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1. INTRODUCTION

Fractional differential equations have many applications in modeling of physical and
chemical processes. In its turn, mathematical aspects of fractional differential equa-
tions and methods of their solutions were discussed by many authors, see the text
books [11, 19)].

The Langevin equation (first formulated by Langevin in 1908) is found to be an
effective tool to describe the evolution of physical phenomena in fluctuating environ-
ments [5]. For some new developments on the fractional Langevin equation in physics,
see, for example, [1, 2, 4, 6, 13, 28|. Lizana et al. [13] have studied a single-particle
equation of motion starting with a microscopic description of a tracer particle in a
one-dimensional many-particle system with a general two-body interaction potential
and they have shown that the resulting dynamical equation belongs to the class of
fractional Langevin equations using a harmonization technique. In [6], Gambo et al.
discussed the Caputo modification of the Hadamard fractional derivative. Ahmad et
al. [1, 3, 4] considered solutions of nonlinear Langevin equation involving two frac-
tional orders. In [17, 22, 23, 28, 26, 35, 36], Tariboon et al. studied the existence
and uniqueness of solutions of the nonlinear Langevin equation of Hadamard-Caputo-
type fractional derivatives with nonlocal fractional integral conditions using a variety
of fixed point theorems. Tariboon and Ntouyas [24] discussed the existence and
uniqueness of solutions for Langevin impulsive g-difference equations with boundary
conditions.

In recent years, some authors have studied solvability or existence and uniqueness
of solutions of boundary value problems (BVPs for short) for impulsive Langevin
fractional differential equations see [31, 34].

In [37], Zhao studied the existence and uniqueness of solutions to the impulsive
boundary value problems (IBVP for short) for the following two classes of fractional
differential equation with constant coefficients

°Dg,[°Dy, + Nz(t) = f (t,z(1)) a.e t € T,
a(ty) — x(ty) = yr, k € NY", (1.1)

az(0) + bx(1) = ¢, CD{ita:(ti) =d;,i € Ny,

and
D§, Dy, + Na(t) = f (t, (1), ace.,t € T,

(tf) —a(ty) = yr, k € NT, (1.2)

a°Dy 2 (0) + b° DY j(tm) = ¢, a(ty) = dy, € NP,
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where J = [0,1], J' = J\ {t1,-- ,tm}, 0 < a,f <1 witha+3 <1, A>0,°Dg, is
the Caputo fractional derivative, 0 =ty <t1 < - <ty <tmi1 =1, f: J xR = IR
is a continuous function, a > 0,b,¢,d; > 0 are constants, ]Néc ={k,k+1,--- 1} for
the integers k and [.

In [29], the authors studied the existence results of solutions for the following

impulsive fractional Langevin equations with two different fractional derivatives

cpeeDl — Na(t) = f (t,z(t)),a.e.,t € J,
z(th) —x(ty) = I, k € NP, (1.3)

z(0) = x(n;) = (1) = 0,m; € (ti,tis1),i € NG,

where 0 < o, 8 < 1 with a+8 < 1, CDf is the Caputo fractional derivative, J = [0, 1],
O=to<mp<ti<m<ta< - <tmoi<Nmo1 <tm <Nm =tms1 =1 € R,
f:J xR — IR is a given function.

However, we find that Lemma 2.9 and Lemma 2.10 in [37], Lemma 3 in [29] are
wrong, see the counter examples in Subsection 2.3. In order not to mislead readers,
motivated by [29, 37], in this paper, we consider the following more general boundary

value problem for the impulsive Langevin fractional differential equation

D&, DS, — Na(t) = P(t)f (t,x(t)) .t € (ti tis],i € Ny~ 2,
Ax(ty) = x(t]) — o(t;) = I(t;, x(t;)),i € NP1,

A12(0) — Bi°D 2(0) = C1, Asa(1) + Bo°DJ a(1) = O,

x(n;) = D;, i € N1,
where

(a) a,B € (0,1), X € R, °D, is the left Caputo fractional derivative of order
* > 0 and with the starting point 0, see Definition 3,

for integers a < b k < I, N’ = {a,a + 1,a +2,---,b}, A;,B;,C; € R(i =
1,2),D; € R(i € 1N6”‘1) are constants, 0 = tg < t1 < to < -+ < typ_1 <ty = 1,
ni € (ti_1,t;)(i € NT*~1) with 5, < 1 are fixed points, m is a positive integer,

(b) f:(0,1) x R+ IR is a Carathéodory function, see Definition 5, I : {t; : i €
IN71} x R+ IR is a discrete Carathédory function, see Definition 2.

(c) P:[0,1] = IR is continuous.

A function u : (0,1] — IR is called a solution of BVP(1.4) if

u

(titis] € COti tiga] i € NG lirrzr u(t) are finite,i € INg' ™
t—t)
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and all equations in (1.4) are satisfied.

The remainder of the paper is organized as follows: we firstly present some related
definitions at the beginning of Section 2. In Subsection 2.1, we seek continuous
solutions of the following linear Langevin type differential equation involving with

three fractional derivatives:
°Dy.“Dgyx(t) — X°Df, x(t) = P(t),a.e.,t € (0,1].

In Subsection 2.2, we seek piecewise continuous solutions of the following linear

Langevin type differential equation involving with three fractional derivatives
‘Db °DE x(t) — X°Df, x(t) = P(t),a.e.,t € (tg, trs1], k € INg'.

In Subsection 2.3, we present some examples to point out some mistakes in known
published papers [29, 37]. In Section 3, the equivalent integral equations of BVP(1.4)
are presented. Finally in Section 4, we establish sufficient conditions for the existence
of solutions of BVP(1.4) by using the Schauder’s fixed point theorem [15].

2. PRELIMINARY RESULTS

In this section, we firstly present some necessary definitions from the fractional calcu-
lus theory which can be found in the literatures [10, 19]. Then we get exact solutions
of a class of fractional Landevin equations. Thirdly we get exact solutions of a class
of impulsive fractional Langevin equations, Finally, we give counter examples to show
that some results in [29, 37] are wrong.

Denote L (a, b) the set of integrable functions on (a, b),C°(a, b] the set of all contin-
uous functions on (a, b]. For ¢ € L'(a,b), denote ||¢||; = f; |¢(s)|ds. For ¢ € C[a,b],

denote ||¢]lo = m[a}g] |p(t)|. Let the Gamma function, the beta functions and the
tela,
Mitag-Leffler function are denoted by I'(«), B(p, ¢) and E, s(x) respectively.

