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ABSTRACT: In Davie [3] paper, he assumed that the matrix
(

bik(x)
)

is invertible

for all x, but in this paper we will show how we could control the matrix which is

non-invertible for some x using the (Combined method). We describe a method for

non-invertibility case (Combined method) and we investigate its convergence order

which will give O(h3/4
√

| log(h)|) under some conditions. Moreover we compare the

computational results for the combined method with its theoretical error bound and

we have obtained a good agreement between them.
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1. INTRODUCTION

In this study we investigate the new method developed by Davie [3] which uses cou-

pling and gives order one for the strong convergence for stochastic differential equa-

tions (SDEs). We should indicate that in Davie paper, he assumed that the non-
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degenercacy for the diffusion terms but in our work we investigate the order of the

Combined method which is for the SDEs which are degenerate at some points. We

will show how we could control the degenerate problem and then give computational

results. There are many numerical methods for solving SDEs. P.E.Kloeden and

E.Platen [4] described a method based on the stochastic Taylor series expansion but

the major difficulty with this approach is that the double stochastic integrals cannot

be so easily expressed in terms of simpler stochastic integrals when the Wiener process

is multi-dimensional. In the multi-dimensional case the Fourier series expansion of

Wiener process used to represent the double integrals by [4], [9] and [8] but it needs

to generate many random variables at each time therefore it takes a lot of time to

compute and also it is hard to extend to higher order.

We will see in this study a modified interpretation for the normal random variables

generated in the Taylor expansion. This method will give order one convergence un-

der a non-degeneracy condition for the diffusion term. In standard methods such as

Milstein we generate the approximations for the Taylor expansion terms separately.

In the coupling method we will generate the approximation for the Taylor expansion

as a combination of random variables. The modification is by replacing the iterated

integrals by different random variables but with a good approximation in distribu-

tion. Then we will obtain a random vector from the linear term which is a good

approximation in distribution to the original Taylor expansion.

There have been many studies using coupling for the numerical solution of Stochas-

tic differential equations. Kanagawa [10] investigated the rate of convergence in terms

of two probability metrics between approximate solutions with i.i.d random variables.

Rachev and Ruschendorff [6] developed Kanagawa’s method by using the Komlós,

Major and Tusnády theorem in [5]. Fournier in [11] used the quadratic Vaserstein

distance for the approximation of the Euler scheme and the results of Rio [12] which

gives a very precise rate of convergence for the central limit theorem in Vaserstein dis-

tance. Also Rio in [19] continues his research in [12] for the Vaserstein bound to give

precise bound estimates. Under uniform ellipticity, Alfonsi, Jourdain and Kohatsu-

Higa [1] and [2] studied the Vaserstein bound for Euler method and they proved an

O(h(
2
3−ǫ)) for one-dimensional diffusion process where h is the step-size and then they

generalized the result to SDEs of any dimension with O(h
√

log( 1h )) bound when the

coefficients are time-homogeneous. Cruzeiro, Malliavin and Thalmaier [13] get an

order one method and under the non-degeneracy they construct a modified Milstein

scheme which obtains an order one for the strong approximation. Charlbonneau,

Svyrydov and Tupper [14] investigated the Vaserstein bound [7] by using the weak

convergence and Strassen- Dudley theorem. Convergence of an approximation to a

strong solution on a given probability space was established by Gyöngy and Krylov

in [15] using coupling. Davie in [20] applied the Vaserstein bound to solutions of



STOCHASTIC DIFFERENTIAL EQUATIONS 113

vector SDEs and used the Komlós, Major and Tusnády theorem to get order one

approximation under a non-degeneracy assumption. In this paper we investigate the

order of the Combined method which is for the SDEs which are degenerate at some

points. We will show how we could control the degenerate problem and then give

computational results.

1.1. STOCHASTIC DIFFERENTIAL EQUATIONS (SDES)

1.1.1. DEFINITION

let {W (t)}t≥0 be a d -dimensional standard Brownian motion on a probability space

(Ω,F ,P) equipped with a filtration F = (Ft)t≥0, a = a(t , x ) be a d -dimensional

vector function(called drift coefficient) and b = b(t , x ) a d × d -matrix function(called

diffusion coefficient).

Stochastic processes X = X (t), where t ∈ [0,T], can be described by stochastic

differential equations

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t). (1.1)

Let the initial condition X(0) = x be an F0-measurable random vector in R
d. An

Ft-adapted stochastic process X = (X(t))t≥0 is called a solution of equation (1.1) if

X(t) = X(0) +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(s,X(s))dW (s), (1.2)

is satisfied.

The conditions that the integral processes

∫ t

0

a(s,X(s))ds,

∫ t

0

b(s,X(s))dW (s),

are well-defined are required for(1.2) to hold and for the functions a(s,X(s)) and

b(s,X(s)) we have the following conditions that

E

∫ t

0

b2(s,X(s))ds <∞,

and almost surely for all t ≥ 0,
∫ t

0 |a(s,X(s))|ds <∞.

One of the most important properties for the stochastic integral is that

∫ t

0

W (s)dW (s) =
1

2

∫ t

0

d(W 2(s))− 1

2

∫ t

0

ds =
1

2
W 2(t)− t

2
,

for details of stochastic integral see [4].
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1.2. EXISTENCE AND UNIQUENESS THEOREMS

The following theorem, which will be stated without proof, gives sufficient conditions

for existence and uniqueness of a solution of a stochastic differential equation.

(i) measurability let a :[0,∞) × R
d → R

d and b:[0,∞) × R
d → R

d×d are jointly

Borel measurable in [t0,T]× R
d.

(ii) Lipschitz condition: There is a constant A > 0 such that |a(t, x)− a(t, y)| ≤
A |x− y|, and |b(t, x)− b(t, y)| ≤ A |x− y|, for all t ∈ [t0,T] and x , y ∈ R.

(iii) Growth condition: There is a constant K > 0 such that |a(t, x)|2 ≤ K2(1 +

|x|2), and |b(t, x)|2 ≤ K2(1 + |x|2), for all t ∈ [t0,T] and x , y ∈ R.

Theorem 1.1. Under these conditions (i-iii) the stochastic differential equation

(1.1)

has a unique solution X(t) ∈ [t0,T] with

supt0≤t≤T E(|X(t)|2) <∞.

Proof. see Kloeden and Platen [4], Theorem 4.5.3.

1.3. STRONG AND WEAK CONVERGENCE FOR SDES

1.3.1. STRONG ORDER OF CONVERGENCE

Suppose that a probability space (Ω,F ,P) is given. In this probability space Ω is the

set of continuous functions with the supremum metric on the interval [0, T ], F is the

σ-algebra of Borel sets and P is the Wiener measure. We consider an approximate

solution xh of (1.1) which uses a subdivision of the interval [0, T ] into a finite number

N of subintervals which we assume to be of length h = T
N . Also we assume the

approximate solutions xh is a random variable on Ω. Now we say that the discrete

time approximation xh with the step-size h converges strongly of order γ at time

T = Nh to the solution X(t) if

E|xh −X(T )|p ≤ Chγp, h ∈ (0, 1)

where the strong convergence will be in Lp space and X(T ) is the solution to the

stochastic differential equation. C is a positive constant and C independent of h.

Our method will give a strong approximation in the sense of this definition. We

should mention here without more details that there are several applications of strong

approximation and some examples have been mentioned in Section 13 of [4]. Some

of these applications will work with our coupling methods and some will not. For
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example providing that the metric bik(x) is invertible then the application to the

Duffing -Van der Pol Oscillator which is the simulation of individual trajectories will

work. One such application is to the simulation of the stochastic flow defined by an

SDE, this method will fail because we try to simulate several starting points in the

same time. The filtering application will not work because actually the observation

process is given.

1.4. NUMERICAL METHOD FOR APPROXIMATING THE SDES

There are many numerical methods for solving stochastic differential equation, here

we will mention two important schemes.The first one is the Euler-Maruyama scheme

which will give strong order 1
2 and the second one is the Milstein scheme which has

an order one for the strong convergence. Suppose we have the stochastic differential

equation.

dXi(t) = ai(t,X(t))dt+

d
∑

k=1

bik(t,X(t))dWk(t), Xi(0) = X
(0)
i (1.3)

where i =1,...,d on an interval [0, T ], for a d -dimensional vector X(t), with a d-

dimensional Brownian path W (t). In order to approximate the solution, we assume

[0, T ] is divided into N equal intervals of length h = T/N .

