

From inequality (21) and condition 2(i) of Theorem 2 we obtain

M1||φ||0 = ||x(T )|| ≤ b−1(V (T, x(T ))) ≤ b−1(|u∗(T )|)
≤ b−1(M |u∗0|) = b−1(MV (t0 + ξ, φ(ξ)))

≤ qb(M)V (t0 + ξ, φ(ξ))) ≤ qb(M)a(||φ(ξ)||) ≤ qb(M)a(||φ||0)
≤ qb(M)Ka||φ||0 < M1||φ||0

(22)
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where ξ ∈ [−r, 0].
The obtained contradiction proves the validity of (20).

The proof of globally uniformly Lipschitz stability is analogous and we omit it.

Theorem 3. Let the conditions of Theorem 2 be satisfied where 2(i) is replaced by :

2(i)∗ the inequalities λ1(t)||x||2 ≤ V (t, x) ≤ λ2(t)||x||2, x ∈ Sρ, t ∈ [−r,∞) holds,

where λ1, λ2 ∈ C([−r,∞), (0,∞)) and there exists positive constant A1, A2 : A1 < A2

such that λ1(t) ≥ A1, λ2(t) ≤ A2 for t ≥ −r, and ρ > 0.

If the zero solution of (3) is uniformly Lipschitz stable (uniformly globally Lipschitz

stable) then the zero solution of (1) is uniformly Lipschitz stable(uniformly globally

Lipschitz stable).

Proof. The proof is similar to the one of Theorem 2 where M1 =
√

M A2

A1
.

Example 3. Let the points {ti}∞i=1 and {si}∞i=0 be given such that 0 < si < ti+1 <

si+1, i = 1, 2, . . . , and limk→∞ tk = ∞ and m = supk=1,2,...{(sk+1 − tk), s1} <∞.

Consider the following non-instantaneous model of a single species model exhibit-

ing the so-called Allee effect in which the per-capita growth rate is a quadratic function

of the density:

N ′(t) = N(t)
(

a+ bN(t− τ(t)) − cN2(t− τ(t))
)

for t ∈ (tk, sk+1], k = 0, 1, 2, . . . ,

N(t) = e−AmN(sk − 0) + (1− e−Am)
b+

√
b2 + 4ac

2c
for t ∈ (sk, tk], k = 1, 2, . . . ,

(23)

where a, c > 0, b ∈ R : |b| ≤ 2
√
ac, A = b+

√
b2+4ac
c

(b + 3
√
b2 + 4ac),

τ ∈ C([0, s1]
∞
⋃

k=1

(tk, sk+1], [0, r]).

Note the function h(u) = a+ bu− cu2 is positive for b−
√
b2+4ac
2c < u < b+

√
b2+4ac
2c

and maxh(u) = h( b
2c ) =

b2+4ac
4c > 0.

Consider the point x∗ = b+
√
b2+4ac
2c . From inequality |b| ≤ 2

√
ac it follows√

b2 + 4ac ≥ |b| and b +
√
b2 + 4ac ≥ 0. Therefore, the point x∗ is a nonnegative

equilibrium of (23).

Apply the substitution x = N − x∗ to (23), use h(x+ x∗) = a+ b(x+ x∗)− c(x+

x∗)2 = a+ bx∗− c(x∗)2 + bx− cx2− 2cxx∗ = (b− 2cx∗)x− cx2 = −(
√
b2 + 4ac+ cx)x

and obtain the non-instantaneous delay differential equation

x′(t) = (x(t) + x∗)
(

a+ b(x(t − τ(t)) + x∗)− c(x(t− τ(t)) + x∗)2
)

for t ∈ (tk, sk+1], k = 0, 1, 2, . . . ,

x(t) = e−Amx(sk − 0) for t ∈ (sk, tk], k = 1, 2, . . . ,

(24)
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or

x′(t) = −(x(t) + x∗)x(t − τ(t))(
√

b2 + 4ac+ cx(t− τ(t)))

for t ∈ (tk, sk+1], k = 0, 1, 2, . . . ,

x(t) = e−Amx(sk − 0) for t ∈ (sk, tk], k = 1, 2, . . . ,

(25)

If x∗ is the equilibrium of NIDDE (1) then the non-instantaneous differential

equation (24) has a zero solution.We will prove it is uniformly globally Lipschitz

stable.

Define the function V (t, x) = x2.

Then the condition 2(i) of Theorem 3 is satisfied for λ1(t) = 0.5, λ2(t) = 1.5.

Let ψ ∈ PC0 : ||ψ||0 ≤ ρ, ρ = b+
√
b2+4ac
2c > 0, be an arbitrary function such

that ψ(s)2 ≤ ψ(0)2. Then using that |ψ(s)| ≤ ρ, s ∈ [−r, 0] and h(x) =∈ [0, ] for

x ∈ [−ρ, ρ] we obtain

D+V (t, ψ) = −2ψ(0)(ψ(0) + x∗)ψ(−τ(t))(
√

b2 + 4ac+ cψ(−τ(t)))

≤ 2ψ2(0) (|ψ(0)|+ x∗)|(
√

b2 + 4ac+ c|ψ(0)|)

≤ 2V (t, ψ(0)) (ρ+ x∗)(
√

b2 + 4ac+ cρ)

≤ V (t, ψ(0))
b+

√
b2 + 4ac

c
(b+ 3

√

b2 + 4ac)

= AV (t, ψ(0)).

(26)

Therefore, the condition 2(ii) of Theorem 2 is satisfied with g(t, u) = Au.

The condition 2(iii) of Theorem 2 is satisfied for Ψk(t, x) ≡ e−Amx.

Therefore, the comparison equation is (6) and according to Theorem 2 and Ex-

ample 2 the zero solution of (25) is uniformly globally Lipschitz stable. Therefore the

equilibrium x∗ of (23) is uniformly globally Lipschitz stable.
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