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1Department of Electrical and Electronic Engineering Educators

School of Pedagogical and Technological Education (ASPETE)

14121, N. Heraklio, Athens, GREECE

2Departmens of Mathematics and Theoretical Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice
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1. INTRODUCTION

Consider the first-order linear differential equation with several variable deviating

arguments of either delay (DDE)

x′(t) +
∑m

i=1
pi(t)x (τi(t)) = 0, ∀t ≥ t0, (E)

or advanced type (ADE)

x′(t)−
∑m

i=1
qi(t)x (σi(t)) = 0, t ≥ t0, (E′)
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where pi, qi, 1 ≤ i ≤ m, are nonnegative real functions, and τi, σi, 1 ≤ i ≤ m, are

positive real functions such that

τi(t) < t, t ≥ t0 and lim
t→∞

τi(t) = ∞, 1 ≤ i ≤ m (1.1)

and

σi(t) > t, t ≥ t0, 1 ≤ i ≤ m, (1.2)

respectively.

A solution of (E) of (E′) is an absolutely continuous on [t0,∞) function satisfying

(E) or (E′) for almost all t ≥ t0.

A solution of (E) or (E′) is oscillatory, if it is neither eventually positive nor

eventually negative. If there exists an eventually positive or an eventually negative

solution, the equation is nonoscillatory. An equation is oscillatory if all its solutions

oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions

of equations (E) or (E′) has been the subject of many investigations. The reader

is referred to [1−4, 6−18, 20−24] and the references cited therein. Most of these

papers concern the special case where the arguments are nondecreasing, while a small

number of these papers are dealing with the general case where the arguments are

not necessarily monotone. See, for example, [1−4, 8, 13] and the references cited

therein. Apart from the pure mathematical interest, the importance of considering

non-monotone arguments is justified by the fact that they approximate the natural

phenomena described by equations of the type (E) or (E′). That is because there

are always natural disturbances (e.g. noise in communication systems) that affect all

the parameters of the equation and therefore the fair (from a mathematical point of

view) monotone arguments become non-monotone almost always.

Throughout this paper, we are going to use the following notation:

α := lim inf
t→∞

∫ t

τ(t)

∑m

i=1
pi(s)ds, β := lim inf

t→∞

∫ σ(t)

t

∑m

i=1
qi(s)ds

and

D(ω) :=















0, if ω > 1/e

1− ω −
√
1− 2ω − ω2

2
, if ω ∈ [0, 1/e] .

1.1. DDES

By Remark 2.7.3 in [19], it is clear that if τi(t), 1 ≤ i ≤ m are nondecreasing and

lim sup
t→∞

∫ t

τ(t)

∑m

i=1
pi(s)ds > 1, (1.3)
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where τ(t) = max1≤i≤m{τi(t)}, then all solutions of (E) oscillate. This result is

similar to Theorem 2.1.3 [19] which is a special case of Ladas, Lakshmikantham and

Papadakis’s result [16].

In 1978 Ladde [18] and in 1982 Ladas and Stavroulakis [17] proved that if

lim inf
t→∞

∫ t

τ(t)

∑m

i=1
pi(s)ds >

1

e
, (1.4)

then all solutions of (E) oscillate.

In 1984, Hunt and Yorke [9] proved that if t− τi(t) ≤ τ0, 1 ≤ i ≤ m, and

lim inf
t→∞

∑m

i=1
pi(t) (t− τi(t)) >

1

e
, (1.5)

then all solutions of (E) oscillate.

Assume that τi(t), 1 ≤ i ≤ m are not necessarily monotone. Set

hi(t) = sup
t0≤s≤t

τi(s), t ≥ t0 and h(t) = max
1≤i≤m

hi(t), t ≥ t0 (1.6)

and

a1(t, s) := exp

{
∫ t

s

∑m

i=1
pi(ζ)dζ

}

ar+1(t, s) := exp

{
∫ t

s

∑m

i=1
pi(ζ)ar(ζ, τi(ζ))dζ

}

.

(1.7)

Clearly, hi(t), h(t) are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) < t for all t ≥ t0.

In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some

r ∈ N

lim sup
t→∞

∫ t

h(t)

∑m

i=1
pi(ζ)ar(h(t), τi(ζ))dζ > 1, (1.8)

or

lim sup
t→∞

∫ t

h(t)

∑m

i=1
pi(ζ)ar(h(t), τi(ζ))dζ > 1−D(α), (1.9)

or

lim inf
t→∞

∫ t

h(t)

∑m

i=1
pi(ζ)ar(h(t), τi(ζ))dζ >

1

e
, (1.10)

then all solutions of (E) oscillate.

In 2017, Chatzarakis and Péics [3] proved that if

lim sup
t→∞

∫ t

h(t)

∑m

i=1
pi(ζ)ar(h(ζ), τi(ζ))dζ >

1 + lnλ0

λ0
−D(α), (1.11)

where λ0 is the smaller root of the transcendental equation eαλ = λ, then all solutions

of (E) oscillate.
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In the same year, Chatzarakis [4] proved that if

P j(t) = P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

P j−1(ξ)dξ

)

du

)

ds

]

,

with P 0(t) = P (t) =
∑m

i=1 pi(t), then for some j ∈ N either one of the conditions

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P j(u)du

)

ds > 1, (1.12)

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P j(u)du

)

ds > 1−D(α), (1.13)

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P j(u)du

)

ds >
1 + lnλ0

λ0
−D(α), (1.14)

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P j(u)du

)

ds >
1

D(α)
(1.15)

and

lim inf
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P j(u)du

)

ds >
1

e
, (1.16)

implies that all solutions of (E) are oscillatory.