1.4.1. EULER-MARUYAMA SCHEME

The simplest numerical method for approximating the solution of stochastic differ-

ential equations is the stochastic Euler scheme (also called Euler Maruyama scheme)

which utilizes only the first two terms of the Taylor expansion and it attains the

strong convergence γ = 1
2 .

Firstly, consider the Euler-Maruyama approximation scheme.

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k , (1.4)

where ∆W
(j)
k =Wk((j + 1)h)−Wk(jh) and our numerical approximation to X(jh)

will be denoted x(j).

1.4.2. THE MILSTEIN SCHEME

We shall now introduce the Milstein scheme which gives an order one strong Tay-

lor scheme. We could obtain the Milstein scheme by adding the quadratic terms
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∑d
k,l=1 ρikl(jh, x

(j))A
(j)
kl , to Euler scheme which gives the following scheme

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))A

(j)
kl , (1.5)

where ∆W
(j)
k =Wk((j + 1)h)−Wk(jh),

A
(j)
kl =

∫ (j+1)h

jh
{Wk(t)−Wk(jh)}dWl(t), and ρikl(t, x) =

∑q
m=1 bmk(t, x)

∂bil
∂xm

(t, x).

The implementation of the Euler scheme is easy to do as only needs to generate

the normal distribution for the standard Brownian motion ∆W
(j)
k but it is not easy

to generate the integral A
(j)
kl for the Milstein scheme when we have two or more

dimensional SDEs. We need to mention some facts about the two-level approximation.

1.5. TWO-LEVEL APPROXIMATION

We need to generate the increments ∆W
(j)
k when we approximate the solution to (1.1)

by using Euler or other schemes which we will explain later in this section, therefore

Levy’s construction of the Brownian motion will be used to simulate a sequence of

approximations converge to the solution. That is

∆W
(r,j)
k = ∆W

(r+1,2j)
k +∆W

(r+1,2j+1)
k , (1.6)

where r ∈ N and ∆W
(r,j)
k =Wk((j + 1)h(r))−Wk(jh

(r)) with h(r) = T
2r .

We will call the two-level approximation in (1.6) the trivial coupling. We could

generate the normal distribution in (1.6) for the increments for a given level r by firstly

generating the increments in the LHS ∆W
(r,j)
k and then conditionally generating the

increments in the RHS. We do the same process for each level r+ 2, r+ 3 and so on.

After that we will get the Brownian path W (t).

1.5.1. EMPIRICAL ESTIMATION OF THE ERROR OF A

NUMERICAL METHOD

Because usually we do not know the solutions of the stochastic differential equation

explicitly therefore we could not directly estimate the mean error E|X(T )−xh| which
is the absolute value of the difference between the approximation solution xh and the

solution X(T ) of an SDE (1.1). Assume the approximate solution xh converges to the

solution X(T ) as we decrease the step-size and go to zero. Then we can estimate the

order of convergence for a particular scheme by repeating R different independent sim-

ulations of sample paths. We will use the following estimator
{

ǫ = 1
RE(

∣

∣x(r) − x̂(r)
∣

∣)
}

for different approximation solutions x(r) and x̂(r) for different range value of h. So

for any numerical method if we have a bound for the error E|xh − xh/2| ≤ C1h
γ then
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E|xh/2 − xh/4| ≤ C1(
h
2 )

γ and then E|xh/4 − xh/8| ≤ C1(
h
22 )

γ and so on. Therefore

we will get a geometric series then we will obtain

E|X(T )− xh| ≤
∞
∑

h=0

C1

( h

2k
)γ

=
C1h

γ

1− 2−γ
. (1.7)

So from (1.7) we could estimate the convergence and the constant.

If the commutativity condition for

ρikl(t, x) = ρilk(t, x), (1.8)

holds for all x ∈ R
d, t ∈ [0, T ] and all i, k, l then the Milstein scheme (1.5) reduce to

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))B

(j)
kl , (1.9)

which only depends on the generation of the Brownian motion ∆W
(j)
k . Scheme (1.9)

will give an order one if d = 1, but if d > 1 will have order 1
2 . As it is described in

Davie’s paper we could do a modification to scheme (1.9)which will give an order one

under a non-degeneracy condition.

1.6. A MODIFICATION TO (1.9) WHICH GIVES ORDER ONE

As it is described in Davie’s paper [3] the interpretation of generating of the normal

distribution will be changed in scheme (1.9) which leads to convergence of order one

under a non-degeneracy condition.

In the implementation of the Milstein scheme we start by generating the random

variables ∆W
(j)
k and A

(j)
kl separately and then we add these random variables to get

the RHS of scheme (1.9). The idea here that we will try to generate the following

Y :=
∑

bik(jh, x
(j))∆W

(j)
k +

∑

ρikl(jh, x
(j))A

(j)
kl ,

directly. If we have a scheme

x
(j+1)
i = x

(j)
i +ai(jh, x

(j))h+
∑

bik(jh, x
(j))X

(j)
k +

∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l −hδkl),

(1.10)

where the incrementX
(j)
k are independentN(0, h) random variables then it is the same

as scheme (1.9) with ∆W
(j)
k replaced by X

(j)
k and we do not assume ∆W

(j)
k = X

(j)
k .

Now we need

Zi :=
∑

bik(jh, x
(j))X

(j)
k +

∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl),

to be a good approximation to Yi, in other words how we could find a joint distribu-

tion of random vectors (∆W
(j)
k , A

(j)
kl ) and (X

(j)
k ) so they have the required marginal

distribution, with bound E(Yi − Zi)
2 = O(h3).
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We will explain in the following section how we can use a coupling to find the

required marginal distribution which will give good bound for the random distribution

Yi and Zi. After that we will get an order one approximation between the two

approximate solutions of the SDEs, x(jh) and x(j) i.e. E(x(jh)− x(j)) = O(h2).

In the following section we have from Davie [3] paper an order one convergence

using (1.9) with the assumption that bik(x) is invertible. The proof will be in the two-

dimensional case using the coupling method and two different level of approximating

solutions of scheme (1.9).

Now we will state some lemmas and theorem which we will used in the later

sections.

Definition 1.1. (definition of the Coupling) Let (X1,F1, Q1) and (X2,F2, Q2) de-

note two probability spaces. A coupling of the probability measures Q1 and Q2 is a

probability measure P on X1 ×X2 whose marginals are Q1 and Q2.

Definition 1.2. (definition of Vaserstein metrics) The pth Vaserstein distance be-

tween two probability measures Q1 and Q2 on R
d is defined as the following

Wp(Q1, Q2) = inf(E|X − Y |p)1/p (1.11)

Here the infimum is taken over all joint distributions of Rd-value random variables

X , Y , where X has distribution Q1 and Y has distribution Q2.

The books of Rachev and Ruschendoff [6] and Villani [21], [22] have more infor-

mation about coupling and Vaserstein distance.

Definition 1.3. Let Σ be a positive definite real q × q matrix and let f be the

density function on R
q of the N(0,Σ) normal distribution. Let P denote the set of

polynomials in d variables with real coefficients and let the projection operator P on

P be defined by (Pp)(x) = p(x) − p̄ where p̄ =
∫

Rq
p(x)f(x)dx. Then P̄ p = 0. We

have the following

Lemma 1.1. Let p ∈ P. Then we can find a vector polynomial ψ ∈ Pq such that

∇.(fψ) = fPp.

Proof. See Lemma 1 in [3]

Lemma 1.2. Let n ≤ N and R be positive integers, and for j = 1, · · · , N let

pj , rj ∈ P, all having degree≤ R, and such that pj = rj for j ≤ n. Let η > 0 with

ηR ≤ n and let K > 0. Then we can find C > 0 such that, if ǫ > 0 and we write

µ0 = pfχBdx and ν0 = rfχBdx where p = 1 +
∑N

j=1 ǫ
jpj, r = 1 +

∑N
j=1 ǫ

jrj and

B = {x ∈ R
q : |x| ≤ ǫ−η}, and if µ and ν are probability measures on R

q with
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∫

Rq (1 + |x|2)d|µ − µ0|(x) < Kǫ2n+2 and
∫

Rq (1 + |x|2)d|ν − ν0|(x) < Kǫ2n+2, then

W2(µ, ν) < Cǫn+1.