Definition 1. (page 69 in [10]) Let —0co < a < b < 400. The left Riemann-Liouville
fractional integrals I%, g of order v € C(R(a) > 0) is defined by

I% g(t) = ﬁ f(:(t —5)21g(s)ds,t > a.

Definition 2. (page 70 in [10]) Let —co < a < b < +o00. The left Riemann-Liouville
fractional derivatives D%, g of order o € C(R(c) > 0) is defined by

o n rn—a noort s
Da+g(t) = (%) Ia+ g(t) = F(nl—o/) (?f_” fa (1‘,—:39)("‘2"Jrl ds’t > @,

where n = [R(a)] + 1. In particular, when a = n € IN, then D?, g(t) = ¢(¢) and
D" g(t) = g(™(t), where g™ (t) is the usual derivative of g(t) of order n.
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Definition 3. (page 91 in [10]) Let —oo < a < b < +00. The left Caputo fractional
derivatives D%, g of order a € C(R () > 0) is defined via the Riemann-Liouville

fractional derivatives by

D2, g(t) = D, |g(t) — ; 92 (1 —a)i |t >a,

where n = [R(a)] + 1 for « ¢ IN and n = « for o € IN.

For a piecewise function g : U(t;, ti41] = R with 0 =g <t1 < -+ <ty < i1 =
1, we give the following definition:

Definition 4. The left Caputo fractional derivative Df, g of order e € C(R(ax) > 0)
are defined via the Riemann-Liouville fractional derivatives by

n

c ion= Ag) (t o
Dgig(t) = Dgg(t) — 2 2 el (6 — 1)

=g
- Z = a+1)tu %t € (titipa] i € N,

where n = [R(a)] + 1 for @« ¢ IN and n = « for o« € IN. This derivative are called left

side Caputo fractional derivative of order a.
Remark 2.1. If z € AC"(t;,t;11](i € INJ"), we have by direct computation that

‘D a(t) =

{Li ((t=tor)" e D (1, )= (t=te)" 2"V (F)) = (t=ti)" 22"~V ()

T'(n—a+1)

|:(n7a) 2; Jlet (t—s)" e D (5)ds+ (n—a) [ =)o e D (s)ds

+ I'(n—a+1)

i Al (¢ Ca - (W —a
= Dg, x(t) — Z Z T(p—a+1) a+1 (t o) = 2 F(u*og(jr)l)tu ’
h=

Our definition generalizes known one (Definition 3) since Definition 4 becomes Defi-

nition 3(a = 0,b = 1, left side Caputo fractional derivative

n=Ll )., n=1l () gyi-=
“Dgg(t) = Dg, [ga)—zo-"]—fo’w] Diea(t) - 'S 450y
j= j=
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when all of the impulses Az (¢,) = 0(u € Nj ™, 0 € INT") and o € AC™(t;,t;41](i €
INGY).

Definition 5. % :(0,1) x R — IR is called a Carathéodory function if
(i) t — h(t,x) is integrable function on (0, 1) for every x € IR,
(ii) = — h (t,x) is continuous on IR for each t € (¢;,t,41](i € INJ),
(iii) for each r > 0, there exists M, > 0 such that |z| < r implies that

I (t, )| < Myt € (ti,tii1),i € NI

Definition 6. I:{t;:i€ IN7"} x R — IR is a discrete Carathéodory function if
(i)x — I (t;, ) is continuous on IR for each i € INT,
(ii) for each r > 0, there exists My, > 0 such that |z|] < r implies that
[T (t;, )] < My, i€ N

Banach space: Let n be a positive integer, a« € (n — 1,n), 0 =ty < t; < -+ <
tm < tm+1 = 1. Denote

€ (07 1] — IR : x|(tk,,tk+1] € Co(tk7tk+1]a

PCy(0,1] =
lim z(t) are finite, 7 € INj
t—t

Define ||z|| = max sup |z(t)] : k€ INJ* » .2 € PCp(0,1].
te(ty,tryi)

Then PCy(0,1] is a Banach space.
2.1. CONTINUOUS SOLUTIONS OF LFDES

In this sub-section, we seek continuous solutions of linear Langevin fractional differ-
ential equations (LFDEs for short) with two Caputo fractional derivatives.
Let n,l, 0 be positive integers, A € R, p € (n — 1,n) and g € (I — 1,1). Consider

CD8+CD8+x(t) - )\CD8+$(t) = P(t)7a“e~7t € [07 1]7 (211)

whereP : [0,1] — R is continuous.
Lemma 2.1.1. z is a solution of (2.1.1) if and only if there exist constants
ci(i € Np~Y), d; (i € NS such that
1

—1 n—1
z(t) = 3 dut"Ep 11 (M) + > e t0TXE, py41 (AE2)
v=0 x=0

F [t = u)e P, oy (At — 5)?)P(u)du, t € [0, 1], (2.1.2)
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Proof. Suppose that x is a continuous solution of (2.1.1). Then there are numbers
ci(i € Np~1) such that

D, 2(t) — Aa(t) = nic " +/t U= p(gyds,t € [0,1]
or o T+ Sy Tle) ’ o

By Laplace transform method (see (4.3.58) in [10] and [20] or [29]), we get

-1 n—1
z(t) = > dut"Egui1 (M) + X CxthrXEg,ngerl()‘tg)
v=0 x=0

+ (=) By oy (At — )2) P(u)du.

Then z satisfies (2.1.2). On the other hand, if x satisfies (2.1.2), we can prove that =
is a solution of (2.1.1). The proof is completed. W

2.2. PIECEWISE CONTINUOUS SOLUTIONS OF ILFDES

In this sub-section, we seek piecewise continuous solutions of linear impulsive Langevin
fractional differential equations (ILFDEs for short) with two Caputo fractional deriva-
tives.

Let n,l, 0 be positive integers, A € R, p € (n—1,n) and p € (I —1,1), 0 =1y <
t) <o <tpy <tme1 = 1. Consider the piecewise continuous solution of the following

equation
‘D, °Dgya(t) — AXDf x(t) = P(t),a.e.,t € (t, tera], k € NG, (2.2.1)

where P : [0,1] — IR is continuous.
Lemma 2.2.1. z is a piecewise continuous solution of (2.2.1) if and only if there
exist ¢, (i € NG, d,; (i € NS, v € INg*) such that

koi-1 A
x(t) = Z—:O ;)dvi(t - tu)lEQ,iJrl()‘(t —1,)?)
k n—1 (2 9 2)
+ ZO Zocux(t — 1) X By, g x+1 (A = 1,)°) -
v=U x=

[ —w) TP, oy (A(t — 8)0) P(u)du,t € (tg, tes], k € NG

Proof. The proof is very long since the careful computation is needed. It brings wrong
results without these computation see Result 1-Result 3 in Section 2.3. We complete
the proof by the following two steps.

