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ABSTRACT: This paper is concerned with the problem of anti periodic solution

for a class of fuzzy cellular neural networks (FCNNs) with variable coefficients in

the leakage terms. Using contraction mapping and fixed point theorem and differen-

tial inequality, we obtain some sufficient conditions to guarantee the existence and

exponential stability of the anti periodic solution for this model. These results com-

plement previously known publications. Moreover a numerical example is given to

show effectiveness of results obtained.
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1. INTRODUCTION

In this paper, we consider the problem of anti-periodic solution for fuzzy cellular

neural networks (FCNNs) with variable coefficients in the leakage terms, for i =

1, 2, · · · , n,
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x′
i(t) =− ci(t)xi(t) +

n
∑

j=1

aij(t)fj(xj(t− τij(t)))

+
n
∧

j=1

αij(t)

∫ ∞

0

Kij(s)gj(xj(t− s))ds

+

n
∨

j=1

βij(t)

∫ ∞

0

Kij(s)gj(xj(t− s))ds+ Ii(t), (1)

which has been successfully applied in many fields such as image and signal processing,

pattern recognition, optimization and automatic control, see for example [1, 2]. Here

the first term in each of the right sides of (1) is variously known as forgetting or

leakage term (see for instance [3, 4]), n is the number of units in a neural networks,

xi(t) corresponds to the state of the i-th unit at time t. ci(t), the leakage coefficient

function, denotes the rate with which the i-th unit will reset its potential to the

resting state in isolation when disconnected from the network and external input.

aij(t) represents the strength of the j-th unit on the i-th unit at time t.
∧

and
∨

denote fuzzy AND and fuzzy OR operations, respectively. αij(t) and βij(t) are

the elements of fuzzy feedback MIN and fuzzy feedback MAX template at time t

respectively. Kij(s) and τij(t) ≥ 0 are respectively transmission delay kernel and

transmission delay. fj(·) and gj(·) are signal transmission functions. Ii(t) are external

input to the i-th unit at time t. i, j = 1, 2, · · · , n.

As is all known, FCNNs first proposed by Yang and Yang [1, 2] is a new cellular

neural networks model, which combined fuzzy AND and fuzzy OR operations with

cellular neural networks. It is worth noting that FCNNs are different from T-S fuzzy

neural networks which are based on a set of fuzzy rules to describe nonlinear system.

Recently many studies have shown that FCNNs are useful in image processing and

pattern recognition, and some interesting results have been published on stability of

equilibrium and periodic solution of FCNNs with delays [5, 6, 7, 8, 9, 10, 11].

On the other hand, the existence and stability of anti-periodic solutions of dynam-

ical system are also an very important topic characterizing the dynamical behavior

of nonlinear differential equation. For example, the signal transmission process of

neural networks can often be described as an anti-periodic process. The study on anti

periodic solution of neural networks has theoretical value and also tremendous poten-

tial in applications (see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and references

therein). Furthermore, assuming that

inf
t∈R

ci(t) > 0, i = 1, 2, · · · , n. (2)

In the past few decades, people have paid much attention to the stability on biolog-

ical systems with variable coefficients appear in linearizations of population dynamics

models with seasonal fluctuations, where during some seasons the death or harvesting
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rates may be greater than the birth rate (see [24, 25]). Some interesting results on

anti periodic solution of CNNs have been published in recent years. However, to the

best of the authors knowledge, few authors have handled the anti-periodic solutions

of FCNNs with variable coefficients in leakage terms. Motivated by these discussion

above, we establish some sufficient conditions to guarantee the existence and expo-

nential stability of anti-periodic solutions for (1) without (2). Particularly, our results

not only generalize the existing ones in [11, 12, 13, 14, 15, 16, 17, 18], but also improve

them. In fact, one can see the following Remarks 3.1 for details.