Proof. See Lemma 2 in [3]

From the definition shown in [4], we call an equation a a Stratonovich stochastic

differential equation, writing it in following form

dX(t) = A(t,X(t))dt+ b(t,X(t)) ◦ dW (t), (1.12)

or in the equivalent integral equation form

X(t) = X(0) +

∫ t

0

A(s,X(s))ds+

∫ t

0

b(s,X(s)) ◦ dW (s) (1.13)

It turns out that the solutions of the Stratonovich SDE (1.12)-(1.13) also satisfy an

Ito SDE with the same diffusion coefficient b(s,X(s)), but with the modified drift

coefficient

a(s, x) = A(s, x) +
1

2

d
∑

j=1

d
∑

k=1

bkj(s, x)
∂bj
∂xk

(s, x)

where bj is the jth column of the matrix b(s, x).

Definition 1.4. The Lie bracket [U, V ] of two vector fields U and V on Rn is the

vector field defined by

[U, V ] = DV (x)U(x) −DU(x)V (x)

where we mean by the DU(x) the derivative matrix which given by (DU(x))ij =

∂jUi(x)

Definition 1.5. If we have a stochastic differential equation

dX(t) = A(X(t))dt+ b(X(t)) ◦ dW (t), (1.14)

and let Ak are the collection of vector fields which define by

A0 = {bi : i > 0}, Ak+1 = Ak ∪ {[U, bj] : U ∈ Ak & j ≥ 0}.

where b0 = A and define the vector spaces by

Ak(x) = span{V (x) : V ∈ Ak}

then we say that (1.14) satisfies the parabolic Hörmander condition if
⋃

k≥0 Ak(x) =

Rd for every x ∈ Rd
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Now we need to mention the Hörmander Theorem [17] which we will use in chapter

4 .

Theorem 1.2. (Hörmander Theorem) Suppose we have a stochastic differential

equation

dX(t) = A(X(t))dt+ b(X(t)) ◦ dW (t) (1.15)

and assume that all vector fields A and bi’s have bounded derivatives of all orders.

If (1.15) satisfies the parabolic Hörmander condition, then for positive t the solution

X(t) for (1.15) has an infinitely differentiable density with respect to the Lebesgue

measure.

Proof. see Theorem 1.3 in [18]

2. TWO-LEVEL APPROXIMATION USING THE EXACT

COUPLING OF SCHEME (1.10)

As it described in Davie’s paper [3] in section (8) that a modified version of (1.10)

which gives order 1 under a nondegeneracy condition on the bik(x) . Here we will use

this new scheme but with the explicit version. We get the explicit versions for the

coefficients from the Runge-Kutta scheme coefficients(11.1.7) in Kloeden and Platen’s

book [4] i.e.

βikl(x) =
bik(Υ

l
n)− bik(x)√
h

,

where
(

Υl
n = x + bl

√
h
)

for l = 1, 2, · · · and βikl we will be used an approximation

to ρikl. In the following section we assume that bik(x) is twice differentiable with

respect to x and bik(x) and its first and second derivatives are bounded by constants.

Moreover we assume the boundedness of the inverse of the bik(x). Also we need the

following lemma which will give the bound between the explicit version βikl(x) and

the derivatives term ρikl(x).

Lemma 2.1. Suppose we have the Runge-Kutta scheme coefficients(11.1.7) in Kloe-

den and Platen’s book [4], i.e.

βikl(x) =
bik(Υ

l
n)− bik(x)√
h

,

with bik(x) twice differentiable with respect to x and Υl
n = x+ bl

√
h for l = 1, 2, · · · .

Moreover the bik(x) and its second derivative are bounded by constant. Then the differ-
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ence approximation between βikl(x) and the derivatives term ρikl(x) will be O(h).i.e.

(

∣

∣βikl(x) − ρikl(x)
∣

∣

p
)2/p

≤ Cph, (2.1)

where Cp is a constant.

Proof. We need to use the deterministic Taylor expansion to find bik(Υ
l
n) where the

supporting value is Υl
n = x+ bl

√
h for l = 1, 2, · · · , and for 0 < θ < 1

bik(Υ
l
n) = bik(x) +

√
h

d
∑

n=1

∂bik(x)

∂xl
bln(x)

+
1

2

d
∑

m,n=1

∂2bik(x+ θbl
√
h)

∂xl∂xm
(bmbn

√
h)2. (2.2)

Then we replace (2.2) in
bik(Υ

l
n)−bik(x)√

h
which gives us

βikl(x) =
bik(x)√

h
+

√
h√
h

d
∑

n=1

∂bik(x)

∂xl
bln(x)

+
1
2

∑d
l,m,n=1

∂2bik(x+θbl
√
h)

∂xl∂xm (bmbn
√
h)2

√
h

− bik(x)√
h

= ρikl(x) +O(h1/2).

Thus
∣

∣

{

bik(Υ
l
n)− bik(x)√
h

}

− ρikl(x)
∣

∣ ≤ C1h
1/2.

So

(

∣

∣βikl(x) − ρikl(x)
∣

∣

p
)2/p

≤ Cph.

3. EXACT COUPLING IN TWO-DIMENSIONAL CASE

First we consider scheme (1.10) with explicit version and for the simplicity we will let

bik(x) depend only on x and also the drift term equal zero, so

x
(j+1)
i = x

(j)
i +

∑

bik(x
(j))X

(j)
k +

∑

βikl(x
(j))(X

(j)
k X

(j)
l − hδkl). (3.1)

Now for the step-size h(r) = T
2r we will have 2rd independent random variables X

(r,j)
k .

Then at two consecutive levels, in other words from level r to level r + 1, r ∈ N we

need to find a coupling between X
(r,j)
k which is N(0, h(r)) and (X

(r+1,2j)
k , X

(r+1,2j+1)
k )
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so they are independent of each other and they are N(0, h(r+1)). If we have that x̃
(r,j)
i

is a solution of 3.1 at the level r then for a fix time j we compare x̃
(r,j+1)
k at level r

with x̃
(r+1,2j+2)
k in the level r + 1, we have

x̃
(r,j+1)
i = x̃

(r,j)
i +

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k +

1

2

d
∑

k,l=1

βikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl),

(3.2)

and define y as the following

y = x̃
(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k +

1

2

d
∑

k,l=1

βikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl),

(3.3)

also we have

x̃
(r+1,2j+1)
i = x̃

(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r+1,2j)
k

+
1

2

d
∑

k,l=1

βikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l − h(r+1)δkl). (3.4)

x̃
(r+1,2j+2)
i = x̃

(r+1,2j+1)
i +

d
∑

k=1

bik(x̃
(r+1,2j+1))X

(r+1,2j+1)
k

+
1

2

d
∑

k,l=1

βikl(x̃
(r+1,2j+1))(X

(r+1,2j+1)
k X

(r+1,2j+1)
l − h(r+1)δkl). (3.5)

We should mention that when we write X = O(M) for the random variable X we

mean the Lp bound for it i.e. (E|X |p)1/p ≤ CM . Now, from lemma 2.1 we have

bik(x̃
(r+1,2j+1)) = bik(x̃

(r+1,2j)) + ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k ) +O(h)

= bik(x̃
(r+1,2j)) + βikl(x̃

(r+1,2j))(X
(r+1,2j)
k ) +O(h),

and βikl(x̃
(r+1,2j+1)) = βikl(x̃

(r+1,2j)) +O(h).

Using these relations in (3.5) and combining it with (3.4) we get.

x̃i
(r+1,2j+2) = x̃i

(r+1,2j) +

d
∑

k=1

bik(x̃i
(r+1,2j))(X

(r+1,2j)
k +X

(r+1,2j+1)
k )

+

d
∑

l,k=1

βikl(x̃
(r+1,2j))X

(r+1,2j+1)
k X

(r+1,2j)
l

+
1

2

d
∑

l,k=1

βikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l +X

(r+1,2j+1)
k X

(r+1,2j+1)
l
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− h(r)δkl) + λ, (3.6)

where λ = O((h(r))3/2).

Now, let (cij) be the matrix inverse of
(

bik(x̃
(r+1,2j))

)

so that
∑

j cijbik(x̃
(r+1,2j)) =

δik. Then from equation (3.3) and (3.6) if we need the local error y − x̃
(r+1,2j+2)
k =

O((h(r))3/2), we require the coupling to satisfy

X
(r,j)
i = X

(r+1,2j)
i +X

(r+1,2j+1)
i +

d
∑

k,l=1

τikl(X
(r+1,2j+1)
k X

(r+1,2j)
l

−X
(r+1,2j+1)
l X

(r+1,2j)
k ) + O((h(r))3/2), (3.7)

where τikl =
1
2

∑

j cijβikl.