Step 1. We prove that z satisfies (2.2.2) if x is a piecewise continuous solution
of (2.2.1).
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By Lemma 2.1.1, we know that there exists co;, do; € IR(7 € ]Né_l,j € lNg_l) such
that

x(t)

l n—1

5 it By (M) + 2 T+ Diost? By g1 (%)

2 7=0

+ [y (= w) 2 P By o (At — u)?) P(u)du, t € (to, 1],

We note by (2.1.3)-(2.1.4) that co; = (7(0), i € Ny and

[°D2, 2] (0) _ [°D2, ]9 (0)
7! - g!

doj = . ,\I(?!(O) j e NnL, (2.2.3)

Hence (2.2.2) holds for k£ = 0. Now suppose that (2.2.2) holds for k = 0,1, ,w, i.e.,
there exists constants c¢,;,d,; € R(i € Ilel,j € N7~ ! v € INY) such that

ko1-1 4
)= 5 5 01~ 0By - 1)
k n—1 ) ]
£ 5 TG+ Vst = 1) By iy a (A~ 1)°)
v= 1=
+ 1t = w) P E i p (Mt — u)?) P(u)du, t € (b, tysa], k € ING. (2.2.4)

We will prove that (2.2.2) holds for ¥ = w + 1. Then by mathematical induction
method, (2.2.2) holds for all £ € IN[*. Then this step is completed.

In order to get the exact expression of @ on (fy41,twt2], we suppose that there
exists ® such that

x(t) = ZZ:O lg it — 1) By i1 (At —,)9)
+ z“::()"g T(j + 1)dy; (t — t,)2 By o1 (At — £,)2) (2.2.5)

+ [y (b= )T By o (At — u)?) P(u)du + ®(t),t € (fu1, tusal.
Using Definition 4, we know for ¢t € (t,41,tw+2] by direct computation that

w+1ln—1 (w)
Ax'H (t, _
CDngx(t) - D8+x(t) - o=1 HX::O F(;ip(Jrl)) (t - tU)M - n=0

n—1 (W (0)¢r—r
TGt
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Use Definition 2, (2.2.4) and (2.2.5), we get

w -1 00 .
D x(t)= > > cui y, m(t —t,)xe+ie
v=01=0 x=0
w n—1 .
+ ZO ZO L@+ 1)dy, Z ey (¢ = tw)Xe™
v=0 j=

+ o 3 e (= u)Xet I P(u)du + DY B(2).
x=0

w+1

It follows that

Df.alt) = D @)+ 2 z z e (£ — )X

w1 o
w n—1 ) 00 AX .

+ Zo Zo L+ 1)dy, Zo o (= tw)*e?
v=0 j= xX=

t X X _
+ /5 Zo m(t —u)XetP=1P(y)du
X:

w+1l1—-1 -
Az to — N p—
-3 5 (i te)e Z O 0 € (g, tara) (2:27)
=1 p=

Similarly for ¢t € (t,tr4+1](7 € IN§), we have

)
Z [tk+1 (tfs)l_"_lm(s)derf:T (t—s)'=e ta(s)ds

“Dira(t) = NG

Az _ —1 (u)(o) _
-5 T Aty S e

We get,
o T -1 [eS) AX
*Dg,a(t) = ZO Z%)Cm: Eom(t —t,)xetie
v=0i= X
T n—1 .
+ EO z:o F(j + 1)dyj Z ”Tﬁ’l)(t — tV)XQ+J
v=0 j=

(2.2.8)

Az —
+ E e Jot — e Plu)du — 3 z Bl (1 — t,)ne

=1
- E F(M 52)1) “ete (t‘rvt-rJrl](k € INL(S))
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On the other hand, we have for t € (ty+1,twi2] that

D0+ D0+x(t) = D0+ D0+ () Z Z 1"(” p+1) (t_td)u P
o=1 pu=

= [*Dg, 2]")(0)

n
- T(p—p+1
= TlmeD)

We get by using (2.2.7)-(2.2.8) and careful computation that

w -1

_ = AX i—o—
D} Dy, x(t) = VZ::O Z;) Cui XX::O W(t — t,)Xxetize=p
w n—1 ) e Ax .
X X0+ Vdy 3wt (- )4 P
=) w+11—1
1 Az (t,) o
+ = F(Xg) fO t - U’ XQ P( )du - 021 ,ugo I'(p—o—p+1) (t - ta)u e
B lil m(#)(o) th—e— p+Dp D,Q (I)(t)
pn=0 T(p=e=p+1) tot f3+1 ’
It follows for ¢ € (tu41, twta) that
o 0 w -1 00 \X i
c c _ i—o—
D{,°Dgx(t) = uz::O i;) Cui XZ::O W(t —t,)xetize=p
w n—1 ] 00 \x "
+ Vgo j;) F(] + 1)dl/‘7 Xgo m(t — tV)XQ J—pP
+P(t) S Jo(t = wXeP(u)du + DP. D2, @) (2.2.9)
x=1 w+1 w1
w+1l1-1
Am(‘”(ta) o (u)(o o
T 2 T (0 1) 70 Z e LA
w+1n—1 A[CDQ ](u)(f ) n—1 [CDQ ](u (0)

_E ZW@_%)M*P_Z H=P

T I
o o (u p+1)
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Then for t € (ty+1,twr2], from (2.2.6) and (2.2.9), we get
“Dh DS, x(t) — X°Df, x(t)

=D?. D} (t)—AD}, @(t)+ P(t)

wkt et 5
w -1 .
i—o—
+VZOzZOCW Z Mgy (t — t)Xerier
w n—1 ' . . |
+ 3 Y TG+ Dduy 3wty (= )X
v=0j=0 =
w+11-1
b (ta) 209 (0) —o—
_U;EOM(t—t o )T — Z mt“ -
w+ln—1 A[cDeer](u)(tﬂ) - ne1 [CDeer](“)(o) .
_E;E%_Tﬁ:ﬂﬂ_%t_%ytp-g%—T&:¢ﬁ4up
w -1 0o .
X3
VZOZZ()cszOm(t_t ,)xe=r
25} > o +o+j
. / e (t — t, )X PTeTJ
+ Z Z L(j+1)dy; 2 Txo—p+rotitD) (t—t,)
v=07=0 Xx=0
w+1ln—1