The rest of this paper is organized as follows. In Section 2, some preliminaries

and basic assumptions are established. In Section 3, some sufficient conditions are

derived for guaranteeing the existence and exponential stability of an anti-periodic

solution for system (1). In Section 4, an numerical example is given to illustrate our

results. Finally, a general conclusion is drawn in Section 5.

2. PRELIMINARIES AND SOME ASSUMPTIONS

In this section, we shall first recall some basic definitions and lemmas which are used

in what follows.

Let Rn be the set of all n dimension real vectors. x = (x1, x2, · · · , xn)
T ∈ Rn

denotes a column vector (symbol T denotes the transpose of a vector).

Let x(t) : R → R be continuous at t. x(t) is said to be ω-anti periodic on R

if x(t + ω) = −x(t), for all t ∈ R. where ω is a positive constant. We let |x|∞ =

maxt∈[0,ω] |x(t)|. C(R,R) = {x|x(t) : R → R be continuous in t} and Cω := {x =

{xi}, xi ∈ C(R,R), xi(t + ω) = −xi(t)} which is a Banach space endowed with the

norm ‖·‖ defined by ‖x‖ = max1≤i≤n |xi|∞. Given a bounded and continuous function

g defined on R, g+ = supt∈R g(t), g− = inft∈R g(t).

A matrix or vector A ≥ 0 means that all entries of A are greater than or equal to

zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B (resp.

A > B) means that A−B ≥ 0 (resp. A−B > 0).

The initial conditions associated with system (1) are of the form

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, · · · , n. (3)

where ϕi(·) is a real-valued bounded and continuous function defined on (−∞, 0].

Throughout this paper, the following conditions hold
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(A1) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , v ∈ R, there exists ω > 0 such that






























ci(t+ ω) = ci(t), aij(t+ ω)fj(−v) = −aij(t)fj(v),

Ii(t+ ω) = −Ii(t), αij(t+ ω) = −αij(t), gj(−v) = gj(v),

τij(t+ ω) = τij(t), βij(t+ ω) = −βij(t),

(4)

(A2) For j = 1, 2, · · · , n, the activation functions fj , gj : R → R are Lipchtiz contin-

uous, i.e., there exist nonnegative constants µj , νj such that, for u, v ∈ R,











|fj(u)− fj(v)| ≤ µj |u− v|,

|gj(u)− gj(v)| ≤ νj |u− v|.

(5)

(A3) For i = 1, 2, · · · , n there exist a bounded continuous function c∗ : R → (0,+∞)

and positive constants Gs
i such that

e−
∫

t

s
ci(s)ds ≤ Gie

−
∫

t

s
c∗i (s)ds, t, s ∈ R, t > s.

(A4) For i, j = 1, 2, · · · , n, the delay kernel Kij : [0,+∞) → R are continuous and

|Kij(t)|e
γt are integrable on R, for a positive constant γ.

(A5) For i = 1, 2, · · · , n, there exist constants δi and ξj such that for t > 0,

sup
t∈R







−c∗i (t) +Gs
i





1

ξi

n
∑

j=1

(|aij(t)|µj + (|αij(t)|+ |βij(t)|)

× νj

∫ ∞

0

|Kij(s)|ds

)

ξj

]}

< −δi < 0.

Definition 1. The anti periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), · · · , x

∗
n(t))

T of system

(1) with the initial value ϕ∗ = (ϕ∗
1, ϕ

∗
2, · · · , ϕ

∗
n)

T ∈ C(R,Rn) is said to be globally

exponentially stable, if there exist constants λ > 0 and M ≥ 1 such that

|xi(t)− x∗
i (t)| ≤ M‖ϕ− ϕ∗‖e−λt, ∀t > 0, i = 1, 2, · · · , n.

for every solution x(t) = (x1(t), x2(t), · · · , xn(t))
T of system (1.1) with initial value

ϕ ∈ C(R,Rn). where

‖ϕ− ϕ∗‖ = sup
−∞<s≤0

max
1≤i≤n

|ϕi(s)− ϕ∗
i (s)|.