Now we will reformulate (3.7) by a scaling. We fix r write ǫ = (h(r))1/2, X
(r,j)
i =

ǫVi, X
(r+1,2j)
i = ǫYi and X

(r+1,2j+1)
i = ǫZi. Then V1, · · · , Vd are independent and

N(0, 1), while (Y1, · · · , Yd, Z1, · · · , Zd) are independent and N(0, 1/2). Now we need

to find a coupling between a vector (Vi) and (Yi, Zi) so that

Vi = Yi + Zi + ǫ

d
∑

k,l=1

τikl(ZkYl − ZlYk) +O(ǫ2). (3.8)

We need to write Ui = Yi+Zi and U
∗
i = Yi−Zi that gives Ui and U

∗
i are independent

and N(0, 1). We have U∗
l Uk −U∗

kUl = 2(YlZk −ZlYk) so that from equation (3.8) we

obtain

Vi = Ui + ǫ

d
∑

k,l=1

τikl(U
∗
l Uk − U∗

kUl) +O(ǫ2). (3.9)

Therefore, we require a coupling between (V1, · · · , Vd) and (U1, · · · , Ud, U
∗
1 , · · · , U∗

d ),

here all the random variables are N(0, 1), and also (V1, · · · , Vd) are mutually inde-

pendent, (U1, · · · , Ud, U
∗
1 , · · · , U∗

d ) are also mutually independent, and (3.9) holds.

Now when d = 2 from equation (3.9) we have Vi = Ui+ ǫai(U
∗
2U1−U∗

1U2)+O(ǫ
2)

where ai =
(τi12−τi21)

2 , i.e. a1 = (τ112−τ121)
2 and a2 = (τ212−τ221)

2 . Then we can write
(

a1

a2

)

= Rθ

(

a

0

)

Where Rθ is a rotation matrix. i.e. Rθ =
( a1/a −a2/a
a2/a a1/a

)

and

a = (a21 + a22)
1/2

Writing V = RθV
′, U = RθU

′, and U∗ = RθŨ our required condition becomes

V ′
1 = U ′

1 + ǫa(Ũ2U
′
1 − Ũ1U

′
2) +O(ǫ2), V ′

2 = U ′
2 +O(ǫ2). (3.10)

Lemma 3.1. Suppose U and α are independent random variables, where U is N(0, 1)

and α takes the values ±1 each with probability 1
2 , and let b and c be fixed real numbers

with |b| < 1. We define Y = U + α(bU + c) and V = Φ−1(F (Y)) where F (y) is the

c.d.f. of Y. i.e.

F (y) = P (Y ≤ y)
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= P (Y ≤ y, α = 1) + P (Y ≤ y, α = −1)

=
1

2

{

Φ

(

y − c

1 + b

)

+Φ

(

y + c

1− b

)}

.

Here Φ is the c.d.f. of standard normal distribution; then V is N(0, 1). Otherwise we

generate V independently to be N(0, 1). Then

E(V − Y)p ≤ K(b2 + c2)p, (3.11)

where K is a constant independent of b and c.

Proof. First, if we have an even integer p then it is obvious that

E(V − Y)p ≤ 2p−1E(V p + Yp) = 2p−1E(V p) + 2p−1E(Yp)

= 2p−1(p− 1)!! + 2p−1E(U + α(bU + c))p

≤ 2p−1(p− 1)!! + 22(p−1)(p− 1)!! +
bp22(p−1)

2p
(p− 1)!! +

cp22(p−1)

2p

= K1 + C(bp + cp). (3.12)

Where the constant K1 and C are depending on p and if either |b| or |c| is greater

than 1
2 and we choose K big enough then the following is true

K1 + C(bp + cp) ≤ K(b2 + c2)p.

So it suffices to prove the lemma for |b| ≤ 1
2 , |c| ≤ 1

2 . Using the expression for F , we

find that for |y| ≤ 1
(b2+c2)1/4

we have

∣

∣F (y)− Φ(y)
∣

∣ =
∣

∣

1

2

(

Φ(
y − c

1 + b
) + Φ(

y + c

1− b
)
)

− Φ(y)
∣

∣. (3.13)

By using the Taylor expansion for Φ(y−c
1+b ) and Φ(y+c

1−b ) we have

Φ(
y − c

1 + b
) = Φ(y) + φ(y)(

y − c

1 + b
− y) +

1

2
Φ′′(y)(

y − c

1 + b
− y)2 +O(

y − c

1 + b
− y)3

= Φ(y) + φ(y)(
−c− yb

1 + b
) +

1

2
Φ′′(y)((

y − c

1 + b
)2 − 2y

y − c

1 + b
+ y2)

+O(
y − c

1 + b
− y)3, (3.14)

and

Φ(
y + c

1 − b
) = Φ(y) + φ(y)(

y + c

1 − b
− y) +

1

2
Φ′′(y)(

y + c

1 − b
− y)2

+ O(
y + c

1 − b
− y)3

= Φ(y) + φ(y)(
c + yb

1− b
) +

1

2
Φ′′(y)((

y + c

1 − b
)2 − 2y

y + c

1− b
+ y2)
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+ O(
y + c

1 − b
− y)3, (3.15)

where for the reminder terms we use the same restrictions that |y| ≤ 1
(b2+c2)1/4

, |b| ≤ 1
2

and |c| ≤ 1
2

Now,

φ(y)(
−c− yb

1 + b
) + φ(y)(

c+ yb

1− b
) = φ(y)(−c+ cb− cb2 − yb+ yb2)

+ φ(y)(c+ cb+ cb2 + yb+ yb2)

= φ(y)(2cb + 2yb2), (3.16)

and

Φ′′(y)((
y + c

1 − b
)2 − 2y

y + c

1− b
+ y2)

= Φ′′(y)
(y2 + 2cy + c2 − 2y2(1− b)− 2yc(1− b) + y2(1− b)2

(1− b)2
)

= −(yφ(y))(c2 + 2bc2 + 3b2c2 + 2byc+ 4b2yc+ y2b2). (3.17)

Φ′′(y)((
y − c

1 + b
)2 − 2y

y − c

1 + b
+ y2)

= Φ′′(y)
(y2 − 2cy + c2 − 2y2(1 + b) + 2yc(1 + b) + y2(1 + b)2

(1 + b)2
)

= −(yφ(y))(c2 − 2bc2 + 3b2c2 + 2byc− 4b2yc+ y2b2). (3.18)

So

1

2
Φ′′(y)(

y − c

1 + b
−y)2+1

2
Φ′′(y)(

y + c

1 − b
−y)2 = −(yφ(y))(c2+3b2c2+2byc+y2b2). (3.19)

Then from (3.13) we obtain

∣

∣F (y)− Φ(y)
∣

∣ =
∣

∣

1

2

(

Φ(
y − c

1 + b
) + Φ(

y + c

1 − b
)
)

− Φ(y)
∣

∣

=

∣

∣

∣

∣

1

2

(

2Φ(y) + φ(y)(2cb+ 2yb2) +
1

2
Φ′′(y)(

y − c

1 + b
− y)2

+
1

2
Φ′′(y)(

y + c

1− b
− y)2 +O(

y − c

1 + b
− y)3 +O(

y + c

1 − b
− y)3

)

− Φ(y)

∣

∣

∣

∣

= φ(y)
∣

∣(cb+ yb2)− (
1

2
yc2 +

3

2
yb2c2 + by2c+

1

2
y3b2))

∣

∣

+O(
y − c

1 + b
− y)3 +O(

y + c

1 − b
− y)3. (3.20)

Thus

|F (y)− Φ(y)| ≤ K1(b
2 + c2)(1 + y2 + |y3|)φ(y). (3.21)



126 Y. ALNAFISAH

Now we will use the fact that if we have x which is a real number and 0 < a <

min(1, |x|−1), Then for |z| < a we have

φ(x + z) =
1√
2π
e

−x2

2 −xz− z2

2

=
1√
2π
e

−x2

2 e−xz− z2

2

= φ(x)e−xz− z2

2 ≥ φ(x)e−1− 1
2 = φ(x)e−

3
2 ,

and from this we deduce that

Φ(x+ a) ≥ Φ(x) + e−
3
2 aφ(x),

and similarly for Φ(x− a) therefore from (3.21) we obtain that

|y − Φ−1(F (y))| ≤ K2(b
2 + c2)(1 + y2 + |y3|), (3.22)

where φ = Φ′ is the N(0, 1) density function, and then the lemma follows since

E(V − Y)p = E(Y − Φ−1(F (Y)))p and the contribution from |Y| > (b2 + c2)−1/4 is

negligible if b2 + c2 is small as we now show.