_ 20 (1) _\ a0
0_;1 HZ::O T(u—p+1) (t—to)"" Z IN(T p+1)tu !
From (2.2.4), we know

cvi = Ax(® (t,),i € Ilel, velNy

A[CD§+m—Am](j) (t.)
7!

dy; = eINT L velNy.
Together with (2.2.3), (substituting c,;, d,; into the latest equation), we get

CD§+CD§+$(75) - /\CD8+ z(t) = Df+ Df+ o(t) — /\Dp ®(t) + P(1)

w+1 w1 W+1
=1 ALy =L APDC 2= X)) (ty1) (b=t 1) P

-y & (twt1) (t —typr)P 0P — 3 ot @ w .
— Fu—e—p+1) w o T(p—p+1)
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So
P(t)=D?. D% ®(t)~AD", ®(t)+ P(t)

w1 w1 w+1

-1
Az (b 11) pn—o—p
- 1=0 T(p—o—p+1) (t = twt1)

[DQ z—Az] )(tw+1)(

- E T(u—p+1)

t— tw-{—l)”_p;t € (tw—i-la tw+2]-

It follows that

w1l twtl w1 =0 P(u=o=p+1)

P 0 P T Aa) (b)) —o—
Dr, DE (1)~ ADE, B(f) - S ALar (g oy
s
(2.2.10)
n—1 A[cDg+l__)\m](ﬂ)(tw+1)

=" T(p—p+1) (t —tws)' 77 =0, t € (tut1, twta]-
P

From (2.2.5), we have Az (t,11) = ®W(t,41) and A[°DE, x — \x]) (tyr1) =
[°Df, @ — A®]) (t,41). Then (2.2.10) becomes
w1

(1)
DL DE B0~ AL, 00)~ % b (et

wt1l w1 w1 (p—o0—p+1)
(1) (2.2.11)
n—1 {CDQ o— Aq’} (tw+1)
- Zo WHF(M*,OH) (t —twp)" 7 =0, t € (tws1, tws2]-
u=

One sees from Definition 3 that

CDf+ [CD Lz —Al(t) = Df+ [CD Lz — Az](t)

w41 w+1 w41 w+1

(1)
n—1 |:CD:’Jr m—)\m:|

=X gy teg)

-1
—Df+ D+ x_ADp+ z(t) — Zr(

w41 w+1 w+1

(n)
n—1 {CDQ+ I,)\w}
- t

- ZOWU — 1)
=

(M) to P
e 0~ fan)

It follows (2.2.11) that

°DP, DY (t) — A°DP, O(t) =0, t € (tuwp1, twral.

w41 w41 w+1
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It follows from Lemma 2.1.1 (with the starting point being replaced by ¢,4+1 and
P(t) being replaced by 0) that there exist constants cyi1i, dwt1; € R(1 € 11\1871,]' €
IN,~!) such that

-1

O(t) = Y cor1,it —tws1) By i1t ( At — twi1)?)
pn=0

n—1
+ Z F(] + 1)dw+1j (t - tw+1)g+uE07lt+Q()‘(t - tw+1)g)v
pn=0

te (thrla tw+2] .

Substituting ® into (2.2.5). We know that (2.2.2) holds for ¥ = w + 1. By math-
ematical induction method, we know that (2.2.2) holds for k£ € IN".

Step 2. We prove that z is a piecewise continuous solution of (2.2.1) if x satisfies
(2.2.2).

Since x satisfies (2.2.2), by using Definition 4 and direct computation similar to
the proof of (2.2.6) in Step 1, we get for ¢ € (tu, tyt1](w € INJ') that

w -1 [e’s)
Doty = 20 2 e 2 e ()
w n—1 ) o) AX .
2 X TU+ D X tamprern (F— t) e
v=0 j= X=

+ Z F(x9+a) fO (¢ —wpxere Pu)du

w n—1

Az (t 20 o
- Z Z T(p— o/+1) (t ) - Z F(/L a+1)tu
and similarly to to the proof of (2.2.8), we get for t € (¢, t,41](7 € INJ*) that

CD§+37( ) Z Z Cui Z F(xg+7 T(xoti—otl) (t - tV)XQ—H_'g

V=01
T n—1 ) 00 .
+ 22 2 TG+ Ddy; X w(t —t,)xet
V=0 j=0 x=0

+ z s Ja(t — w)Xet = Pu)du

A(“)t t—ty)He 21 ()gr—e
_ E E @ (u (g+1) _ Z F(u( Z}H) t € (trytria], 7 € INTY,
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Then similarly to the proof of (2.2.9) we have for t € (., t,+1] that

-1
°Dg,°Dgyx(t) = Z > Cui Z e g—rm (t — t)xetize=s

v=01:=0
w n—1 00 4
+ 2 > T+ 1Dduy > Wipﬂ)(t — ¢, )xeti=e
v=0 j=0 x=0
+P(t)—|— t(t_u)nglp(u)du
x=1

2 (0

= Az (¢ (0) e
-2 Z I(u—o0— p+1)(t_t JTeTr = Z F(/l o— p+1)tu o

o=1 p=

w n—1 A[ DQ ] )(t”) p—p n—1 [CD0+m](“)(O) —p
- 21 Z prn ()7 = Zo Mt 0

o=1p= H=

te (thrla tw+2] .

Then for ¢t € (tw, twy1] we get
°Dy,°Dg,x(t) — XDf x(t) = P(t),t € (tw, tws1],w € ING".

Hence z is a piecewise continuous solution of (2.2.1). The proof is completed. W
2.3. COMMENTS ON [?, 7]

In this sub-section we present some counter examples to show readers that some mis-
takes have been happened in published papers [29, 37] in order to avoiding misleading
readers.

By using Lemma 2.2.1 directly, we know by replacing p and 6 by « € (0,1) and o
by 8 € (0,1) (then { =n =0 =1) that

Lemma 2.3.1. z is a piecewise continuous solution of
DD — Nx(t) = P(t),a.e.,t € (t;,ti11],i € NJ

if and only if there exist ¢,g,d,o € IR such that
k k
()= ) croEpg 1 (At — tll)ﬁ) + > dyo(t — tV)ﬂEﬂ,ﬁJrl()‘(t - tu)ﬂ)
v=0 v=0

+ fot(t —u)Pre By 5o (Nt — w)P)P(u)du, t € (tg, tgi1], k € INJ.

