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1. INTRODUCTION AND PRELIMINARIES

During last decades, the role of fractional calculus is not forgetfulness evolving in a
respected discipline with a number of physical and technical applications [1, 6, 11, 13,
16]. Theory of fractional differential equations reflect both continuous fractional dif-
ferential and discrete fractional difference equations. So for as the theory of fractional
differential equation is concerned, it has gained a lot of considerably attention and
popularity from almost three decades before or so. A lot of applications in numerous
seemingly diverse and widespread fields of science and engineering have been gained.
For a long time, the study of fractional differential equations and fractional difference

equations have been discussed separately. It has been the main task, either there is
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a unification between differential and difference calculus? Ultimate answer to this
task was proposed by Stephen Hilger[7] in 1988 by introducing a new theory so called
"Theory of time scales” Recently, some authors studied fractional calculus on time
scales [2, 10, 12, 14]. Bastos[2] has defined the A—integral and A—derivative on time
scales by Laplace transform. Recently, Jiang Zhu et al.[17] introduced the concept of
fractional A—derivative and fractional A—integral by use of fractional order power
functions on time scales so called ” Riemann-Liouville fractional A—derivative of non-
negative order «” and ” Riemann-Liouville fractional A—integral of nonnegative order
«”, respectively.

On the other hand, the role of inequalities is significant to discuss the qualitative
and quantitative behavior of the solution of differential and difference equations. Our
aim is to construct fractional Gronwall-Bellman type inequalities on time scales and to
structure the fractional A—stochastic differential equation of It6—Doob type on time
scales in this mode to check the behaviour of the solutions of Cauchy type problem
and nonlinear fractional A—stochastic differential equation. The paper is arranged
in such a manner: In Section 2 some new concepts have been discussed and results
regarding to the topic. In Section 3 we investigated some properties of the solutions
of certain fractional A—differential equations.

Throughout the discussion, C(H, D) represents the class of all continuous functions
defined on a set H with range in the set D. Let R be the set of real numbers, T be an
arbitrary time scale, SR the set of all regressive and right dense-continuous functions,
Rt ={peR:1+pu®pt) >0, t e T}, [wy,w] C R, Ty := [wo,w]r, DX, the
Riemann-Liouville fractional A—derivative of order a > 0.

Lemma 1. [8] Lets > 0; 9, >0, > 0, with 9, # 0. Then, for any a >0

5g_i S ‘O_Zaazozblﬁ + Mag_i
0, 0,
Definition 2. [4] If p € R, then the A—exponential function e, : T x T — R is

defined as:

ot = ([ t Loy (14 pl)plw) Aw).

Definition 3. [17] The fractional generalized A—power function h, : T x T — R

on time scales is defined as:

ha(t to) = L1 {Za1+1 } (t)

for those suitable regressive z € R/{0} such that £7! exist for « € R, t > to.
Fractional generalized A—power function h,(t,w) on time scales is defined as the
shift of hs(t, t0), that is,

—

ho(t,w) = ho(,t0)(t,w), t>w>t.
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Definition 4. [17] Let © be a finite interval on a time scale T and tg,t €  such
that t > tg, then the Riemann-Liouville fractional A—integral of f : T — R, with

order « is defined as:
t

o (ha—1(t0) * ) (9= [, ha—1(t, 0(w)) f(w)Aw, a > 0;
(IA7t0f) (t) _ 1 0 fto 1 -

f(t)a a=0.
Definition 5. [17] Let o, 5 > 0. The A—Mittag-Leffler function AF, g : RxTxT —
R is defined as:

aFas(Mtte) =Y Nhiapso1(tto), t>to
=0

provided that right series is convergent.

2. MAIN RESULTS

Definition 6. Let f : T — R is right dense-continuous on T and « > 0, then
a—Delta integral of f is defined as:

/ f(w) (Aw)® =T(a+ 1)/ ha—1(t,0(w)) f(w)Aw.
0 0

In particular for T = R and « € (0, 1], the above definition coincides with [9, Defini-
tion 4.1].