Lemma 1. [1] If u and v are two states of system (1.1), then we have
∣

∣

∣

∣

∣

∣

n
∧

j=1

αij(t)gj(u)−

n
∧

j=1

αij(t)gj(v)

∣

∣

∣

∣

∣

∣

≤

n
∑

j=1

|αij(t)||gj(u)− gj(v)|,
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and
∣

∣

∣

∣

∣

∣

n
∨

j=1

βij(t)gj(u)−

n
∨

j=1

βij(t)gj(v)

∣

∣

∣

∣

∣

∣

≤

n
∑

j=1

|βij(t)||gj(u)− gj(v)|.

3. MAIN RESULTS

In this section, we discuss the existence and exponential stability for an anti-periodic

solution of system (1.1).

Theorem 2. If assumptions (A1)-(A5) hold. Then there exists a unique ω anti

periodic solution of system (1).

Proof. Set yi(t) = ξ−1
i xi(t). Then it follows from (1) that

y′i(t) = −ci(t)yi(t) +
1

ξi

n
∑

j=1

aij(t)[fj(ξjyj(t− τij(t)))

+
1

ξi

n
∧

j=1

αij(t)

∫ ∞

0

Kij(s)gj(ξjyj(t− s))ds +
1

ξi
Ii(t)

+
1

ξi

n
∨

j=1

βij(t)

∫ ∞

0

Kij(s)gj(ξjyj(t− s))ds (6)

Thus, to prove Theorem 2, it suffices to show that system (6) has a unique ω-anti-

periodic solution.

Defining a continuous function (Γϕ)i(t), ϕ ∈ cω as follows

(Γϕ)i(t) =

∫ t

−∞

e−
∫

t

s
ci(u)du





1

ξi

n
∑

j=1

aij(s)fj(ξjyj(s− τij(s)))

+
1

ξi

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(ξjyj(s− v))dv +
1

ξi
Ii(s)

+
1

ξi

n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(ξjyj(s− v))dv



 ds (7)

Next we prove that Γi : C
ω → Cω is a contraction mapping. In fact, in view of (7),

(A2),(A3) and (A5), using Lemma 1, for ϕ, φ ∈ Cω, we have

|(Γϕ)i(t)− (Γφ)i(t)|

=

∣

∣

∣

∣

∣

∣

∫ t

−∞

e−
∫

t

s
ci(u)du





1

ξi

n
∑

j=1

aij(s)(fj(ξjϕj(s− τij(s)))
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−fj(ξjφj(s− τij(s))))

+
1

ξi





n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(ξjϕj(s− v))dv

−

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(ξjφj(s− v))dv





+
1

ξi





n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(ξjϕj(s− v))dv

−

n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(ξjφj(s− v))dv







 ds

∣

∣

∣

∣

∣

∣

≤

∫ t

−∞

e−
∫

t

s
ci(u)du





1

ξi

n
∑

j=1

|aij(s)|µjξj |ϕj(s− τij(s))− φj(s− τij(s))|

+
1

ξi

n
∑

j=1

(|αij(s)|+ |βij(s)|)

×

∫ ∞

0

|Kij(v)|νjξj |ϕj(s− v)− φj(s− v)|dv

]

ds

≤

∫ t

−∞

e−
∫

t

s
c∗i (u)duGS

i





1

ξi

n
∑

j=1

(|aij(s)|µj + (|αij(s)|+ |βij(s)|)νj

×

∫ ∞

0

|Kij(v)|dv)ξj

]

ds‖ϕ− φ‖

≤

∫ t

−∞

e−
∫

t

s
c∗i (u)du(c∗i (s)− δi)ds‖ϕ− φ‖

≤

∫ t

−∞

e−
∫

t

s
c∗i (u)du(c∗i (s)−

δi

3
)ds‖ϕ− φ‖

≤

[∫ t

−∞

e−
∫

t

s
c∗i (u)dud

(

−

∫ t

s

c∗i (u)du

)