Lemma 2.9 and Lemma 2.10 in [37], Lemma 3 in [29] are wrong. Please see the fol-

lowing examples:
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Example 2.3.1. Let 0 < o, 8 < 1. Consider the following problem

DS, [DS, +1z(t) = 0,a.e.,t € J\ {1},

2((1/2)*%) = 2((1/2)7) = w1, (2.3.1)

2(0) + (1) = 0, °Dy,x(0) = °Dy ,x(1/2) = 0.
We seek solutions of (2.3.1) by using Lemma 2.9 in [37]. We get

Eoys(=t*"?) Y1
1+Eoi5(—1) Eayp(—(1/2)21F)

_ _ta+pY__ oy 1
o(t) = 4 Bers () E iy ¢ € 03]

Eoyps(—t*") y1 1
T3 B (oD Bars 7zt € (3 1]

We find by Definition 2 for ¢ € [0, 3] that

) , . X yx(ats) -8
CD,B x(t) _ w+,8( 1) Y1 fO (1_“))—[11))((‘1‘*'[ )= dw =1 T(x(a+8))
0t I4+Eq15(—1) Eays(—(1/2)21F) (1-p)

_ Buws(-D)
= B Byt Bats et (

_tOHrB).

It is easy to see that CDfita:(l/2) # 0 since y1 # 0. Then x is not a solution of
BVP(2.3.8). Lemma 2.9 in [37] is wrong,.
By using Lemma 2.3.1, the solutions of BVP(2.3.1) is given by

x(t) =
C [Eg1(—t)%) + t°PEg g41(—tP)] ,t €0, 3],

C[Ega(=1)7) + t°Ep g1 (—t7)] + y1Ega(—(t - 1/2)%)

C4+T(B+1)(1+Eg, 1( D+Eg. 511 (=140 (B+D)y1Ega (—(1/2)° )
(3)°Eg,41(—(1/2)°)L(B+1)

(t = 3)"Ep (= (t —1/2)%),t € (3,1],

where C' € IR. We know that BVP(2.1.3) has infinitely many solutions. |
Example 2.3.2. Consider the following problem

CD;it[CD{it + 1a(t) = 0,a.e.,t € J\ {3},

z((1/2)%) —2((1/2)7) = 1, (2.32)

Dy ,x(0) + °Dj w(1/2) = 0, 2(0) = x(1/2) =
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We seek solutions of (2.3.2) by Lemma 2.10 in [37]. It follows that

1 + L
~3tPEatgpa1(—t ﬁ)(1/2)/3Ea+,3‘;i:1(—(1/2)““*'/3)’t € [0,3],

x(t) =

1 fel 1
28" Bass s (") e ey
te (3.1
It is easy to see that (1) # 0 since y; # 0. Then z is not a solution of BVP(2.3.2).
Hence Lemma 2.10 in [37] is wrong.
By Lemma 2.3.1, the solutions of BVP(2.3.2) are given by

0, telo,3],
2(t) = 5 116 8
$1Es1(=(t = 1/2)7) + Ct = 3)"Eg g1 (=(t = 1/2)7),
te (3.1,
where C' € IR. This shows us that BVP(2.3.2) has infinitely many solutions. |

Example 2.3.3 Consider the following problem

DD} +1]a(t) = 0,a.e.,t € [0,1]\ {3},
(2.3.3)
z((1/2)7) —2((1/2)7) =1, #0, z(0) =z(3) =z(1) =0.
We seek solutions of BVP(2.3.3) by using Lemma 3 in [29]. According to Lemma 3

in [29], we have

(FF)(t) = [o(t = 8)F Ba ayp(~A(t — 5)*)0ds = 0,

(Tof)(t) = —{=p=tk (F ) (m) = 0.t € (0, 3],

(Tif)(t) = o= (T f)(1/2) + (F (1) + I = (F)(1)

_ _Eg(—tP)-Es(-1
T E(—(1/2)P)-Eg(-1)

Ii,te (%,1]
Then
0, t €0, 3],

z(t) =
Es(—t")—Eg(-1)
Es(—(1/2)P)-Eg(-1)

It is easy to check that z does not satisfy D®[¢DP + 1]z(t) # 0 on (1,1] by direct
computation. In fact, by using Definition 2 and Definition 3 in [29], we have for
t € (1/2,1] that

It e (3,1].

.1 " KB« ) — L KB
> (—D)* P (sB—at )t [ O dw

o | TATD
Dia(t) = I | =)@, /27 B 1)
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==} kB
1 _)RBprB—atl 11 /(o)) (LL(28)
212 Z_:O( ) (1-1/(21)) T(kp+1) Eg(—1)(t—1/2)~*

T T ® P B D) T T (B (= (1/2)7)—E; (=1))

Furthermore, we have

0, t€[0,1],
cDla(t) =

7 _Bp(=s")-Es(=1)
[f1/2 i ﬂ) B (=(1/2)7)—F3 (- Ilds} e (3,1
Then we get for t € (1/2,1] that D¥[D? +1]z(t) # 0 on (,1] by direct computation.
Then z is not a solution of BVP(2.3.3). So Lemma 3 in [29] is wrong,.
We present the correct expression of solutions of BVP(2.3.3) by using Lemma
2.3.1. In fact, the solution of BVP(2.3.3) is given by

0, t €[0,1],

x(t) = LEga(=(1/2)%)
LEs1(=(t = 1/2)°) — e -y

(t—=1/2)°Egpa(—(t — 1/2)7),t € (3,1].

3. EQUIVALENT INTEGRAL EQUATIONS OF BVP(1.4)

In this section, we present equivalent integral equations of BVP(1.4) respectively by

using Lemma 2.2.1. For ease of expression, denote

(FF)(t) = ot =)+ Es 51\t —u)*)P(u) f (u, o(u))du,

0 = BiEs 1 (M) + [A1 — ABin)Eg g1 (M),

[1]

As(1 = tm-1) Eg g1 1(AM1L = t;—1)?) + BoEg 1(A(1 — t—1)”),

=Z H [0 = tr—1)Eg g1 (Ak — te-1))] -
Then by direct computation, we get

Dy (FF)(t) = [yt = u)*  Eg o (At — u)®) P(u) f (u, 2(u))du.
Denote

M, = (e — ) Eg g1k — t,)7), k e N1 v e INf1,
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My,m = As(1 — tu)ﬂEﬁﬁ+1()‘(1 - tu)ﬁ)

)

+BoEg 1 (A1 —1t,)%), ve N

Es1 (D) nPE AYCi+B1D
Mk:Dk_ 5.1 ) [nf [3,[361( 1y )C1+B1 D]

_ [(A1=AB1) D1 =C1Eg 1 (A0  Ep 511 (Ang)
[C)

k—1 _ L B L B8
= X Boa (M = 1))ty (1)) 4+ ARG (1 ) )
B
+ 222 (F F) () = (Ff)(ni), b € N5,