1.2. ADES

For Eq. (E′), the dual condition of (1.3) is

lim sup
t→∞

∫ σ(t)

t

∑m

i=1
qi(s)ds > 1, (1.17)

where σi(t), 1 ≤ i ≤ m are nondecreasing and σ(t) = min1≤i≤m{σi(t)}, see [19],

paragraph 2.7.

In 1978 Ladde [18] and in 1982 Ladas and Stavroulakis [17] proved that if

lim inf
t→∞

∫ σ(t)

t

∑m

i=1
qi(s)ds >

1

e
, (1.18)

then all solutions of (E′) oscillate.

In 1990, Zhou [24] proved that if σi(t)− t ≤ σ0, 1 ≤ i ≤ m, and

lim inf
t→∞

∑m

i=1
qi(t) (σi(t)− t) >

1

e
, (1.19)

then all solutions of (E′) oscillate. (See also [5, Corollary 2.6.12])
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Assume that σi(t), 1 ≤ i ≤ m are not necessarily monotone. Set

ρi(t) = inf
s≥t

σi(s), t ≥ t0 and ρ(t) = min
1≤i≤m

ρi(t), t ≥ t0 (1.20)

and

b1(t, s) := exp

{
∫ s

t

∑m

i=1
qi(ζ)dζ

}

br+1(t, s) := exp

{
∫ s

t

∑m

i=1
qi(ζ)br(t, σi(ζ))dζ

}

.

(1.21)

Clearly, ρi(t), ρ(t) are nondecreasing and σi(t) ≥ ρi(t) ≥ ρ(t) > t for all t ≥ t0.

In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some

r ∈ N

lim sup
t→∞

∫ ρ(t)

t

∑m

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ > 1, (1.22)

or

lim sup
t→∞

∫ ρ(t)

t

∑m

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ > 1−D(β), (1.23)

or

lim inf
t→∞

∫ ρ(t)

t

∑m

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ >

1

e
, (1.24)

then all solutions of (E′) oscillate.

In 2017, Chatzarakis [4] proved that if

Qj(t) = Q(t)

[

1 +

∫ σ(t)

t

Q(s) exp

(

∫ σ(s)

t

Q(u) exp

(

∫ σ(u)

u

Qj−1(ξ)dξ

)

du

)

ds

]

,

with Q0(t) = Q(t) =
∑m

i=1 qi(t), then, for some j ∈ N either one of the conditions

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Qj(u)du

)

ds > 1, (1.25)

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Qj(u)du

)

ds > 1−D(β), (1.26)

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

t

Qj(u)du

)

ds >
1

D(β)
, (1.27)

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Qj(u)du

)

ds >
1 + lnλ0

λ0
−D(β) (1.28)

and

lim inf
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Qj(u)du

)

ds >
1

e
, (1.29)
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implies that all solutions of (E′) are oscillatory.

The purpose of this paper is to derive sufficient conditions for all solutions of (E)

and (E′) to be oscillatory when the arguments are not necessarily monotone. Our

results essentially improve several known criteria existing in the literature.

2. MAIN RESULTS

2.1. DDES

Based on an iterative technique, we further study (E) and derive new sufficient os-

cillation conditions, involving lim sup and lim inf, which essentially improve several

results in the literature.

We now cite three lemmas which will be used in the proof of our next results.

The proofs of them are similar to the proofs of Lemmas 2.1.1, 2.1.3 and 2.1.2 in [5],

respectively.

Lemma 1. Assume that h(t) is defined by (1.6). Then

lim inf
t→∞

∫ t

τ(t)

∑m

i=1
pi(s)ds = lim inf

t→∞

∫ t

h(t)

∑m

i=1
pi(s)ds. (2.1)

Lemma 2. Assume that x is an eventually positive solution of (E) and h(t) is

defined by (1.6). Then

lim inf
t→∞

x(t)

x(h(t))
≥ D(α). (2.2)

Lemma 3. Assume that x is an eventually positive solution of (E) and h(t) is

defined by (1.6). Then

lim inf
t→∞

x(h(t))

x(t)
≥ λ0, (2.3)

where λ0 is the smaller root of the transcendental equation λ = eαλ.

Based on the above lemmas, we establish the following theorems.

Theorem 4. Assume that h(t) is defined by (1.6) and for some ℓ ∈ N

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds > 1, (2.4)

where

Gℓ(t) = P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ−1(ξ)dξ

)

du

)

ds

]

, (2.5)
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with G0(t) = P (t)
[

1 +
∫ t

τ(t) P (s) exp
(

λ0

∫ t

τ(s) P (u)du
)

ds
]

, P (t) =
∑m

i=1 pi(t) and

λ0 is the smaller root of the transcendental equation λ = eαλ. Then all solutions of

(E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-

tion x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion

only to the case where the solution x(t) is eventually positive. Then there exists a

t1 > t0 such that x(t) and x (τi(t)) > 0 for all t ≥ t1. Thus, from (E) we have

x′(t) = −
∑m

i=1
pi(t)x (τi(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.