We have from (3.12) that E(YM ) ≤ K andM is a big constantM ≥ 4p then from

Markov’s inequality

P(Y >
1

(b2 + c2)(1/4)
) ⇒ P(YM >

1

(b2 + c2)(1/4)M
) ≤ K(b2 + c2)(1/4)M .

From this and the bound in (3.12) and using the Cauchy-Schwartz inequality we

obtain that

E[(V − Y)p1YM>(b2+c2)(−1/4)M ] ≤ (E(V − Y)2p)(1/2)(E(1YM>(b2+c2)(−1/4)M )2)(1/2)

= (K1 + C(bp + cp))(K(b2 + c2)(1/4)M ). (3.23)

We return to (3.10), and recall that we require to generate the six random variables

V ′
1 , V

′
2 , U

′
1, U

′
1, Ũ1, Ũ2 so that each is N(0, 1) and that V ′

1 , V
′
2 , are independent and that

U ′
1, U

′
1, Ũ1, Ũ2 are also mutually independent. We also require these two sets of random

variables are coupled so that (3.10) holds. We start by generating independent N(0, 1)

variables U ′
1, U

′
2, Q,R and α taking the value ±1 with probability 1

2 each. Then

set V ′
2 = U ′

2, Ũ1 = αQ and Ũ2 = αR. We also define Y = U ′
1 + α(bU ′

1 + c) and

V ′
1 = Φ−1(F (Y)) where F (y) = 1

2

{

Φ(y−c
1+b ) + Φ(y+c

1−b )
}

is the cumulative distribution

function of Y ( here Φ is the c.d.f of N(0, 1), where b = ǫaR and c = −ǫaQU ′
2. This

gives Y = U ′
1 + ǫa(Ũ2U

′
1 − Ũ1U

′
2). Also conditional on Q,R,U ′

2 we see that V ′
1 is

N(0, 1), so V ′
1 is independent of V ′

2 and all six variables have N(0, 1) distribution.
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4. COMBINED METHOD

In Davie [3] paper, he assumed that the matrix
(

bik(x)
)

is invertible for all x, but in

this paper we will show how we could control the matrix which is non-invertible for

some x using the (Combined method). In the little box below, we explain how the

combined method will work.

EXPLANATION OF THE COMBINED METHOD

At the jth step we need to calculate the value of a which is a function of x(r,j)

and also we need to calculate K1 and K2 in (5.30) which are also functions of

x(r,j), then in the same stage we have two choices of approximate solutions. The

first one is the approximate solution using scheme (1.10) with the exact coupling

which will give local error E|x(r,1) − x(r+1,2)|2 ≤ K2a
2h3

or the second approximate solution that using scheme (1.10) with the trivial

coupling which will give local error E|x(r,1) − x(r+1,2)|2 ≤ K1h
2. So from the

value of a and using the following condition that if K2a
2h3 > K1h

2 then we

choose the solution which has scheme (1.10) with the trivial coupling and if not

we use the other solution which has scheme (1.10) with the exact coupling.

We remark that for the implementation of exact coupling with a non-invertible

matrix could not apply to scheme (1.10) directly because we have the matrix
(

bik(x)
)

which is singular or has determinant near to zero which will effect the convergence

order. In the other words that means we will not get the inverse matrix cij in the

following term τikℓ = 1
2

∑

j cij

{

bjk(τn,Υ
j
n)−bjk√
h

}

at some points. Therefore we could

control this problem by using the condition which has mentioned in the previous box.

We now indicate how will the local error for the combined method behave and what

the local error will be achieved. We will show this theoretically and then numerically

with examples of implementation for a specific non-invertible stochastic differential

equation.

Now we want to show the derivation of the local error for the combined method.

5. DERIVATION AND IMPLEMENTATION OF THE LOCAL

ERROR OF THE COMBINED METHOD

In the combined method we will use the local error for the scheme (1.10) with the

exact coupling and the local error for scheme (1.10) with the trivial coupling (1.5).

Therefore before we start the derivation of the local error for the combined method

we want to find the local error for the exact coupling and the trivial coupling.
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5.1. EVALUATION OF THE LOCAL ERROR FOR THE SCHEME

(1.10) WITH EXACT COUPLING

We need to find the explicit value for the local error for E|x(r,1)i − x
(r+1,2)
i |2 from the

error which we obtain from E(V ′
1 − Y )2 ≤ 10a4ǫ4. It is possible to deduce that from

equation (3.10). Firstly, from equation (3.10) we have

V ′
1 = U ′

1 + ǫa(Ũ2U
′
1 − Ũ1U

′
2) +Ra2ǫ2 (5.1)

Where R is a random variable and E(R2) =
E(V ′

1−Y )2

a4ǫ4 ≈ 10.

Then after we multiply by the term b and rotation matrix Rθ, we obtain

bRθV
′ = bRθU

′ + ǫbRθ

(

a

0

)

(U∗
2U1 − U∗

1U2) +Rǫ2bRθ

(

a2

0

)

Then, this will give us

(bV )i = (bU)i + ǫbi

(

a1
a2

)

(U∗
2U1 − U∗

1U2) +Rǫ2abi

(

a1
a2

)

⇒ (bV )i = (bU)i + ǫ

2
∑

k,l=1

ρikl(x
(0))(U∗

l Uk − U∗
kUl) +Raǫ2(ρi12 − ρi21)

ǫ

2
∑

k=1

bik(x
(0))Vk = ǫ

2
∑

k=1

bik(x
(0))(Yk + Zk)) + ǫ2

2
∑

k,l=1

ρikl(x
(0))[ZkYl − ZlYk]

+Raǫ3(ρi12 − ρi21)

2
∑

k=1

bik(x
(0))X

(r,0)
k =

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k ))

+
1

2

2
∑

k,l=1

ρikl(x
(0))[X

(r+1,1)
k X

(r+1,0)
l −X

(r+1,1)
l X

(r+1,0)
k ]

+Ra(ρi12 − ρi21)h
3/2 (5.2)

After we have obtained the coupling in (5.2) we could use it in the approximate

solution x̃
(r,1)
i in (3.10) and find the reminder term. So the coupling will be

X
(r,0)
i = X

(r+1,0)
i +X

(r+1,1)
i + (τi12 − τi21)(X

(r+1,1)
1 X

(r+1,0)
2 −X

(r+1,1)
2 X

(r+1,0)
1 )

+Raaiǫ
3 = X

(r+1,0)
i +X

(r+1,1)
i + Uai +Raaiǫ

3 (5.3)

Where U = (X
(r+1,1)
1 X

(r+1,0)
2 −X

(r+1,1)
2 X

(r+1,0)
1 ), so from the approximate solution

x̃
(r,1)
i = x

(0)
i +

2
∑

k=1

bik(x
(0))X

(r,0)
k +

1

2

2
∑

k,l=1

ρikl(x
(0))(X

(r,0)
k X

(r,0)
l − h(r)δkl) (5.4)
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we will have

x̃
(r,1)
i = x

(0)
i +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k + Uak) +Ra(ρi12 − ρi21)h

3/2

+
1

2

2
∑

k,l=1

ρikl(x
(0))
[(

X
(r+1,0)
k +X

(r+1,1)
k +Uak

)(

X
(r+1,0)
l +X

(r+1,1)
l +Ual

)

−h(r)δkl
]

(5.5)

From this equation and after we find the multiplication we will have the following

bound

E

( 2
∑

k,l=1

ρikl
([

(X
(r+1,0)
k +X

(r+1,1)
k )Ual

]

+
[

(X
(r+1,0)
l +X

(r+1,1)
l )Uak

])

)2

= E

( 2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

)2

= E

(

2ρi11(X
(r+1,0)
1 +X

(r+1,1)
1 )a1U + (ρi12 + ρi21)(X

(r+1,0)
1 +X

(r+1,1)
1 )a2U

+ (ρi21 + ρi12)(X
(r+1,0)
2 +X

(r+1,1)
2 )a1U + 2ρi22(X

(r+1,0)
2 +X

(r+1,1)
2 )a2U

)2

= 32ρ2i11a
2
1h

3 + 8(ρi12 + ρi21)
2a22h

3 + 8(ρi21 + ρi12)
2a21h

3 + 32ρi22a
2
2h

3

+ 32ρi11(ρi12 + ρi21)a1a2h
3 + 32ρi22(ρi12 + ρi21)a1a2h

3

= 32

2
∑

k=1

ρ2ikka
2
kh

3 + 8

2
∑

k 6=m

(ρikm + ρimk)
2a2mh

3 + 32

2
∑

k 6=m

ρikk(ρikm + ρimk)amakh
3

=

2
∑

k 6=m

[
√
32ρikkak +

(
√
8(ρikm + ρimk)am

)]2
h3 (5.6)