50 An2)C14+B1D1][A2+AB2]Eg 1 (A
M,, = Cy — M Es s+1(0n7) 1+61 1[A2+AB2]Eg 1 (A)

_L(AL1=AB) DI —C1iEp An])][A2Ep 511 (N +B2Es 1 (V)]
(S}

_[AQ + )\BQ] mz__:ll E@J()\(]. — tl,)ﬁ)_[(tl,, {E(tl,))

Ao+ A A1—X A A A
+ Bi[As+ gz]Eﬁ,l( )_|_[ 1—AB1][ 2E[3,ﬁgl( )+B2Ep 1 (V)] (Ff)(

M)
—Aa(Ff)(1) = BaDy, (Ff)(1).
Let d, (v € INJ*™!) satisfy the following iterative equations:
My ody = Mo, M 3dy + M 3dy = Ms,
M ady + Mo ado + M3 ads = My, - - -

Ml,mdl + M?,mdQ +-- 4+ Mmfl,mdmfl = Mm

Theorem 7.  Suppose that (a)-(c) hold and © # 0,Z # 0. Then BVP(1.4) is

equivalent to the following integral equation

B B
(t) = nl Eﬁ,ﬁ+1(>\gl )C1+B1 Dy Eﬁ,l@\tﬁ)
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i [(A1=AB1)D1—C1Eg 1 Q)P Ep 511 (At?)
S]

B _ B °
BlE,gél()\t ) | A-AB (;313.13+1(>\t )} (Ff)(m)

+ 3% Baa (Mt~ ) 1,2(8) (31)

© Syt — 1) Bp s (At — 1)7)

v=1

+(Ff)(t),t € (tr, tepa], k € N1

Proof. Suppose that x is a solution of BVP(1.4). From Lemma 2.2.1 (choose [l =n =
1, p=a,0 = B, P(t) be replaced by P(t)f(t, z(t))), there exist ¢,,d, € R(v € Ng* 1)
such that

k

o) = 32 BasO\E —6)) + 32 dolt — ) Bazra (At — 1))

+ [yt = W) By gya (At — u)®)P(u) f (u, 2(u))du, 52)
t € (th,trya), k€ INg™ L. '

By Direct computation, we can get for t € (¢;,t;11] that

i—1

+ 8 > f:TJfl (t—s)"Pz'(s) ds+[! (t—s)~ Bz’ (s)ds
B _ JEt=s)"Pal(s)ds =t ti
Dya(t) = 2= = M5

(&)

= S & ettt =9 R d S (- )

v=0

fo E F(Xﬂ-m)( w)XPH=P(u) f (u, z(u))du, a4+ < 1,

Jo(t=5)"Pp(s)f(s,2(s))ds
B )

+ fo E I( Xﬁ+1 T(xB+1-8) (t - u)Xﬁ_BP(u)f(u,x(u))du, a+ =1,

Jo Z oy (t = WP P (u) f (u, o (u) )du, o + B > 1.

It follows that

DYalt) = A X 6Baa(\t = 1)) + 32 B (At - 1,))

+ [y (= w)* B o (A(t — u)?) P(u) f (u, (u))du.
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By Axz(ty) = I(tg, x(tx)) and (3.2), we get
Ck ZI(tk,:r(tk)),k ElN’lnil. (3.4)

By z(n;) = D;, i € N7 and (3.2), using (3.4), we get for k € IN""~! that

k—1
CoEﬂ,l(Ang) + 2_:0 dy (1 — tu)BEﬂ,ﬁJrl()‘(nk - tu)ﬁ)

D= S (b, (6Bt Ak — 1)) (3.5(k))

v=1

— 7 (e — )P B g0 (N — w)) P(w) f (u, 2(u)) du.

By A12(0) — B1D0+x( ) =C1 and Asx(1) + B2D0+x( ) = Cs and (3.2), (3.3), using
(3.4), we get

[Al — /\Bl]CQ — B1d0 = Cl, (36)
and

[Ag + )\BQ]EEJ(}\)CO

m—1

+ Z_:O [AQ(l - tV)ﬁEﬁ,ﬂJrl()‘(l - tll)ﬁ) + B2Eﬁ,1(>‘(1 - tu)ﬂ)] dy

m—1
=0~ A2+ ABo] 3, Epa(M1 - t,))I (ty, x(t,)) (3.7)

—Aa f3 (1= u)?* " By o (AL~ u))P(u) f (u, 2(u))du
=By Jy (1= w)* "By 0 (A(1 = w)?) Pu) f (u, 2(u) du.
Now, we seek solutions co,d;(i € INJ'™') from (3.5(k)) (k € IN[*™1), (3.6) and

(3
(3.7). We remember © = BiEg 1 (A7) + [A1 — AB1 0 Es 311 (An?). By (3.5(1)) and
(3.6), using © # 0, we get

B B
g = WECHIOEBDL _ By (p )y

do = [A1f)\B1]D1éC1E[s,1()\77§) . Al—@ABl (Ff)(nl)
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Then (3.5) becomes

k—1
Z_:l(nk - tV)ﬁEﬁ,BJrl()‘(nk - tu)ﬂ)dv

— D, — EsaOn) B Qnf)C14B1 D]
S}

_ [(A1=AB1) D1 —CiEp s Q)]0 Bp 51 (Ang)
[C]
(3.8(k))

=S B e — 1)) 5(0)

+ [Ar)\Bl]nfgﬁ,ﬁH(Mf) (Ff)(m)
B
+ BB ) (B () — (Ff) (), kb € NG~

On the other hand, (3.7) becomes

mif [A2(1 = ) Bp 511 (A1 = t)°) + BoEg 1 (A1 — 1,)7)] d,

- Oy — [ Ep.p41(Any)C1+B1D1][A2+AB2]Eg 1 ())
[C)

[(A1=AB1)D1—C1Eg.1 ()] [A2Es 541 (M) +B2Es .1 (V)]
S]

m—1

—[As 4+ ABs)] 2—31 Ep (A1 —t,)9)I(t,,x(t,))

+[31[A2+ABQJEB,1<A> + 2B [A2 e g M BB ]| (F f) (1)

—As(Ff)(1) = Be Dy (Ff)(1).
-, dm—1 from (3.8)(k) and (3.9).

Since = # 0, we can get unique solution (d, ds,
Substituting ¢;, d;(i € INg' ') into (3.2), we get (3.1). On the other hand, if z satisfies
|

(3.1), we can prove that x is a solution of BVP(1.4). The proof is completed.