Definition 7. Let p € N, p > 1 and {m,72,...,7} a set of linearly independent
time scales monitored by classical time scales T. Let f : TH — R" be rd—continuous
on T} defined by f(t) = f (11(t), 72(t), ..., 7p(t)) . The A—multi-time scale integral of
the function f over an interval [to, tjr C Ty is defined as:

p

AN = | flw)Aw= P10

i=1
provided that:
t
(L)) = | fwAr(w), 1 <i<p.
to

In particular for T = R, the above definition coincides with [11, Definition 3.2].

Definition 8. Let W : [0,7]r x @ — R denote the canonical real valued Wiener
process defined up to time 7 > 0 and X : [0, 7] x @ — R be a stochastic process that
is adapted to the natural filtration I of the Wiener process. Then

(/OTXtAWt)Q :E[/OTXEAt].

E
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In particular for T = R, the above definition coincides with definition of It6—Isometry.

Theorem 9. Letr,g; : Ty — RT, 1 <i < 3, be nonnegative, right dense-continuous
functions which are defined on Tyi. Moreover, let g;(t), 2 < j < 3, be nondecreasing
and bounded by a constant M > 0 such that:

r () < g1(8) + g2 (0w, 7 (1) + g3(DIR , 72 (1), te Ty (1)

Then, for dy > dy > 0; o, &> 0; t€Ty; 6,9 € Ny,

$ Sy (5)ot " wageo (G2 )9 AN IO €

6=0 9¥=0

provided that:

- dy —dy a2
() = 0n(0) + (F7 2R ) (6 wn)gnlt) + b0l
Proof. On letting the right hand side of (1) by s1(t), we have

< Wsib). (3)
Further,
do do

51(8) < 01(8) + g2(O)Iawes1 (1) + g3(DIR 51 (1) (4)

From (4), by Lemma 1 we have

doy da—dy dy —doy 42
s1(t) < gi(t) + ga() aw | € T si(t) + ———2EM
0 i
dy d2—di d
o018, (d—jg T+ D gd)

B do d2—dq
= q(t)+ <d—2§ “
1

) 018 0019
() 01300 0 o)

Consider

do da—di
Ao(t) = (d—jﬁ g

) 0180000 + (2675 ) 0013 0,000,

for right dense-continuous function ¢(t) such that t € T;. Then, in this case (5) is
reshaped as:

51(t) < g1(t) +™Axsa(t)

Iterating the inequality for some 6 € N, one has

Zﬂlgl )+ Afs1 (1) (6)
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We claim that the following inequality holds:

Aot < 3 (ot ot (36

for some 6 € N. The proof follows the induction criteria on . For § = 1, the result

]
) 13406, (1) @

trivially holds. Suppose it holds for some # = m. Furthermore, if go(t), g3(t) are

non-negative and non-decreasing, then, for 6 = m+ 1

AT Tsi(t) = W (ATs1(1)

S (7) (Ge™ f“ggm) (jje” ”1gg<t>)ﬁ

9=0

d da—dy
X{—Qf dy gg(t)IAMOIzawOﬂerSl(t)

do—dy
v 3<t>fz,wofzw+ms1<t>}

m dg d2 4 m—9+1 d2 dy—dy [
- ZQ) (2 mw)  (Fn0)

¥=0
Ya—1
X IAMOIAawO +m51 (t)

m m o d—dy m—1 d2 do—dy I+1
+Z(ﬁ) (d—ls 0 g2(t>) (d—lf g3<t)>
9=0

XIA onZaujoﬁersl (t)

o d2 dg—dy ¢ m+l Ierl ¢
= (V) (e n0)  miae

+Z( ) A0 (jjs” "’l)mﬂgg(t)