Thus from equation (5.3) and (5.4) we will have

x̃
(r,1)
i = x

(0)
i +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k + Uak) +Ra(ρi12 − ρi21)h

3/2

+
1

2

2
∑

k,l=1

ρikl(x
(0))
[

X
(r+1,0)
k X

(r+1,0)
l +X

(r+1,0)
k X

(r+1,1)
l +X

(r+1,1)
k X

(r+1,0)
l

+X
(r+1,1)
k X

(r+1,1)
l − h(r)δkl

]

+
2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

= x
(0)
i +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k ) +

1

2

2
∑

k,l=1

ρikl(x
(0))[X

(r+1,1)
k X

(r+1,0)
l

−X
(r+1,1)
l X

(r+1,0)
k ] +Ra(ρi12 − ρi21)h

3/2 +
1

2

2
∑

k,l=1

ρikl(x
(0))
[

X
(r+1,0)
k X

(r+1,0)
l
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+X
(r+1,0)
k X

(r+1,1)
l +X

(r+1,1)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l − h(r)δkl

]

+

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

= x
(0)
i +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k ) +

2
∑

k,l=1

ρikl(x
(0))[X

(r+1,1)
k X

(r+1,0)
l ]

+Ra(ρi12 − ρi21)h
3/2

+
1

2

2
∑

k,l=1

ρikl(x
(0))
[

X
(r+1,0)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l − h(r)δkl

]

+

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU (5.7)

And we have

x̃i
(r+1,2) = xi

(0) +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k )

+

2
∑

l,k=1

ρikl(x
(0))X

(r+1,1)
k X

(r+1,0)
l

+
1

2

2
∑

l,k=1

ρikl(x
(0))(X

(r+1,0)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l − h(r)δkl) +O((h(r))3/2)

(5.8)

Finally we compare x̃
(r,1)
i with x̃i

(r+1,2) to obtain the local error. i.e.

(x̃
(r,1)
i − x̃i

(r+1,2)) =

(

x
(0)
i +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k )

+
2
∑

k,l=1

ρikl(x
(0))[X

(r+1,1)
k X

(r+1,0)
l ] +Ra(ρi12 − ρi21)h

3/2

+
1

2

2
∑

k,l=1

ρikl(x
(0))
[

X
(r+1,0)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l − h(r)δkl

]

+

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

)

−
(

xi
(0) +

2
∑

k=1

bik(x
(0))(X

(r+1,0)
k +X

(r+1,1)
k )

+

2
∑

l,k=1

ρikl(x
(0))X

(r+1,1)
k X

(r+1,0)
l
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+
1

2

2
∑

l,k=1

ρikl(x
(0))(X

(r+1,0)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l − h(r)δkl)

+O((h(r))3/2)

)

= Ra(ρi12 − ρi21)h
3/2 +

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

(5.9)

So

E|x(r,1)i − x
(r+1,2)
i |2 = E|Ra(ρi12 − ρi21)h

3/2

+
2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU |2

≤
{

10a2(ρi12 − ρi21)
2 +

2
∑

k 6=m

[
√
32ρikkak +

(
√
8(ρikm + ρimk)am

)]2}
h3

+ E

[

(

Ra(ρi12 − ρi21)h
3/2
)(

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU
)

]

=
{

10a2(ρi12 − ρi21)
2 +

2
∑

k 6=m

[
√
32ρikkak +

(
√
8(ρikm + ρimk)am

)]2}
h3 (5.10)

In the last step we have that the expectation of the crossing term equals zero, i.e.

E

[

(

Ra(ρi12 − ρi21)h
3/2
)(

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU
)

]

= 0 (5.11)

Because from equation (5.1) we have that the random variable R equal to

R =
V ′
1 − U ′

1 − ǫa(Ũ2U
′
1 − Ũ1U

′
2)

a2ǫ2

=
V ′
1 − U ′

1 − ǫa(Ũ2U
′
1 − Ũ1U

′
2)

a2h
(5.12)

and

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU

=

2
∑

k,l=1

ρikl
([

(X
(r+1,0)
k +X

(r+1,1)
k )Ual

]

+
[

(X
(r+1,0)
l +X

(r+1,1)
l )Uak

])

= [2ρi11U
′
1a1 + (ρi12 + ρi21)U

′
1a2 + (ρi21 + ρi12)U

′
2a1 + 2ρi22(U

′
2)a2]ǫU

=
(

[2ρi11a1 + (ρi12 + ρi21)a2]U
′
1 + [(ρi21 + ρi12)a1 + 2ρi22a2]U

′
2

)

ǫU
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=
(

L1U
′
1 + L2U

′
2

)

ǫU

=
(

L1U
′
1 + L2U

′
2

)

ǫ(Ũ2U
′
1 − Ũ1U

′
2) (5.13)

where L1 = 2ρi11a1 + (ρi12 + ρi21)a2 and L2 = (ρi21 + ρi12)a1 + 2ρi22a2.

Replacing (5.12) and (5.13) in (5.11) we will obtain the following

E
[((V ′

1 − U ′
1 − ǫa(Ũ2U

′
1 − Ũ1U

′
2)

a2h

)

a(ρi12 − ρi21)h
3/2
)(

L1U
′
1 + L2U

′
2

)

ǫ(Ũ2U
′
1 − Ũ1U

′
2)
]

= E
[2

a
(ρi12 − ρi21)h

(

V ′
1 − U ′

1 − ǫa(Ũ2U
′
1 − Ũ1U

′
2)
)(

L1U
′
1Ũ2U

′
1 − L1U

′
1Ũ1U

′
2

+ L2U
′
2Ũ2U

′
1 − L2U

′
2Ũ1U

′
2

)]

= E
[2

a
(ρi12 − ρi21)h

(

L1U
′
1Ũ2U

′
1V

′
1 − L1U

′
1Ũ1U

′
2V

′
1 + L2U

′
2Ũ2U

′
1V

′
1 − L2U

′
2Ũ1U

′
2V

′
1

+ L1U
′
1Ũ2U

′
1U

′
1 − L1U

′
1Ũ1U

′
2U

′
1 + L2U

′
2Ũ2U

′
1U

′
1 − L2U

′
2Ũ1U

′
2U

′
1 + L1U

′
1Ũ2U

′
1Ũ2U

′
1

− L1U
′
1Ũ1U

′
2Ũ2U

′
1 + L2U

′
2Ũ2U

′
1Ũ2U

′
1 − L2U

′
2Ũ1U

′
2Ũ2U

′
1 + L1U

′
1Ũ2U

′
1Ũ1U

′
2

− L1U
′
1Ũ1U

′
2Ũ1U

′
2 + L2U

′
2Ũ2U

′
1Ũ1U

′
2 − L2U

′
2Ũ1U

′
2Ũ1U

′
2

)]

(5.14)

Now we need to find the expectation of each term separately. As we mention before

in section 3, we start by generating independent N(0, 1) variables U ′
1, U

′
2, Q,R and

α taking the value ±1 with probability 1
2 each. Then set V ′

2 = U ′
2, Ũ1 = αQ and

Ũ2 = αR. Also as we defined Y = U ′
1 + α(bU ′

1 + c) and V ′
1 = Φ−1(F (Y)) where F (y)

is the c.d.f. of Y ( here Φ is the c.d.f of N(0, 1), where b = ǫaR and c = −ǫaQU ′
2.

This gives Y = U ′
1 + ǫa(Ũ2U

′
1 − Ũ1U

′
2). So we can change the sign of the random

variables U ′
1, U

′
2, Q,R by multiplying by -1 of any subset of them without altering the

distribution. So if we only change the sign of the random variables U ′
2, and Q, then

b and c will not change and also Y will not change, so V ′
1 will not change. Therefore

all the following terms will equal zero i.e.

E(−U ′
2Ũ2U

′
1V

′
1) = E(U ′

2Ũ2U
′
1V

′
1) = 0 (5.15)

E(−U ′
2Ũ1U

′
2V

′
1) = E(U ′

2Ũ1U
′
2V

′
1) = 0 (5.16)

On the other hand, if we change the sign of U ′
1, and U

′
2, then we will get −c and −Y

and hence we will have the c.d.f. of −Y which we call F̄ (y), so

F̄ (y) = P (−Y ≤ y)

= P (Y ≥ −y)
= 1− F (−y)

so we will have

Φ−1(F̄ (−Y)) = Φ−1(1− F (Y)) = −Φ−1(F (Y)) = −V ′
1
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therefore the following terms will equal zero i.e.