4. SOLVABILITY OF BVP(1.4)

In this section, we establish existence results for solutions of BVP(1.4). We list the

following assumptions:
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(H1) there exist non-decreasing functions ¢y, ¢r : [0,00) — [0, 00) such that

[f(t,2)] < op(lal), t € (tistiva] i € NG,z € R,

(s, )] < 6n1(Je), i € NP,z € R.
(H2) there exist constants My, M; > 0 such that
|f(t,x)| < Mf,t S (ti,tprl],i S IN{)”,:K € R,

|I(ti,$)| < Mp,i € ]NI"‘,Z‘ € R.

Denote

Qo = [Efi,[3+1(|)\‘)‘01|+‘flHDl‘]Eﬁ,l(‘M)
= 6

+[(lAlH'l)\"BlD‘Dl‘+|%‘|EB,1(Ml)]EﬁﬂJrl(Ml) + (m+ 1)!Eﬁ,ﬂ+1(|>\|)><

[Bp, 511 (1) + [42[Ep 11 (IA]) + [B2Eg 1 (|A])] %

m—1
Es 1 ((AD[Es s4+1 (ADIC1[+]B1][D1]]
|CQ| + k§2 |Dk:| + ‘el

[(JA1 [+ A B1])[D1|+]C1|Eg,1 (IADIEs, 511 (IAD
* El

+ [Eﬁﬁ-%—l(‘)‘l)lclH’lBl||D1|‘][|A2H’|)“‘BZ‘]Eﬁ,l(‘Al)
6

+ [(lAlH’l)“‘Bl‘)‘DlH’lcl|E,8,1(‘)“g]l[‘AZ‘Efi,[3+1(|)“)+|B2|E,8,1(‘>‘|)]:|

)

Qr = (m+1)'Eg g1 (|A])x

[Es, 511 (1) + [A2[Ep 11 (IA]) + [B2Eg 1 (|A])] %

[\Bl\[|A2|+M‘|(1)|Bz|]E/3.1(|>\D + HAlH'l)“‘BlH[|A2|EB‘,(L;T1(|A‘)+|BQ|EB,1(lA‘)]

LA NI B s () IBABSA D g, 1} x

B(B+a+70+1)Essia(|A)
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+(m+ DEg 11 (1A [Eg,p41(|1A])

+[A2[Eg p11(IA) + [B2Eg 1 (AD] |B2|Baw + 7,0 + 1)Eg o (|A])

+ \Bl\Eﬂ.l(|>\\)+[\Alllg‘W|BlI]Eﬂ.ﬂﬂ(l)\\)B(B +a+T1,04 l)Eﬂ,ﬁJra(P‘D

+B(B+a+ 7,0+ 1)Egsra(|A]),

Qr = (m+1)Eg g+1(|A)x
[Es s+1(|A) + [A2|Eg g+1(JA]) + | B2Eg 1(JA])] x

[mEs 1 (A]) + m(|Az] + [Al|Ba[)Eg,1 (IA)] + mEg 1(|A])-

Theorem 8. Suppose that (a)-(c), (H1) hold, © # 0,Z # 0. Then BVP(1.4) has at

least one solution if there exists ro > 0 such that

Qo+ Qydy(ro) + Qr(ro) < 7o. (4.1)

Proof. Suppose that M, M, (k € N v e Ile_l) are defined in Section 3. Define
the operator 1" on PCy[0,1] for xz € PCy|0, 1] by

B B
(Ta)(t) = DR FIUIOERDU R, | (\F)

i [(A1=AB1)D1—C1Eg 1 On)t?Ep 511 (A?)
©

BiEs1(M?) | [A—ABi]i°E At
B ) ﬁél( t )_|_[ 1 1]t®;s,fs+1( t )} (Ff)(m)

S By (At — 1)) (1. 2(1)

v=1
Syt — 1) Bp s (A — 1,)7)

v=1

+(Ff)(t),t € (tr, tega] bk € Ny~

where d;(i € INT"~1) satisfy the following iterative equations:
k—1 m—1
S Mypd, = My, k € Ny S My ndy = My, (4.3)
v=1 v=1

By a standard method, we can prove that 7' : PC[0, 1] — PCy|0, 1] is well defined
and x is a solution of BVP(1.5) if and only if z is a fixed point of 7" in PCy[0, 1] by
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Theorem 7. One sees that (4.3) is transformed to

My, 0 0o - 0 M,
di
Mis Mg 0 0 Ms;
ds B
A —
' Mlm M?m M3m Mmflm Mm

s ) )

One sees from the definition of M, ;. that

[Mygo| < Eppra(A]), k€ NG, v e Ny

|Mym| < |A2Eg,11(|A) + [B2Ega(JA]), v € NP1
Then for k € INJ*, v € N¥~! we have

|My k| < Eppa([A]) + [A2|Eg g1 (IA]) + [BaEg,1 (|A])-

Denote
M 2 0 0 0
Mz Mss 0 0
Ml,m M2,m MS,m e Mmfl,m
Nia N Nisz - Nim—1
No 1 My o Noz - Nom—1
Nmfl,l Nm71,2 Nm71,3 e Nmfl,mfl

Then the algebraic complement N/, of N; ; satisfies

|N;j| <(m— 1)!max{|N¢,j| 11,] € ]NT_l}
(4.4)
< (m—=DEgg+1(|A]) + [A2[Eg,s11(|A]) + [B2Eg,1(|A])] -
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Let Qo = {z € PCy[0,1] : ||z|| < ro}. For x € Qp, we get by (H1) that

[f(t2(®)] < 65(llxl) < ¢5(ro).t € (ti,tiral i € NG,

[1(ti, 2(t:))| < o1(l|ll) < ¢1(r0),i € Ny~

Then for t € (t;,t;11], we get

(EN@O] < fot = w) T B gra(Mt —u))|[P(w)]|f (u,2(w))|du

<B(B+a+7,0+1)EgsiallA)or(ro).
Furthermore,
DL (FF)()] < Bla+ 7,0+ 1)Eg o) (ro).