Now we divide (E) by x (t) > 0 and integrate on [s, t], so

∫ t

s

x′(u)

x(u)
du = −

∫ t

s

∑m

i=1
pi(u)

x (τi(u))

x(u)
du,

or
∫ t

s

x′(u)

x(u)
du ≤ −

∫ t

s

(

∑m

i=1
pi(u)

) x (τ(u))

x(u)
du,

or
∫ t

s

x′(u)

x(u)
du ≤ −

∫ t

s

P (u)
x (τ(u))

x(u)
du.

Therefore

ln
x(t)

x(s)
≤ −

∫ t

s

P (u)
x (τ(u))

x(u)
du,

i.e.,

x(s) ≥ x(t) exp

(
∫ t

s

P (u)
x (τ(u))

x(u)
du

)

. (2.6)

Since τ(s) < s ≤ t, (2.6) gives

x(τ(s)) ≥ x(t) exp

(

∫ t

τ(s)

P (u)
x (τ(u))

x(u)
du

)

. (2.7)

Integrating (E) from τ(t) to t, we have

x(t)− x(τ(t)) +

∫ t

τ(t)

∑m

i=1
pi(s)x (τi(s)) ds = 0

or

x(t) − x(τ(t)) +

∫ t

τ(t)

P (s)x (τ(s)) ds ≤ 0. (2.8)

Combining (2.7) and (2.8), we have

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u)
x (τ(u))

x(u)
du

)

ds ≤ 0.
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Multiplying the last inequality by P (t), we take

P (t)x(t) − P (t)x(τ(t)) + P (t)x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u)
x (τ(u))

x(u)
du

)

ds ≤ 0.

(2.9)

Furthermore,

x′(t) = −
∑m

i=1
pi(t)x (τi(t)) ≤ −x (τ(t))

∑m

i=1
pi(t) = −P (t)x (τ(t)) . (2.10)

Combining the inequalities (2.9) and (2.10), we have

x′(t) + P (t)x(t) + P (t)x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u)
x (τ(u))

x(u)
du

)

ds ≤ 0.

Since τ(u) ≤ h(u), clearly

x′(t) + P (t)x(t) + P (t)x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u)
x (h(u))

x(u)
du

)

ds ≤ 0.

Taking into account the fact that (2.3) of Lemma 3 is satisfied, the last inequality

becomes

x′(t) + P (t)x(t) + P (t)x(t)

∫ t

τ(t)

P (s) exp

(

(λ0 − ǫ)

∫ t

τ(s)

P (u)du

)

ds ≤ 0.

Thus

x′(t) + P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

(λ0 − ǫ)

∫ t

τ(s)

P (u)du

)

ds

]

x(t) ≤ 0,

or

x′(t) +G0(t, ǫ)x(t) ≤ 0, (2.11)

with

G0(t, ǫ) = P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

(λ0 − ǫ)

∫ t

τ(s)

P (u)du

)

ds

]

.

Applying the Grönwall inequality in (2.11), we obtain

x(s) ≥ x(t) exp

(
∫ t

s

G0(ξ, ǫ)dξ

)

, t ≥ s.

Thus

x(τ(u)) ≥ x(u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

. (2.12)

Now we divide (E) by x (t) > 0 and integrate on [s, t], so

−
∫ t

s

x′(u)

x(u)
du =

∫ t

s

∑m

i=1
pi(u)

x (τi(u))

x(u)
du ≥

∫ t

s

P (u)
x (τ(u))

x(u)
du,
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or

ln
x(s)

x(t)
≥
∫ t

s

P (u)
x (τ(u))

x(u)
du ≥

∫ t

s

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du.

or

x(s) ≥ x(t) exp

(

∫ t

s

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

. (2.13)

Setting s = τ (s) in (2.13) we take

x(τ (s)) ≥ x(t) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

. (2.14)

Combining (2.8) and (2.14) we obtain

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

Multiplying the last inequality by P (t), we find

P (t)x(t) − P (t)x(τ(t))

+ P (t)x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

ds ≤ 0,

which, in view of (2.10), becomes

x′(t)+P (t)x(t)+P (t)x(t)

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

Hence, for sufficiently large t

x′(t) + P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

ds

]

x(t) ≤ 0,

or

x′(t) +G1(t, ǫ)x(t) ≤ 0, (2.15)

where

G1(t, ǫ) = P (t)

[

1 +

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

G0(ξ, ǫ)dξ

)

du

)

ds

]

.

It becomes apparent, now, that by repeating the above steps, we can build inequalities

on x′(t) with progressively higher indices Gℓ(t), ℓ ∈ N. In general, for sufficiently large

t, the positive solution x(t) satisfies the inequality

x′(t) +Gℓ(t, ǫ)x(t) ≤ 0, (ℓ ∈ N) ,
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where

Gℓ(t, ǫ) = P (t)

[

1 +

[

1 +

∫ t

τ(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ−1(ξ, ǫ)dξ

)

du

)

ds

]]

and

x(τ (s)) ≥ x(h(t)) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

. (2.16)

Integrating (E) from h(t) to t, and using (2.16), we have

0 = x(t)−x(h(t))+

∫ t

h(t)

∑m

i=1
pi(s)x(τi (s))ds ≥ x(t)−x(h(t))+

∫ t

h(t)

P (s)x(τ (s))ds

or

x(t)−x(h(t))+x(h(t))

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

(2.17)

The inequality is valid if we omit x(t) > 0 in the left-hand side. Therefore

x(h(t))

[

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds− 1

]

< 0,

which means that

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 1.