Yoau—19
PAO:;O +m+1 (t)

o1 d2 dz d1 m+1 9
+Z(ﬁ Jap-oie (2655 ) T st
Izawoﬂ-i—m—‘rl (t)
m\ [do do—d L il
H(0) (R mm) e
d2 dy—dy m+1
(e mw) e
1

Z ()« (3)]ororio (fpea)™

Da—94m+1 m dy  d2- m (m+1)a
xg ()IAWO 1)+ d—lf T gs(t) In Gy s1(b)
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which is no more than inequality (7) for § = m 4 1.
We further, claim that A{s;(t) — 0 as § — oo. Consider

i dg—dy \ ?
3= 3 (5o wateo (Pe5) B Paw, e ®)

Y¥=0

Case-I: For o € (0,1), let ¢y = Joo — 9 + 6 + 1. Then ((y) is a decreasing sequence
on [0,0] over ¥ € [0,0]. It may be easily seen that max({y) = 6 + 1; min(¢y) =
fa + 1. Furthermore, for a fixed «, there exists a large enough 6 such that for any
0 > 0y, we have 0 > % So, the sequence satisfies ¢y > 2 for ¥ € [0,6]. Let M(t) =
sup{s1(7) : 7 <t, t € T1}. Then, without loss of generality and by [3, Theorem 4.2],

the equation (8) can be rewritten as:

0 0
~ 0 9—19 9 d2 dg—dy
Jo(t) < —§ T m
IS (5)et " wagco (e ) mney
(t o wo)ﬂafﬁJrO

“TWa—010+1)

o dg—day \ 0 — o )Pa—9+0
> (§)ot s (G ) o pen

<
ﬂ:(gm(t) do 42— 0 9

= T (a6 ) U s+ st}
do—dq [%

e A R R e)

Since g2(t), g3(t) are bounded and I'(fa + 1) is growing rapidly for sufficiently large
0, so Jg(t) — 0 for sufficiently large § and hence, 2s;(t) — 0. In this case, the
inequality (6) is reshaped as:

oo 6 0 d dy—dy 0
20 =35 () a0 (65 ) (10
0

=09=0

oo 0 do—dy 0
&(66) = ZZ(Z)gs’—ﬁ(ag?(o (j—s ) hoa-o-0(8,w0)

) d2 dy—dy 9
Z(d—lg o gg(a) hoa (B, wo)

<
9=0
00 0 d2 de—dl 60—
Z(ﬂ) (S 00)  ho-sfoen
oo_1d dy—dy 9
< Z(d_if @ g3(f)) hoa(B,wo)
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<3 () (Gre s mn) g

do dgd—l 1 /9+p
= AFa,l (d—1§ B B’W())ZE( q9>

p=
X <%5d2d_1d1 92

mw—mﬂp

< AFa,l( 5 g Mﬁ,wo) exp (ad—;ﬁdzf“dlM(ﬂ—WOO
= Li(M;B), (11)
provided that
94+p\ (9 +p)
9 9!
@+p)@+p—1---@+1) _ 1 (12)

(p—da)(p—Dda—1)--(1—9a) ~ aP’
To prove the finiteness of the right hand side of (2), consider

S (Git) = gl(t)+§:2€:<g)g§ﬁ(t)gg(t)@jf@ d1>9

0=19=0
<10 ()

1t)+§o:lz<) < Jfl>9

XIA7w0 (DA WO( 19(1—19+9(t7 0))) ~1(t)7

IA

hence,
L1(g1:1) < g1(8) + Ia,we g1 () Dawy (£2(M: 1))

A—Mittag-Leffler function AF, 1 is an entire function and the exponential func-
tion, exp(t) is uniformly continuous in t; both ha—1(t,wp) and gi(t) are right dense-
continuous for t € Ty. Therefor £1(g1;t) < co. A combination of (3) and (10) yields
the desired result (2).