E(−U ′
1Ũ2U

′
1V

′
1) = E(U ′

1Ũ2U
′
1V

′
1) = 0 (5.17)

E(−U ′
1Ũ1U

′
2V

′
1) = E(U ′

1Ũ1U
′
2V

′
1) = 0 (5.18)

For the rest of the expectations the result will be zero because all the random

variables are mutually independent, so

E
[2

a
(ρi12 − ρi21)h

(

L1U
′
1Ũ2U

′
1U

′
1 − L1U

′
1Ũ1U

′
2U

′
1 + L2U

′
2Ũ2U

′
1U

′
1 − L2U

′
2Ũ1U

′
2U

′
1

+ L1U
′
1Ũ2U

′
1Ũ2U

′
1 − L1U

′
1Ũ1U

′
2Ũ2U

′
1 + L2U

′
2Ũ2U

′
1Ũ2U

′
1 − L2U

′
2Ũ1U

′
2Ũ2U

′
1

+ L1U
′
1Ũ2U

′
1Ũ1U

′
2 − L1U

′
1Ũ1U

′
2Ũ1U

′
2 + L2U

′
2Ũ2U

′
1Ũ1U

′
2 − L2U

′
2Ũ1U

′
2Ũ1U

′
2

)]

= 0

(5.19)

Finally, we have shown from (5.17) to (5.19) that the expectation of all terms in the

crossing term equal zero and then the result of equation (5.11) will be zero i.e.

E

[

(

Ra(ρi12 − ρi21)h
3/2
)(

2
∑

k,l=1

(

ρikl + ρilk
)(

X
(r+1,0)
k +X

(r+1,1)
k

)

alU
)

]

= 0

5.2. EVALUATION OF THE LOCAL ERROR OF SCHEME (1.10)

WITH TRIVIAL COUPLING

First of all, we compare x̃
(r,j+1)
k with x̃

(r+1,2j+2)
k , we have

x̃
(r,1)
i = x̃

(r,0)
i +

d
∑

k=1

bik(x̃
(r,0))X

(r,0)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r,0))(X

(r,0)
k X

(r,0)
l −h(r)δkl) (5.20)

and suppose we have another approximate solution, i.e.

y = x̃
(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl)

(5.21)

And also

x̃
(r+1,1)
i = x̃

(r+1,0)
i +

d
∑

k=1

bik(x̃
(r+1,0))X

(r+1,0)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,0))(X

(r+1,0)
k X

(r+1,0)
l − h(r+1)δkl) (5.22)
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x̃
(r+1,2)
i = x̃

(r+1,1)
i +

d
∑

k=1

bik(x̃
(r+1,1))X

(r+1,1)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,1))(X

(r+1,1)
k X

(r+1,1)
l − h(r+1)δkl) (5.23)

Now, bik(x̃
(r+1,1)) = bik(x̃

(r+1,0)) + ρikl(x̃
(r+1,0))(X

(r+1,0)
k ) +O(h)

and ρikl(x̃
(r+1,1)) = ρikl(x̃

(r+1,0)) +O(h1/2)

Using these relations in (5.23) and combining it with (5.22) we get

x̃i
(r+1,2) = x̃i

(r+1,0) +
d
∑

k=1

bik(x̃i
(r+1,0))(X

(r+1,0)
k +X

(r+1,1)
k )

+

d
∑

l,k=1

ρikl(x̃
(r+1,0))X

(r+1,1)
k X

(r+1,0)
l

+
1

2

d
∑

l,k=1

ρikl(x̃
(r+1,0))(X

(r+1,0)
k X

(r+1,0)
l +X

(r+1,1)
k X

(r+1,1)
l −h(r)δkl)+O((h(r))3/2)

(5.24)

Then the coupling will satisfy

x̃
(r,1)
k −x̃(r+1,2)

k =

d
∑

k,l=1

ρikl(X
(r+1,1)
k X

(r+1,0)
l −X(r+1,1)

l X
(r+1,0)
k )+O((h(r))3/2) (5.25)

Now we will reformulate (5.25) by a scaling. We fix r write ǫ = (h(r))1/2, X
(r+1,0)
i =

ǫYi andX
(r+1,1)
i = ǫZi. Then (Y1, · · · , Yd, Z1, · · · , Zd) are independent andN(0, 1/2).

So that

x̃
(r,1)
k − x̃

(r+1,2)
k = ǫ

d
∑

k,l=1

ρikl(ZkYl − ZlYk) +O(ǫ2) (5.26)

and

E(Z1Y2 − Z2Y1)
2 = E(Z1Y2)

2 − 2E(Z1Y2)E(Z2Y1) + E(Z2Y1)
2 = 1 + 1 = 2 (5.27)

therefore the local error for the trivial coupling will be

E|x(r,1)i − x
(r+1,2)
i |2 = E

∣

∣

d
∑

k,l=1

ρikl(X
(r+1,1)
k X

(r+1,0)
l −X

(r+1,1)
l X

(r+1,0)
k )

∣

∣

2

= 2(ρ2i12 + ρ2i21)h
2 +O(h3) (5.28)

Then we follow the same procedure to get the local error for the jth step.
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So we need to compare the local error for scheme (1.10) with exact and trivial

coupling in the same starting points. As we have mentioned before that the local

error will work for the jth step as the initial step and hence we have obtained that

the local error for scheme (1.10) with exact coupling

E|y − x(r+1,2j+2)|2

≤
{

10a2
2
∑

i=1

(ρi12 − ρi21)
2 +

2
∑

i=1,k 6=m

[
√
32ρikkak +

(
√
8(ρikm + ρimk)am

)]2}
h3

and for the trivial coupling is

E|y − x(r+1,2j+2)|2 ≤ 2

2
∑

i=1

(ρ2i12 + ρ2i21)h
2.

So as we have mentioned in the previous box that from the value of a2 = (a21+a
2
2)

which defines as a function of ai =
1
2

∑

j cij(x
(r,j))ρikl(x

(r,j)) and ifK1 = 2
∑2

i=1(ρ
2
i12+

ρ2i21) and K2a
2h3 =

{

10a2
∑2

i=1(ρi12 − ρi21)
2 +

∑2
i=1,k 6=m

[√
32ρikkak +

(√
8(ρikm +

ρimk)am
)]2}

h3 which gives

K2 =
10a2

∑2
i=1(ρi12 − ρi21)

2 +
∑2

i=1,k 6=m

[√
32ρikkak +

(√
8(ρikm + ρimk)am

)]2

a2
.

Then we use the following condition that if K2a
2h3 > K1h

2 which gives a2 > K3

h ,

then we choose the solution which has scheme (1.10) with the trivial coupling and if

not we use the other solution which has scheme (1.10) with the exact coupling, . So

the local error of the combined method will be the minimum of their local errors. i.e.

E
(

|y − x(r+1,2j+2)|2|Fj

)

≤ min
[

K1h
2,K2a

2h3
]

(5.29)

and then

E|y − x(r+1,2j+2)|2 ≤ E

(

min
[

K1h
2,K2a

2h3
]

)

(5.30)

We will describe two methods of finding the expectation in (5.30) using the fol-

lowing non-invertible SDE to illustrate the results.

dX1(t) = X2(t)dW1(t) + (X1(t) + t)dW2(t),

dX2(t) = e−X2
2 (t)dW1(t) + (X1(t)−X2(t))dW2(t),

for 0 ≤ t ≤ 1, with X1(0) = 2 and X2(0) = 0

(5.31)

When the determinant is near from zero for the inverse matrix bik(x) then that

means we will obtain a big value for a2 and at the same time we will get the big
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value for the exact coupling error i.e. (K2a
2h3). For a particular example from the

previous SDE we have the value of the inverse matrix will be

cij =
1

y(x− y)− e−y2(x+ t)

[

(x− y) −(x+ t)

−e−y2

y

]

which means when
(

y(x − y) − e−y2

(x + t)
)2

becomes close to the zero then a2 will

be too large. So in the following discussion we will try to control this problem and

see the behavior of the combined method.