Since ǫ may be taken arbitrarily small, this inequality contradicts (2.4).

The proof of the theorem is complete.

Theorem 5. Assume that h(t) is defined by (1.6) and for some ℓ ∈ N

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds > 1−D(α), (2.18)

where Gℓ is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Let x be an eventually positive solution of (E). Then, as in the proof of

Theorem 1, (2.17) is satisfied, i.e.,

x(t)−x(h(t))+x(h(t))

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

That is,

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 1− x(t)

x(h(t))
,
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which gives

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 1−lim inf
t→∞

x(t)

x(h(t))
.

(2.19)

By combining Lemmas 1 and 2, it becomes obvious that inequality (2.2) is fulfilled.

So, (2.19) leads to

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 1−D(α).

Since ǫ may be taken arbitrarily small, this inequality contradicts (2.18).

The proof of the theorem is complete.

Theorem 6. Assume that h(t) is defined by (1.6) and for some ℓ ∈ N

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds >
1

D(α)
− 1, (2.20)

where Gℓ is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-

tion x of (E) and that x is eventually positive. Then, as in the proof of Theorem 1,

for sufficiently large t we have

x(τ (s)) ≥ x(t) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

. (2.21)

Integrating (E) from h(t) to t and in view of (2.21), we have

0 =x(t)− x(h(t)) +

∫ t

h(t)

∑m

i=1
pi(s)x (τi(s)) ds ≥ x(t)− x(h(t))

+

∫ t

h(t)

P (s)x (τ(s)) ds

≥x(t)− x(h(t))

+ x(h(t))

∫ t

h(t)

P (s)
x(t)

x(h(t))
exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds.

That is, for all sufficiently large t it holds

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ x(h(t))

x(t)
− 1

and therefore

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ lim sup
t→∞

x(h(t))

x(t)
−1.

(2.22)
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By combining Lemmas 1 and 2, it becomes obvious that inequality (2.2) is fulfilled.

So, (2.22) leads to

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 1

D(α)
− 1.

Since ǫ may be taken arbitrarily small, this inequality contradicts (2.20).

The proof of the theorem is complete.

Theorem 7. Assume that h(t) is defined by (1.6) and for some ℓ ∈ N

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds >
1 + lnλ0

λ0
−D(α),

(2.23)

where Gℓ is defined by (2.5) and λ0 is the smaller root of the transcendental equation

λ = eαλ. Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory so-

lution x of (E) and that x is eventually positive. Then, as in the previous theorems,

(2.21) holds.

Observe that (2.3) implies that for each ǫ > 0 there exists a tǫ such that

λ0 − ǫ <
x(h(t))

x(t)
for all t ≥ tǫ . (2.24)

Noting that by nondecreasing nature of the function x(h(t))
x(s) in s, it holds

1 =
x(h(t))

x(h(t))
≤ x(h(t))

x(s)
≤ x(h(t))

x(t)
, tε ≤ h(t) ≤ s ≤ t,

in particular for ǫ ∈ (0, λ0 − 1), by continuity we see that there exists a t∗ ∈ (h(t), t]

such that

1 < λ0 − ǫ =
x(h(t))

x(t∗)
. (2.25)

By (2.21), it is obvious that

x(τ (s)) ≥ x(h(s)) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

. (2.26)

Integrating (E) from t∗ to t and using (2.26) we have

0 = x(t) − x(t∗) +

∫ t

t∗

∑m

i=1
pi(s)x(τi(s))ds

≥ x(t) − x(t∗) +

∫ t

t∗

(

∑m

i=1
pi(s)

)

x(τ(s))ds
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= x(t) − x(t∗) +

∫ t

t∗
P (s)x(τ(s))ds

≥ x(t) − x(t∗) + x(h(t))

∫ t

t∗
P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds

or

∫ t

t∗
P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ x(t∗)

x(h(t))
− x(t)

x(h(t))
.

In view of (2.25) and Lemma 2, for the ǫ considered, there exists t′ǫ ≥ tε such that

∫ t

t∗
P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds <
1

λ0 − ǫ
−D(α)+ǫ, (2.27)

for t ≥ t′ǫ.

Dividing (E) by x(t) and integrating from h(t) to t∗ we find

−
∫ t∗

h(t)

x′(s)

x(s)
ds

=

∫ t∗

h(t)

∑m

i=1
pi(s)

x(τi (s))

x(s)
ds ≥

∫ t∗

h(t)

(

∑m

i=1
pi(s)

) x(τ (s))

x(s)
ds

≥
∫ t∗

h(t)

P (s)
x(h(s))

x(s)
exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds.

(2.28)

By (2.25), for s ≥ h(t) ≥ t′ǫ, we have x(h(s))
x(s) > λ0 − ǫ, so from (2.28) we get

(λ0 − ǫ)

∫ t∗

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds < −
∫ t∗

h(t)

x′(s)

x(s)
ds .