Case-IT: For a > 1, let ny = Ya— 9+ 60+ 1. Then (1y) is non-decreasing sequence
on [0, 0] over ¥ € [0, 0]. It may be easily seen that max(ny) = a+1; min(ny) = 0+1

and ny € [2,00). Moreover, from inequality (9) we have

() 29: (g) 22020 (Z_i o

9=0

192: <g) 95" (Vg5 (1) (Z—igd%‘

(t —w )1904—19-1—0
) M) ST 79T

0
dq (t —w )19(1—194—9
) MO 51T

IN

IN
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M(t) [dy d2-a ¢
< —— |22 - t —wo)gs(O)}] .
< p |26 (- + - ) (0]}
Since ga(t), gs(t) are bounded and I'(0 + 1) is growing rapidly for sufficiently large 0,
so Jg(t) — 0 for sufficiently large 6 and hence, 29s;(t) — 0. Again, in this case the

inequality (6) reduces to inequality (10). Further,
do—

oo 6 4 0
g8 = 50 (§)ob 00 (2655 ) hanmeasion

0—09—0 1

dp—dy =1 [9+
(0. 6n) 3 (V07
pzop'

d2 do—dq P
< (E (0 —an))
1

IN

ds
F, —
N <d1£

dy  d2—d

do da—dy
AFa,l <d_1€ % Maﬁaw0> €xp <O;—12§ % M(ﬁ —UJO)>
= ’SZ(M75)7

IN

provided that

(ﬁ;;P) B (fiiﬁﬂ

W+p@t+p-1---0O+1 _ ,
p-2p-5-1---(1-2%)

Repeating the same steps as in Case-I, the finiteness of the right hand side of (2) can

be proved. [l

Remark 10. For T =R; diy =1 =dy; a € (0,1); wog = 0; g3(t) = g()'(ev),
Theorem 9 coincides with [15, Theorem 2.1].

The following result is the discretization of the Theorem 9.

Corollary 11. Let g;, 1 <i <3, and r be non-negative real valued functions defined
on No. Furthermore, if g;, 2 < j <3, is nondecreasing and bounded such that

() < g1(t) 4+ ga(t) Ayt rP2(t) + g3(t) Ay™ 72 (1), t € No.
Then, for dy > dy >0, £ >0, ne N, t,0,9 € Ny, we have

co 6 dy—dy 4
o < dJZZ (5)st " wageo (™) a0,

0=0 ¥=0

provided that

(0 = 00+ (226 ) fin(t + 0]
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Theorem 12. Let the conditions of Theorem 9 be satisfied, for dy > 1. Let L :
To x RT — R™T be nonnegative, right dense-continuous on T and continuous on R,
with 0 < L(t,r) — L(t,s) < K(r —s) forr > s >0, where K is the Lipschitz constant
such that

r(4) < g1(t) + g2 (01w, L (6, 7(1) + g3( IR, L (t,7(1)), t € Ty (13)

Then

SN’ 1—dy 6
) < %ZZ(Z)gz%t)g;?m (Fe) mume,  ag

dy — 1
g3(t) = g1(t) + g2(t)1a w, L (f, 1d1 d{/g)
a1, (1 2 ).

Proof. On letting the right hand side of (13) by s2(t), we have

r(t) < 4 sa(t). (15)

Further,
520 < 910 + g2(01a L (& V520) + 9012, L (1 V5200)  (16)
From (16), by Lemma 1 we have
20 = 00+ 0lsml (1€ T a0 + Lt o)
+a013 0,1 (1 € () + Pt )

1—

= g1(t) + g2(t)1aw, {L (t, dilg = o) 1 dld: 1 a/g)
-L (t, dld_ 1 d%/%) L (t, dld_ 1 d{/g“)}
! 1
a 1 1-d1 dl —1 .
+g3(t)IA7w0 {L <t7 d_lf 41 SQ(t) + d—1 {/E)
o <t7 dld_ 1 VE) L <t’ dld_ 1 {/5)} (17)
! 1