For the first method we will try to find the the following expectation directly

E[min(K1h
2,K2a

2h3)] and then see what the convergence result for the behavior of

its integral. To evaluate this we will use the Hörmander Theorem (Theorem 1.2) and

then we could deduce the expected error for the integration for the function a. For

the second method we will find the estimate of the error in (5.30) by doing a number

of simulations for the previous SDE with different step sizes.

For the first method we will assume that the Hörmander conditions hold and

then let f is a density function of x(r,j) and by applying the Hörmander theorem we

assume that |f(x, y)| bounded by a constant K(y) and for fixed y we also have the

following bound

∫

f(x, y)dx ≤ K(y)

The constant K(y) depends on y and it decreases rapidly when y become very big.

So

E[min(K1h
2,K2a

2h3)] = Lh2
∫ ∫

min(1, (a21 + a22)h)f(x, y)dxdy

≤ Lh2
(

K(y)

∫

min(1, (a21 + a22)h)dx

)

(5.32)

Here L is a constant and because the term K2a
2h3 depends on a2 = (a21 + a22) which

define as a function of ai =
1
2

∑

j cij(x
(r,j))ρikl(x

(r,j)). So we will have

a21 + a22 =
C

(yx− y2 − e−y2x− e−y2t)2

where the term 1

(yx−y2−e−y2x−e−y2 t)2
comes from the inverse matrix cij and we bound

other terms by constant C. Thus from (5.32) we obtain

E[min(K1h
2,K2a

2h3)] = C1h
2

(

K(y)

∫

min(1,
h

(yx− y2 − e−y2x− e−y2t)2
)dx

)

= C1h
2

(

K(y)

∫

min(1,
h

[(y − e−y2)x− y2 − e−y2t)]2
)dx

)

(5.33)
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Now let (y − e−y2

)x − y2 − e−y2

t) = u then

⇒ du = (y − e−y2

)dx, which gives ⇒ du

(y−e−y2 )
= dx.

Then the integral in (5.33) will become

E[min(K1h
2,K2a

2h3)] ≤ C1h
2 K(y)

|y − e−y2 |

(

2

∫ ∞

0

min(1,
h

u2
)du

)

= L1h
2 K(y)

|y − e−y2 |

(
∫

√
h

0

du+ h

∫ ∞

√
h

1

u2
du

)

= L1h
2 K(y)

|y − e−y2 |

(√
h+

√
h

)

= L2h
(5/2) K(y)

|y − e−y2 | (5.34)

We have another bound when we fix y which will be as the following
∫

min(1, (a21 + a22)h)f(x, y)dx ≤
∫

f(x, y)dx ≤ K(y) (5.35)

If we define y0 as the point where y− e−y2

= 0, then for the expectation we will have

the following

E[min(K1h
2,K2a

2h3)] ≤ L2h
2

∫ ∞

−∞
min(K(y),

h
1
2K(y)

|y − y0|
)dy

= L2h
2

(

h
1
2

∫ y0−
√
h

−∞

K(y)

|y − y0|
dy + h

1
2

∫ ∞

y0+
√
h

K(y)

|y − y0|
dy

+

∫ y0+
√
h

y0−
√
h

K(y)dy

)

≤ h2L[
√
h| log(

√
h)|+

√
h| log(

√
h)|+ 2

√
h] (5.36)

So we could see from the last step in (5.36) that the dominant term will be of order

h5/2 log(h). Therefore the order of the local error for the combined method will be

E[min(K1h
2,K2a

4h3)] = O(|h5/2(log(h)|) (5.37)

Then we will obtain the global error for the combined method

h
5
4−

1
2

√

| log(h)| = h3/4
√

| log(h)| (5.38)

The second method we need to show numerically by using the previous SDEs

(5.31) that the expectation at the final time of the function min
[

K1h
2,K2a

2h3
]

with different step-size will give the local error with order h5/2 log(h). That is we

compute the previous function over the number of simulation and sum the results

together to get the average estimate. After that, we compare and plotting the log of

E

(

min
[

K1h
2,K2a

2h3
]

)

against the log of the different step sizes.
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Now for the Matlab implementation we want to run the code with different step

sizes over a large number of paths R = 2000 and we could see in the table below the

outcome of

µ = E

(

min
[

K1h
2,K2a

2h3
]

)

(5.39)

for the certain number of steps.

step-size µ

0.005 0.00000246

0.0025 0.00000043

0.00125 0.000000073

0.00062 0.0000000113

0.00031 0.0000000023

0.00015 0.0000000003

Table 1: Estimating the error of µ against the step size

Figure 1 shows the plotting of the log(µ) against the log of the step sizes.

Figure 1: The plotting of the local error for the combined method

The table (1) and the plotting in Figure (1) show the implementation of µ =

E

(

min
[

K1h
2,K2a

2h3
]

)

for the previous SDEs with different number of steps ( 200,

400, 800, 1600, 3200 and 6400). Running the Matlab code for 2000 simulations gives

a value for its estimator µ equal to 0.00000246 with the step-size 0.005 i.e.

µ = E

(

min
[

K1h
2,K2a

2h3
]

)

= 0.00000246

and 0.00000043 with step-size 0.0025 and so on. This means when we decrease the

step size (h) every time, we calculate the error µ and examine the convergence order

of it where the output results are in the table (1). Also the Figure (1) is a plot of the
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log of the estimator µ i.e. log(µ) against the log of step-size (h) i.e. log(h) which has

a slope of 2.5626 which is consistent with the local error for the combined method

will be O(h
5
2 log(h)).

Therefore from these computational results we could see that we have obtained

good agreement between the theoretical bound for the local error in (5.37) with the

implementation results.

In the following section we will show that the order of convergence for the combined

method will be h3/4
√

| log(h)| by doing a number of simulation for a particular SDE

which is singular. Also in this section we will show the combined method for the exact

coupling with trivial coupling and the approximate coupling with trivial coupling.

6. THE IMPLEMENTATION OF EXACT COUPLING WITH THE

TRIVIAL COUPLING (COMBINED METHOD) IN

TWO-DIMENSIONAL CASE WITH NON-INVERTIBLITY OF

BIK(X)

Firstly, we have the 2-dimensional SDE, which is not invertible at some points.

dX1(t) = X2(t)dW1(t) + (X1(t) + t)dW2(t),

dX2(t) = e−X2
2 (t)dW1(t) + (X1(t)−X2(t))dW2(t),

for 0 ≤ t ≤ 1, with X1(0) = 2 and X2(0) = 0

(6.1)

where W1(t) and W2(t) are independent standard Brownian motion.

To apply a numerical method to this SDE we need to simulate solutions (for the

same Brownian path) simultaneously using two different step sizes (h and h/2).

To construct this experiment, we will decrease the step size (h) every time when we

calculate the error and examine the convergence order of the exact coupling method.

We will repeat this with different step size using (for example, R = 2000) indepen-

dent simulations. So the order of convergence for the combined method should be

h3/4
√

| log(h)|.
Now we will run the Matlab code with different step sizes over a large number of

paths R as described in the table below and see the result of the error ǫ, where each

simulation is for the same Brownian path and ǫ = 1
R

∑R
i=1 |x

(i)
h − x

(i)
h/2| will be our

estimator.

In the following table we will show the result of the error by running the Matlab

code for the SDEs with different step sizes over a large number of path R.

The table (2) and the plotting in Figure (2) show the implementation of the

combined method for the exact coupling of the previous SDEs with different number

of steps (100, 200, 400, 800, 1600 and 3200). Running the Matlab code for 2000
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step-size ǫ

0.01 0.0672

0.005 0.0387

0.0025 0.0213

0.00125 0.0124

0.00062 0.0069

0.00031 0.0039

Table 2: combined method for the exact coupling

Figure 2: The plotting of the combined method for the exact coupling

simulations gives a value for its estimator ǫ equal to 0.0672 with the step-size 0.01 i.e.

ǫ =
1

2000

2000
∑

i=1

|x(i)h − x
(i)
h/2| = 0.0672

and 0.0387 with step-size 0.005 and so on. This means when we increase the number

of steps which each time gives a smaller step-size then the estimate error ǫ will give

O(h
3
4

√

log(h)) as it appears in the results in table (2). Also the Figure (2) is a plot of

the log of the estimator ǫ i.e. log(ǫ) against the log of step-size (h) i.e. log(h) which

has a slope of 0.81935 which is consistent with a strong convergence of O(h
3
4 log(h))

for the stochastic differential equation (6.1).

Therefore from these computational results we could see that we have obtained

good agreement between the theoretical bound in (5.38) with the implementation

results.
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