Hence, for all sufficiently large t we have

∫ t∗

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds

< − 1

λ0 − ǫ

∫ t∗

h(t)

x′(s)

x(s)
ds =

1

λ0 − ǫ
ln

x(h(t))

x(t∗)
=

ln (λ0 − ǫ)

λ0 − ǫ
,

i.e.,

∫ t∗

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds <
ln (λ0 − ǫ)

λ0 − ǫ
. (2.29)

Adding (2.27) and (2.29), and then taking the limit as t → ∞, we have



230 G.E. CHATZARAKIS AND I. JADLOVSKÁ

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds

≤ 1 + ln(λ0 − ǫ)

λ0 − ǫ
− 1− α−

√
1− 2α− α2

2
+ ǫ.

Since ǫ may be taken arbitrarily small, this inequality contradicts (2.23).

The proof of the theorem is complete.

Theorem 8. Assume that h(t) is defined by (1.6) and for some ℓ ∈ N

lim inf
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds >
1

e
, (2.30)

where Gℓ is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-

tion x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion

only to the case where the solution x(t) is eventually positive. Then there exists

t1 > t0 such that x(t), x (τi(t)) > 0, 1 ≤ i ≤ m for all t ≥ t1. Thus, from (E) we have

x′(t) = −
∑m

i=1
pi(t)x (τi(t)) ≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.

Furthermore, as in previous theorem, (2.26) is satisfied.

Dividing (E) by x(t) and integrating from h(t) to t, for some t2 ≥ t1, we have

ln

(

x(h(t))

x(t)

)

=

∫ t

h(t)

∑m

i=1
pi(s)

x (τi(s))

x (s)
ds

≥
∫ t

h(t)

(

∑m

i=1
pi(s)

) x (τ(s))

x (s)
ds =

∫ t

h(t)

P (s)
x (τ(s))

x (s)
ds.

(2.31)

Combining the inequalities (2.26) and (2.31) we obtain

ln

(

x(h(t))

x(t)

)

≥
∫ t

h(t)

P (s)
x(h(s))

x (s)
exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds.

From (2.30), it follows that there exists a constant c > 0 such that for a sufficiently

large t holds

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds ≥ c >
1

e
.

Choose c′ such that c > c′ > 1/e. For every ǫ > 0 such that c− ǫ > c′ we have

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≥ c− ǫ > c′ >
1

e
. (2.32)
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Hence

ln

(

x(h(t))

x(t)

)

≥ c′, t ≥ t3.

Thus
x(h(t))

x(t)
≥ ec

′ ≥ ec′ > 1,

which implies for some t ≥ t4 ≥ t3

x(h(t)) ≥ (ec′)x(t).

Repeating the above procedure, it follows by induction that for any positive integer

k,
x(h(t))

x(t)
≥ (ec′)k, for sufficiently large t.

Since ec′ > 1, there is k ∈ N satisfying k > 2(ln(2)− ln(c′))/(1 + ln(c′)) such that for

t sufficiently large

x(h(t))

x(t)
≥ (ec′)k >

(

2

c′

)2

. (2.33)

Taking the integral on [h(t), t], which is not less than c′, we split the interval into two

parts where integrals are not less than c′/2, let tm ∈ (h(t), t) be the splitting point:

∫ tm
h(t)

P (s) exp
(

∫ h(s)

τ(s)
P (u) exp

(

∫ u

τ(u)
Gℓ(ξ, ǫ)dξ

)

du
)

ds ≥ c′

2 ,

∫ t

tm
P (s) exp

(

∫ h(s)

τ(s)
P (u) exp

(

∫ u

τ(u)
Gℓ(ξ, ǫ)dξ

)

du
)

ds ≥ c′

2 .

(2.34)

Integrating (E) from tm to t, gives

x(t)− x(tm) +

∫ t

tm

∑m

i=1
pi(s)x(τi(s)) = 0,

or

x(t) − x(tm) +

∫ t

tm

(

∑m

i=1
pi(s)

)

x(τ(s)) ≤ 0.

Thus

x(t)− x(tm) +

∫ t

tm

P (s)x(τ(s)) ≤ 0,

or

x(t)− x(tm) + x(h(t))

∫ t

tm

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

The strict inequality is valid if we omit x(t) > 0 in the left-hand side:

−x(tm) + x(h(t))

∫ t

tm

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds < 0.
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Together with the second inequality in (2.34), implies

x(tm) >
c′

2
x(h(t)). (2.35)

Similarly, integration of (E) from h(t) to tm with a later application of (2.26)

leads to

x(tm)−x(h(t))+x(h(tm))

∫ tm

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds ≤ 0.

The strict inequality is valid if we omit x(tm) > 0 in the left-hand side:

−x(h(t)) + x(h(tm))

∫ tm

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ, ǫ)dξ

)

du

)

ds < 0.

Together with the first inequality in (2.34) implies

x(h(t)) >
c′

2
x(h(tm)). (2.36)

Combining the inequalities (2.35) and (2.36) we obtain

x(h(tm)) <
2

c′
x(h(t)) <

(

2

c′

)2

x(tm),

which contradicts (2.33).

The proof of the theorem is complete.

2.2. ADVANCED DIFFERENTIAL EQUATIONS

Similar oscillation conditions for the (dual) advanced differential equation (E′) can

be derived easily. The proofs are omitted, since they are quite similar to the delay

equation.