From (17), by Lipschitz continuity on L we get

s2() < 91(t) +2( a0 {C%%S?(t) +L <t, dldzl d{/é)}
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Consider
%000 = (467 ) (012,00 + (567 ) 012,000,

for right dense-continuous function ¢(t) such that t € T;. Then, in this case (18) is
reshaped as:

52(t) < gs(t) + ™Aasa(t)

Tterating the inequality for some 6 € N, one has

6-1
sa(t) < D ATGs(t) + Adsa(t)
9=0

We claim that the following inequality holds:

6 6
9 - T ’C 1dy vo—
W) < 3 (§)af 080 () 1L sty
J=0

for some 6 € N. This can be proved by following the parallel steps beyond the in-
equality (7). Ultimately, we get the inequality (14). O

Remark 13. For T = R; wg = 0; g2(t) =0, Theorem 12 coincides with [5, Theorem
2].

Corollary 14. Let g;, 1 < i < 3, and r be non-negative real valued functions
defined on Ng. Let L be non-negative real valued function defined on Ng x R* such
that 0 < L(t,r) — L(t,s) < K(r —s) forr > s >0 and K > 0. Moreover, if go2(t) and
g3(t) are nondecreasing and bounded such that

(1) < g1(6) + ga(OAG 'L (6, 7(1) + g3 (A "L (4, (1)), t € Ny,

then, ford; > 1, £ >0, ne€ N, t,0,9 € Ny,

SN 1—dy 6
o < J S ()b a0 () gy,

6=0 9¥=0
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provided that

o) = 00+ 005" (L0 1)

+g3()A; "L <t, ! d: L d{/E) .

Theorem 15. Let the conditions of Theorem 12 be satisfied. Moreover, if gy is

non-decreasing; g, : T1 — R is nonnegative and right dense-continuous on Ty, with
dy > do > 1 such that

r(t) < g1(t) + g2(IaweL () + gs(DIR L ( (1))
HIA o ga(H)r?2 (1), t€ Ty (19)

then

r(t) < di/ed%gzﬁl (t,wo) x

d1 9ga

dﬂ i 20: < )94 2" (834 5(1) (dﬁglﬂl >9 I2e0 54 (1) (20)

0—0 9—0 L

provided that

§5(t) = g1 (t) + gg(t)IAMOL (t dld: 1 dVZ)
+93(t)IZMOL (t7 dld: 1 d{/g>

diy —dy d2
+%5d1 IA o 9a(t).
1

gai(t) = e, am-a (tw) g;(t), 2<7<3.
& N ga
1

Proof. On letting the right hand side of (19) by s3(t), we have

< R/s5 (21)

Further,
s3(t) < g1(t) + g2(t)1a w, L ( V's3 )+93 IAMDL(’%d 83(*))
a9 (t) (s5() (22)

From (22), by Lemma 1 we have

2 < 00+ m®lsul (b €T 0 + I 4E)
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1 14 d —1
Fgs(OIR L L (4 €6 T sa(t) + ——— /€
d1 dl

dy d2—di dy —dy  d2
+IA’w0 {94(t) <d—j£ dy 83(’[)+1T125d1>}

From (23), by Lipschitz continuity on L we obtain

s3() < g1(t) + 2() a0 {6%‘%83(0 +L <t, dld: ! d{/é)}
+93 (D13 ., {dff% s3(t) + L (t, ? d{/g) }
1 1

do  d2-d dy —d
F2ETT A b ga(D)s3(t) +
d1 dl

dg
&N IA7wog4(t)

da—dy

d
= 30+ TE€T Tawm(®s), teT,
1

provided that

3 = gl<t>+g2<t>fA,wo{dﬁlg%%(t)%(t dldzld{@}
T L e (R3]
1 1

dy —doy d2
+1T12£deA7WOg4(t)-

An application of [4, Theorems 6.4] on (24) yields:

) < 30+ [ e, ma (bo)3w P gw)du

wo ﬁg a1 g4 d
t do—dq
<30+30) [ e, s (o) P gw)dw
wo dy 94

s3(t) < 3(t)+3(t){6d dy—dy (t,wo)—ed do—dq (t,f)}

and hence,

3

IN
<
=
—~
Ny
S~—
_|_
<
)
—~
-~
=
'
€
S
—_—
aas
2
o
—~
Ny
S~—
9]
S
V]
2
[j
2
~—~
o~
&
(=}
S~—

(23)

(25)



FRACTIONAL DELTA DIFFERENTIAL EQUATIONS 453

+L <t7 dld— 1 d</E> } + g5()IR ., { dﬁ 51;51 3(t)
1 1
X €, da—d (’t, QJO) +L (’t, dld_ ! d{/g)}
2 1

d _
e
1
- K o 1-d 1-dy
< 95(f)+d—1€ W Ga ()1 we3(t) + —5 i Ga3(t)
XIRX o3 (1) (26)

Consider
JCo1-di\ IC 1—dy B o
As(t) = (d—lw )g4,2<t>IA,wo¢<t> + (af“ ) Gas (T2, 6(0),

for right dense-continuous function ¢(t) such that t € T;. Then, in this case (26) is
reshaped as:

3(t) < gs(t) +2A33(t)

Tterating the inequality for some 6 € N, one has

0—1
t) <) AFs(t) + A3 (t)
9=0

We claim that the following inequality holds:

Z()g itsto (€

for some 6 € N. This can be proved by following the parallel steps beyond the in-

) IzawOﬂJrGB (t)

equality (7). Ultimately, we get the inequality (20). O

Remark 16. For T = R; wg = 0; g2(t) = 0, Theorem 15 coincides with [5, Theorem
4].

Corollary 17. Let gx, 1 <k <4, and r be non-negative real valued function defined
on Ng. Let L be non-negative real valued function defined on Ng x RT such that
0 <L(t,r) = L{t,s) < K(r—s) forr >s>0 and K > 0. Moreover, if g;, 1 <i <3,
is nondecreasing such that
i) < gi(t) + g2(DAFTIL (4, 7(8) + g3(O A "L (£, (1))
+A5 ga()r?2 (1), te Np.

Then, fordy > do > 1, £ >0, neN, t,x,0,9 € Ny,

() < J ﬁ {1 + Z—j&dz@dl 94(x)}

x=0
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oo 6 0\ - ~ ’C 1y 0
(P> (ﬁ)gﬁa%)gzg(t) (d—s > A 0g6(1),

provided that

i) = 00+ 085" (L 1)

—n di —1 d
+93(t)A0 L <ta 1d1 {/E)
dy — dy

dy
t—1 4

is= [T {1+ 25 0] o, 252

z=0

¥ €1 A; ga(t).

Theorem 18. Let the conditions of Theorem 12 be satisfied. Moreover, if gy is

non-decreasing; g, gs : Ty — RT are nonnegative and right dense-continuous on T,
with dp > do > 1, dy > ds > 1, such that

rit) < g1(8) + g2(O 1w L (6, 7(1) + g3 (VIR L (, (1))
FIA 00 g1 (DT () + Ia wog5()r™ (1),  te Ty

Then,

MO < fer ma . ma (L)

S 0\ ,_ ) K 14 0 o )
x ZZ (19>9g,219(t)9g,3(t) <d_1£ 4 ) IZ,woﬂ”m(t)

6=0 9¥=0

for t € Ty, provided that

gr() = gi(t) + g2()Ia w,L <’t, dld: ! d{/g)

d—1,
+g3(t)IX,woL <ta 1d1 {/E)

dl_dQ dl_dS

da d3
+Tlfd1 IA woga(t) + ETIA o 95(1)-

§57j(t) = e gy d2—di dz—dy (’L,o.)o) gj(t)’ , 2<j<3.
)

d
T
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3. APPLICATIONS

Consider the following Cauchy type problem with Riemann-Liouville fractional deriva-

tive and nonlinear fractional A—stochastic differential equation

(27)

Af(z(t) =b(t, f(z(t)) At+ oy (& f((1)) At?
+o2 (8, f(z(1)) ABg; (28)
f(z(wo)) = f(zo),
where a € (0,1), By is the standard Brownian motion.
The following result gives us the estimation of the solution of the Cauchy type

initial value problem (27).