Then for k € IN;' ™! we have

|My| < |Dy| + Eﬁ.l(\/\I)[Eﬁ.ﬂﬂ‘(g\ll)lcl|+\31HD1H

+ [(|A1‘+|)\"Bl‘)‘Dl‘+|%‘|E[3,1(‘M)]Efs,ﬁ-%—l(p‘n + mEﬁ71(|)\|)¢I (ro)

A
+[| 1\+|A\\B‘1£|EB,B+1(\A|)|(Ff)(m)|+ \Bl\Ellﬁ@.‘l(W)KFf)(nlN

HI(ES) ()l k€ N3,

| M| < |Co| + [EB,B+1(\A|)|C1|+\Bl\\?é\l]HA2|+\A||BQI]E13.1(|>\\)

+ [(‘A1|+‘>‘||Bl|)|D1|+‘01|E[3,1(|)|\g]‘[|A2|E[3,[3+1(‘>‘|)+‘BZ‘Eﬁ,l(P\D]

+m[|Az| + [A[| B2 [[Eg,1(|A[)or(r0)

+ [|Bl\[|A2\+|)\‘\(l)]|32\]Eﬁ,1(\>\|) + [|A1|+\>\||BlH[\Az\Efs‘,gi-l(|>\\)+|32|E[3,1(\>\|)] «

|(Ff) ()| + |A2||(F£)(1)] + | Ba|| DG, (Ff)(L)].
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It follows for all £ € INy* that

m—1
E AD[E A |CL|+|B1|| D
| M| < |Co| + kZZ:Q |Dy| + g1 (IAD] 5,5+1|%‘\)\ 1| +[B1]|D1]]

[(JA1+MB1D) D1 |+1C1 [Bs 1 (IAD]E .51 (1A])
+ El

[Es p41(IAD[C1+[B1]|Da][|A2|+Al| B2|]Es,1 (IA])
+ El

+ [(‘A1|+‘)‘||Bl|)|D1|+‘Cl‘Efi,l(|)|\8]‘[|A2|Eﬁ,ﬁ+1(‘>‘|)+‘32‘Eﬁ,l(l)“)]

+ [mEg, 1 (IA]) + m[|Az| + [Al[B2[[Es,1 (|AD)] 61(ro)

|Balll As|+MIB2Esa (M) | [As+IAIBL I A2(Es ss1 (IAD+Bs|Es 1 (IAD)]
+ El + El

+HA1|+‘>‘||B|1®”‘EB,B+1(|)‘D + |B1|E‘3g,|1(\>\|) +|Ao| + 1} %

BB+ a+ 71,0+ 1)Eggra(lA)ds(ro)
(4.5)

+|B2|B(a + 7,0 + 1)Eg o (|A|)dy (10).

Hence (4.4) and (4.5) imply that

|dy| <m![Ep 1 (M) + [A2[Ep 11 (IA]) + [B2Eg 1 (|A])] %

m—1
E AN [Eg, AD|C1|+|B1||D
|Cg|—|— kZ::Q |Dk|+ s (AD] /3!3+1|%‘m 1|+[B1]|D1]]
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[(JA1[+ M B1D[D1]+[C1Eg,1 (INDIEs, 51 (IA])
+ ©]

+ [Efi,[3+1(‘>‘|)|cl|+‘31H?1HHA2|+‘>‘||B2|]Eﬁ,1(|)\‘)
E]]

+ [(\A1|+MIIB1|)|D1I-HCl\Eﬁ.l(IT\@)]‘[IAQ|E5,5+1(\A|)+\B2\Eﬁ.1(|>\\)]

+[mEg 1(IA) + m[|Az| + | A B2[[Eg,1 (IA])] ¢1(r0)

|Balll Az |+ A B2[Esa (M) |, [Azl+IAIBL I A2[Es 541 (IAD+Bs|Es1 (IAD]
+ El + ]

+[\Al|+\A||B|1®|]‘]“3/3./3+1(|>\\) + |B1|E‘3(f§|1(\k|) +|Ag| + 1} «

BB +a+70+1)Essral|A)¢s(ro)

+[Ba[B(a+ 7,0+ 1)Ego(|A)¢s(ro)]

So

|(Tx)(t)] < [Eﬂ~ﬂ+1<m>|01|‘+@\meluEa,1<w>

+[(lAlH'l)\"BlD‘Dl‘+|%‘|EB,1(Ml)]EﬁﬂJrl(Ml) + (m+ 1)!Eﬁ,ﬂ+1(|>\|)><

[Bp, 511 () + [42[Ep 11 (IA]) + [B2Eg 1 (|A])] %

m—1
Es1(|\D[E AD|C1]+]|B1]|D
Ca| + kZZ:Q Dy + s.1(AD[ [3,[3+1‘%||)| 1|+ B1||Da]]

[(JA1 [+ A B1]) [ D1|+]C1|Eps,1 (IADIEs, 511 (IAD
* El

+ [Es,s+1(IAD[C1[+[B1][Da|][[A2|+|A[[B2|1Eg,1 (M)
(O]

- A0 NI DI By (A1 B 0 (M) 1Bl (D] - (1 1)1

Eg g1(1A) [Eg g41(1A) + [A2[Eg s 11 ([A) + [B2Eg 1 (JAD)] x

[mEg, 1 (|A) + m[|Az| + [l B2[[Es,1 (IA])] 61 (ro) + (m + 1)
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Es s+1(|A]) [Eg s+1(|A]) + [A2|Eg g+1(|A]) + [B2Eg 1(JA])] x

[( \Bl\[|A2|+M‘|(1)|Bz|]E/3.1(|>\\) + [\Al\+|>\\\Bl|][|A2|EB‘,g4lr1(|>\\)+|Bz|EB,1(|>\\)])

_|_[|A1|+\A||B‘1($]|E/3,/3+1(\>\|) + \31\1‘3|g,‘1(\>\|) +|Ag| + 1] x

B+a+T,0+ 1)E[37g+a(|)\|)¢f(7'0) + (m+1)x

Es s+1(|A]) [Eg s+1(|A]) + [A2]Eg g+1(|A]) + [B2Eg 1(JA])] x
|Ba|B(a+ 7,0 + 1)Eg o (|A])dy (ro)

[BilEsa(IAD  [AU+IMIBilIEs 841 (1AD
e k.

B(B+a+71,0+1)Egsral|A)er(ro)
+mEg 1(|A\)or(ro) + B(B+a+ 7,0 + 1)Eg g1a(|A) s (r0)

= Qo+ Qs¢s(ro) + Qr(ro) < ro.
Hence TQq C Q. Then Schauder’s fixed point theorem implies that T has at least
one solution in g, which is a solution of BVP(1.4). The proof is completed. B

Corollary 9. Suppose that (a)-(c), (H2) hold. Then BVP(1.4) has at least one
solution.

Proof. Choose ¢¢(x) = My, ¢r(x) = M;. It is easy to see that (4.1) has positive
solution. By Theorem 8, we get this result. B
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