Theorem 9. Assume that ρ(t) is defined by (1.20) and for some ℓ ∈ N

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds > 1, (2.37)

where

Rℓ(t) = Q(t)

[

1 +

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

t

Q(u) exp

(

∫ σ(u)

u

Rℓ−1(ξ)dξ

)

du

)

ds

]

,

(2.38)

with R0(t) = Q(t)
[

1 +
∫ ρ(t)

t
Q(s) exp

(

λ0

∫ σ(s)

t
Q(u)du

)

ds
]

, Q(t) =
∑m

i=1 qi(t) and

λ0 is the smaller root of the transcendental equation λ = eβλ. Then all solutions of

(E′) are oscillatory.
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Theorem 10. Assume that ρ(t) is defined by (1.20) and for some ℓ ∈ N

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds > 1−D(β), (2.39)

where Rℓ is defined by (2.38) Then all solutions of (E′) are oscillatory.

Theorem 11. Assume that ρ(t) is defined by (1.20) and for some ℓ ∈ N

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

t

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds >
1

D(β)
− 1,

(2.40)

where Rℓ is defined by (2.38) Then all solutions of (E′) are oscillatory.

Theorem 12. Assume that ρ(t) is defined by (1.20) and for some ℓ ∈ N

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds >
1 + lnλ0

λ0
−D(β),

(2.41)

where Rℓ is defined by (2.38) and λ0 is the smaller root of the transcendental equation

λ = eβλ. Then all solutions of (E′) are oscillatory.

Theorem 13. Assume that ρ(t) is defined by (1.20) and for some ℓ ∈ N

lim inf
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds >
1

e
, (2.42)

where Rℓ is defined by (2.38) Then all solutions of (E′) are oscillatory.

2.3. DIFFERENTIAL INEQUALITIES

A slight modification in the proofs of Theorems 1 [6]−5 [10] leads to the following

results about differential inequalities.

Theorem 14. Assume that all the conditions of Theorem 1 [6] or 2 [7] or 3 [8] or

4 [9] or 5 [10] hold. Then

(i) the delay [advanced] differential inequality

x′(t) +
∑m

i=1
pi(t)x (τi(t)) ≤ 0

[

x′(t)−
∑m

i=1
qi(t)x (σi(t)) ≥ 0

]

, ∀t ≥ t0,

has no eventually positive solutions;

(ii) the delay [advanced] differential inequality

x′(t) +
∑m

i=1
pi(t)x (τi(t)) ≥ 0

[

x′(t)−
∑m

i=1
qi(t)x (σi(t)) ≤ 0

]

, ∀t ≥ t0,

has no eventually negative solutions.
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3. EXAMPLES

In this section, examples illustrate cases when the results of the present paper imply

oscillation while previously known results fail. The calculations were made by the use

of MATLAB software.

Example 15. Consider the DDE

x′(t) +
177

2000
x(τ1(t)) +

59

2000
x(τ2(t)) = 0, t ≥ 0, (3.1)

with (see Fig. 1, (a))

τ1(t) =







































−3t+ 24k − 2, if t ∈ [6k, 6k + 1]

5t− 24k − 10, if t ∈ [6k + 1, 6k + 2]

6k, if t ∈ [6k + 2, 6k + 3]

−2t+ 18k + 6, if t ∈ [6k + 3, 6k + 4]

6t− 30k − 26, if t ∈ [6k + 4, 6k + 5]

6k + 4, if t ∈ [6k + 5, 6k + 6]

and τ2(t) = τ1(t)− 0.5

where k ∈ N0 and N0 is the set of non-negative integers.

Figure 1: The graphs of τ1(t) and h1(t)
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By (1.6), we see (Fig. 1, (b)) that

h1(t) =































6k − 2, if t ∈ [6k, 6k + 8/5]

5t− 24k − 10, if t ∈ [6k + 8/5, 6k+ 2]

6k, if t ∈ [6k + 2, 6k + 13/3]

6t− 30k − 26, if t ∈ [6k + 13/3, 6k+ 5]

6k + 4, if t ∈ [6k + 5, 6k + 6]

and h2(t) = h1(t)− 0.5

and consequently

h(t) = max
1≤i≤2

{hi(t)} = h1(t) and τ(t) = max
1≤i≤2

{τi(t)} = τ1(t).

Observe that the function Fℓ : [0,∞) → R+ defined as

Fℓ(t) =

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P (u) exp

(

∫ u

τ(u)

Gℓ(ξ)dξ

)

du

)

ds

attains its maximum at t = 6k + 13/3, k ∈ N0, for every ℓ ≥ 1. Specifically, by

using algorithms on MATLAB software and taking into account the fact that P (t) =
∑2

i=1 pi(t) = 0.118, we obtain

F1(t = 6k + 13/3) =

∫ 6k+13/3

6k

P (s) exp

(

∫ 6k

τ(s)

P (u) exp

(

∫ u

τ(u)

G1(ξ)dξ

)

du

)

ds

≃ 1.0461.

Thus

lim sup
t→∞

F1(t) ≃ 1.0461 > 1,

that is, condition (2.4) of Theorem 1 is satisfied for ℓ = 1, and therefore all solutions

of (3.1) oscillate.