Theorem 19. Leta € (0,1), wo,t€ Ty and G € R an open set. Let f: T1xG —- R
be a function such that f(t,y) € Lalwo,w) for any y € G. If y(t) € L% [wo,w) such
that | f(t,y)| < |y|”, b € (0,1). Then the cauchy type problem (27) has the following
explicit bound

oo 0
0 NG Ya—1 T
pol < 33 () 68 L R, @)
0=09=0
provided that
16ha_1(t,wo) = [blha_1(t,wo) + (1 —b)E {(t — wo) + halt,wo)}.

Here Lalwo,w) := La1]wo,w) be the space of A—Lebesgue integrable functions in a
finite interval [wo,w)T and LY [wo,w) := {y € Lalwo,w): DX, € Lalwo,w)}.

Proof. The equivalent integral form of the initial value problem (27) is

y(t) = bhafl(t wO) + Iz,wof(t’ y(t))

Then,
ly(®)] < [blha—1(t,wo) + IR o, |f (£ y(1))]
< [bha1(t wo) + Tawo [y(O]° + I8 o, 9O (30)
An application of Theorem 9 to (30), yields the desired result. (|

Theorem 20. Let the conditions of Theorem 19 be satisfied. Moreover, if

|f (@) = fla, )| < |r =l

then (27) has at most one solution.
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Proof. Suppose that initial value problem (27) has two solutions r;(t), 1 <14 <2. We

have
’I“z'(t) = bha_l(t, UJQ) + IZ’WOf(t, Ti(t)), 1 <4 <2.
Hence,
r1(t) —r2(t) = IR o, [f(t () = f(t,72(1)]

[r1(8) = r2(8)] < IR o, [r1.() = r2(O]" + Ta g I (6) = r2(0)]° (31)

Considering |r1(t) — r2(t)| as one independent function and applying Theorem 9 to
inequality (31), we get |r1(t) — r2(t)| < 0. Therefor, r1(t) = ra(t). O

Theorem 21. Let (Q, F, P) be a complete probability space with an m— dimensional
Brownian motion B(t) := (By(t), ..., Bm(t))" defined on the space R™, t >0 and a €
(0,1); let wg be a random variable such that Elwo|? < co. Let b, oy : [0,w]rx R™ — R™
and o3 : [0,w]r x R™ — R™™ ™ be right dense-continuous on [0,w]r, continuous on
R”™ and measurable. Let f: R™ — R" be continuous on R™ such that:

b6 S + o (& S +low (6 F@) < K2 (1+17@)F)  (32)

b(t, f(x)) =b(t f)] + o (4 f(2) — o1 (t f ()]
+ oz (t, f(2)) — o2 (4 f(y)| < LIf(x) = fFly)] (33)

for some constants K,L > 0. Then the A—stochastic differential equation (28) has a
t—continuous solution with a filtration F*° such that

el *A } .
[ af <o
Proof. The integral form of the A—stochastic differential equation (28) is as follows:
fa®) = flwo)+1a0b(t f(z(t) +T(a+1IZ, o1 (4 f(z(1)))
¢
+ [ o2 f@p)) 2B, (34)
0

By the method of Picard-Lindeldf iteration, define iteratively f(z(%)(t)) = f(wo), for
some ¢ € N, as follows:

fEPE) = flwo)+Iao b (ta f(af(ﬁ)(t)))
+(a+1)IZ o 01 (t, f? (t)))

+ [0 (b 1= 1) a8, (35)

0
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Using the inequality |z + y + z|> < 3|z|? + 3|y|?> + 3|2|? and applying the Cauchy
Schwartz inequality on the first two integral and [t6’s Isometry on the third integral,

yield the following:

21 (20 0) - f (x0)[

<3Eag [b(L 1D ) b (L1 W)

+3(T(a+1))? ha(t,0)

XBI3 o [o1 (6 1P @) = o (& f(xw—l)(t)))r

8Bl g [0 (L 1@P(0)) - 2 (1 0 0)] (36)
An application of the Lipschitz condition (33), yields:

Bl (#00) 1 (+0)]

< 3L2(t+ 1) A {E ‘ f (x“” (t)) _f (N—U(t)) ]2}

+3L2 (D(a + 1)) ha(t,0)

<I3 o {E 7 (#20) £ (+) ‘2} . (37)
For continuous function ¥(t), we define an operator € as follows:

CU(t) == BL2(t + 1)Ia 0P (t) + 3L% (T(a +1))% ha(t, 0) IR o T (1) (38)

Repeated iterations on (37) for (38), yield

Bl (=000) - 1 (=00

e(lr (=m) -1 (= w)[)

<t ( £ (20 - £ (200 ‘2)

e (B]r (+00) - 1 (+00)[) (39)

Again, from (35), applying the inequality |z + y + z|*> < 3|x|? + 3|y|? + 3|z|?, the
Cauchy Schwartz inequality, the It6’s Isometry, the linear growth condition yields

27 (+0®) 7 (+0)[
< 3K (1+ B|f (wo)) {€ + t+ (D(a+ 1)) (ha(t,0)) } .

IN

IN

IN

Then,

o (&)1 (010) 1 (00)f )
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< 3K (1+ B|f(wo) 2) {w? +w + (N(a +1))? (ha(w,0))}

(40)

As, E|f (2 (1) — f (2© (‘c))}2 is continuous, the application of (7), (9), (39) and

(40) yield:
Blf (#90@) — 1 («0)]
< o (E 1 (+D) - £ (=) }2>
< 3K (1+ Bl f(wo)2) {w? +w+ (N(a+1))° (ha(w,0))}
x m 302 {4+ 1+ w0~ (D@ + 1)) ha(4,0) "
Therefore

sup (E 7 (2 ®) - £ (+) \2)

wo <t<w
My
I'(Ya+1)

v
<

[3L2w {w F1+ w9 (D(a + 1)) ha(w, O)H
provided that

My = 3K (14 E|f (wo)?) {&? +w + (D(a+ 1))* (ha(w,0))* }
Thus, for any ¢, 0 € N such that ¢ > 6 > 0, we have

|7 (#90) =1 (")

2

LA(P)

¢
<3| (=0 00) £ (0 w),,

-3 [l 10) -5 (s00)
9=0"0

2

(3L2w)"

¢
= Moﬂzz:e W+ D) (Ja+ 1)

9+1
} — 0,

x {w F1 4w (D(a+ 1)) ha(w, 0)
for sufficiently large ¢, 6.
From Doob’s maximal inequality for martingales, we get

gp [p 7 (= 0w) - £ (+ )| > H
oo [3L2w {w + 14wt (D(a + 1))2 ha(w, 0)}}19

< M,
= Oﬁ; T(Ja+1)

9 < 400

(41)
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The Borel’s cantelli Lemma yields:

IE”{ sup ‘f (xw“)(t)) —f (xw)(t))‘ > 19—12 for infinitely many 19} =0,

wo<t<w
so there exist a random variable f (x(t)) which is almost surely uniformly continuous
on [wo,w], such that:

9—

7 (#20) = £ (x00) + X [£ (200) - £ (#9©)] 2% f (o).

0=0

[u

Since f (z(?)(t)) is continuous in t for any ¥ € N, so f (z(t)) is also t—continuous.

Therefore,
f (wo) + In b (4 S@(0)) +T(a+DIL g o1 (& (1)
t
o () AB 19—>oo
+ [ o (0. £V 0)) AB, 25 fla(0),
for a stochastic process f(x(t)) satisfying (34). O
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