Observe, however, that

lim sup
t→∞

∫ t

h(t)

∑2

i=1
pi(s)ds = lim sup

k→∞

∫ 6k+13/3

6k

∑2

i=1
pi(s)ds = 0.5113 < 1,

α = lim inf
t→∞

∫ t

τ(t)

∑2

i=1
pi(s)ds = lim inf

k→∞

∫ 6k+5

6k+4

∑2

i=1
pi(s)ds = 0.118 <

1

e
,

lim inf
t→∞

∑2

i=1
pi(t) (t− τi(t))

= lim inf
t→∞

[

177

2000
(t− τ1(t)) +

59

2000
(t− (τ1(t)− 0.5))

]

= lim inf
t→∞

[0.118 (t− τ1(t)) + 0.01475] = lim inf
t→∞

[0.118 (t− τ1(t))] + 0.01475
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= 0.118 · lim inf
t→∞

(t− τ1(t)) + 0.01475 = 0.118 · 1 + 0.01475 = 0.13275 <
1

e
.

Also, observe that the function Φr : [0,∞) → R+ defined as

Φr(t) =

∫ t

h(t)

∑m

i=1
pi(ζ)ar(h(t), τi(ζ))dζ

attains its maximum at t = 6k + 13/3 and its minimum at t = 6k + 5, k ∈ N0, for

every r ∈ N. Specifically,

Φ1(t = 6k + 13/3) =

∫ 6k+13/3

6k

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

=

∫ 6k+1

6k

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

+

∫ 6k+2

6k+1

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

+

∫ 6k+3

6k+2

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

+

∫ 6k+4

6k+3

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

+

∫ 6k+13/3

6k+4

[p1(ζ)a1(6k, τ1(ζ)) + p2(ζ)a1(6k, τ2(ζ))] dζ

≃ 0.6452

and

Φ1(t = 6k + 5) =

∫ 6k+5

6k+4

[p1(ζ)a1(6k + 4, τ1(ζ)) + p2(ζ)a1(6k + 4, τ2(ζ))] dζ

≃ 0.1743.

Thus
lim supt→∞ Φ1(t) ≃ 0.6452 < 1

lim inft→∞ G1(t) ≃ 0.1743 < 1/e

and

0.6452 < 1−D(α) ≃ 0.9920.

Also, it is obvious that

lim sup
t→∞

∫ t

h(t)

∑2

i=1
pi(ζ)ar(h(ζ), τi(ζ))dζ ≤ lim sup

t→∞

Φ1(t) ≃ 0.6452

<
1 + lnλ0

λ0
−D(α) ≃ 0.9837,

where λ0 = 1.14461 is the smaller root of e0.118λ = λ.
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Finally, by using algorithms on MATLAB software, we obtain

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(t)

τ(s)

P j(u)du

)

ds ≃ 0.7961 < 1,

0.7961 < 1−D(α) ≃ 0.9920,

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P j(u)du

)

ds ≃ 0.6384 <
1 + lnλ0

λ0
−D(α) ≃ 0.9837,

where λ0 = 1.29586 is the smaller root of eλβ = λ,

lim sup
t→∞

∫ t

h(t)

P (s) exp

(

∫ t

τ(s)

P j(u)du

)

ds ≃ 2.5211 <
1

D(α)
≃ 125.5436

and

lim inf
t→∞

∫ t

h(t)

P (s) exp

(

∫ h(s)

τ(s)

P j(u)du

)

ds ≃ 0.1259 <
1

e
.

That is, none of the conditions (1.3), (1.4), (1.6), (1.8) (for r = 1), (1.9) (for r = 1),

(1.10) (for r = 1), (1.11) (for r = 1), (1.12) (for j = 1), (1.13) (for j = 1), (1.14) (for

j = 1), (1.15) (for j = 1) and (1.16) (for j = 1) is satisfied.

Notation. It is worth noting that the improvement of condition (2.4) to the

corresponding condition (1.3) is significant, approximately 104.6%, if we compare

the values on the left-side of these conditions. Also, the improvement compared to

conditions (1.8) and (1.12) is very satisfactory, around 62.14% and 31.4%, respectively.

In addition, observe that conditions (1.8)−(1.9) and (1.10)−(1.16) do not lead to

oscillation for first iteration. On the contrary, condition (2.4) is satisfied from the first

iteration. This means that our condition is better and much faster than (1.8)−(1.9)

and (1.10)−(1.16).

Example 16. Consider the ADE

x′(t)− 3

20
x(σ1(t))−

1

20
x(σ2(t)) = 0, t ≥ 0, (3.2)

with (see Fig. 2, (a))

σ1(t) =















































4t− 21k + 1, if t ∈ [7k, 7k + 1]

−t+ 14k + 6, if t ∈ [7k + 1, 7k + 2]

7k + 4, if t ∈ [7k + 2, 7k + 3]

3t− 14k − 5, if t ∈ [7k + 3, 7k + 4]

−t+ 14k + 11, if t ∈ [7k + 4, 7k + 5]

2t− 7k − 4, if t ∈ [7k + 5, 7k + 6]

7k + 8, if t ∈ [7k + 6, 7k + 7]

and σ2(t) = σ1(t) + 0.5
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Figure 2: The graphs of σ1(t) and ρ1(t)

where k ∈ N0 and N0 is the set of non-negative integers.

By (1.20), we see (Fig. 2, (b)) that

ρ1(t) =







































4t− 21k + 1, if t ∈ [7k, 7k + 3/4]

7k + 4, if t ∈ [7k + 3/4, 7k + 3]

3t− 14k − 5, if t ∈ [7k + 3, 7k + 11/3]

7k + 6, if t ∈ [7k + 11/3, 7k+ 5]

2t− 7k − 4, if t ∈ [7k + 5, 7k + 6]

7k + 8, if t ∈ [7k + 6, 7k + 7]

and ρ2(t) = ρ1(t) + 0.5

and consequently

ρ(t) = min
1≤i≤2

{ρi(t)} = ρ1(t) and σ(t) = min
1≤i≤2

{σi(t)} = σ1(t).

Observe, that the function Fℓ : R0 → R+ defined as

Fℓ(t) =

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Q(u) exp

(

∫ σ(u)

u

Rℓ(ξ)dξ

)

du

)

ds,

attains its minimum at t = 7k + 3/4, k ∈ N0, for every ℓ ∈ N. Specifically, by using

an algorithm on MATLAB software and taking into account the fact that Q(t) =
∑2

i=1 qi(t) = 0.2, we obtain

F1(t = 7k + 3/4) =

∫ 7k+4

7k+3/4

Q(s) exp

(

∫ σ(s)

7k+4

Q(u) exp

(

∫ σ(u)

u

R1(ξ)dξ

)

du

)

ds
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≃ 1.01496

and therefore

lim sup
t→∞

F1(t) ≃ 1.01496 > 1.

That is, condition (2.37) of Theorem 6 is satisfied for ℓ = 1, and therefore all solutions

of (3.2) oscillate.

Observe, however, that

lim sup
t→∞

∫ ρ(t)

t

∑2

i=1
qi(s)ds = lim sup

k→∞

∫ 7k+4

7k+3/4

0.2ds = 0.65 < 1,

lim inf
t→∞

∫ σ(t)

t

∑m

i=1
qi(s)ds = lim inf

k→∞

∫ 7k+4

7k+3

0.2ds = 0.2 <
1

e
,

lim inf
t→∞

∑2

i=1
qi(t) (σi(t)− t) = lim inf

t→∞

[

3

20
(σ1(t)− t) +

1

20
(σ1(t) + 0.5− t)

]

= lim inf
t→∞

[0.2 (σ1(t)− t) + 0.025]

= lim inf
t→∞

[0.2 (σ1(t)− t)] + 0.025

= 0.2 · 1 + 0.025 = 0.225 <
1

e
.

Also, observe that the function Wr : [0,∞) → R+ defined as

Wr(t) =

∫ ρ(t)

t

∑2

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ

attains its maximum at t = 7k+3/4 and its minimum at t = 7k+3, k ∈ N0, for every

r ∈ N. Specifically,

W1(t = 7k + 3/4) =

∫ 7k+4

7k+3/4

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ

=

∫ 7k+1

7k+3/4

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ

+

∫ 7k+2

7k+1

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ

+

∫ 7k+3

7k+2

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ

+

∫ 7k+4

7k+3

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ

≃ 0.7705

W1(t = 7k + 3) =

∫ 7k+4

7k+3

[q1(ζ)b1(7k + 4, σ1(ζ)) + q2(ζ)b1(7k + 4, σ2(ζ))] dζ ≃ 0.28125
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Thus
lim supt→∞ W1(t) ≃ 0.7705 < 1

lim inft→∞ W1(t) ≃ 0.28125 < 1/e

and

0.7705 < 1−D(β) ≃ 0.9742.

Finally, by using an algorithm on MATLAB software, we obtain

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(t)

Q1(u)du

)

ds ≃ 0.8687 < 1,

0.8687 < 1−D(β) ≃ 0.9742,

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

t

Q1(u)du

)

ds ≃ 3.7953 <
1

D(β)
≃ 38.71,

where λ0 = 1.29586 is the smaller root of eλβ = λ.

lim sup
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Q1(u)du

)

ds ≃ 0.7234 <
1 + lnλ0

λ0
−D(β) ≃ 0.9458

and

lim inf
t→∞

∫ ρ(t)

t

Q(s) exp

(

∫ σ(s)

ρ(s)

Q1(u)du

)

ds ≃ 0.2144 <
1

e
.

That is, none of the conditions (1.17), (1.18), (1.19), (1.22) (for r = 1), (1.23) (for

r = 1), (1.24) (for r = 1), (1.25) (for j = 1), (1.26) (for j = 1), (1.27) (for j = 1),

(1.28) (for j = 1) and (1.29) (for j = 1) is satisfied.

Notation. It is worth noting that the improvement of condition (2.37) to the

corresponding condition (1.17) is significant, approximately 56.14%, if we compare

the values on the left-side of these conditions. Also, the improvement compared to

conditions (1.22) and (1.25) is very satisfactory, around 31.73% and 16.84%, respec-

tively. In addition, observe that conditions (1.22)−(1.24) and (1.25)−(1.29) do not

lead to oscillation for first iteration. On the contrary, condition (2.37) is satisfied

from the first iteration. This means that our condition is better and much faster than

(1.22)−(1.24) and (1.25)−(1.29).

Remark 17. Similarly, one can construct examples to illustrate the other main

results.
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