−
δi

3

∫ t

−∞

e−
∫

t

s
c∗i (u)duds

]

‖ϕ− φ‖

≤

(

1−
δi

3c∗+i

)

‖ϕ− φ‖ (8)

From (A5), we have

0 < max
1≤i≤n

(

1−
δi

3c∗+i

)

< 1.

which, together with (7), yields

‖Γϕ− Γφ‖ ≤ max
1≤i≤n

(

1−
δi

3c∗+i

)

‖ϕ− φ‖.
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Namely, Γ is a contraction mapping. Therefore, the mapping Γ possesses a unique

fixed point y∗ ∈ Cω and Γy∗ = y∗. Thus

y∗j (t) =

∫ t

−∞

e−
∫

t

s
ci(u)du





1

ξi

n
∑

j=1

aij(s)fj(ξjy
∗
j (s− τij(s)))

+
1

ξi

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(ξjy
∗
j (s− v))dv

+
1

ξi

n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(ξjy
∗
j (s− v))dv +

1

ξi
Ii(s)



 ds

which is equivalent to

y∗
′

i (t) = −ci(t)y
∗
i (t) +

1

ξi

n
∑

j=1

aij(t)[fj(ξjy
∗
j (t− τij(t)))

+
1

ξi

n
∧

j=1

αij(t)

∫ ∞

0

Kij(s)gj(ξjy
∗
j (t− s))ds

+
1

ξi

n
∨

j=1

βij(t)

∫ ∞

0

Kij(s)gj(ξjy
∗
j (t− s))ds +

1

ξi
Ii(t)

By the equivalence of (1) and (6), one can show that system (1) has a unique ω-anti-

periodic solution x∗(t) = ξiy
∗(t). This completes the proof of Theorem 2.

Theorem 3. Suppose that all conditions in Theorem 2 are satisfied. Then system (1)

has exactly one ω-anti-periodic solution x∗(t) which is globally exponentially stable.

Proof. By Theorem 2, system (1) has a unique ω-anti-periodic solution x∗(t). Let

x(t) = (x1(t), x2(t), · · · , xn(t))
T be a solution of (1.1) associated with initial value

ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t))
T satisfying (3). Let ui(t) =

1
ξi
(xi(t)− x∗

i (t)). Then

u′
i(t) = −ci(t)ui(t) +

1

ξi

n
∑

j=1

aij(t)[fj(xj(t− τij(t)))− fj(xj(t− τij(t)))]

+
1

ξi





n
∧

j=1

αij(t)

∫ ∞

0

Kij(s)gj(xj(t− s))ds

−

n
∧

j=1

αij(t)

∫ ∞

0

Kij(s)gj(x
∗
j (t− s))ds





+
1

ξi





n
∨

j=1

βij(t)

∫ ∞

0

Kij(s)gj(yj(t− s))ds
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−

n
∨

j=1

βij(t)

∫ ∞

0

Kij(s)gj(yj(t− s))ds



 (9)

Define a continuous function Ψi(r) by setting,for r ∈ [0, γ],

Ψi(r) = r − c∗i (t) +Gi





1

ξi

n
∑

j=1

(|aij(t)|µje
rτij(t) + (|αij(t)|+ |βij(t)|)νj

×

∫ ∞

0

|Kij(v)|e
rvdv)ξj

]

(10)

According to (A4), we have

Ψi(0) = −c∗i (t) +Gi





1

ξi

n
∑

j=1

(|aij(t)|µj + (|αij(t)|+ |βij(t)|)νj

×

∫ ∞

0

|Kij(v)|dv)ξj

]

≤ −δi < 0

Since Ψi(r) is continuous, we can choose a constant

λ ∈ (0,min{γ,min1≤i≤n(c
∗−
i )}) such that

Ψi(λ) = λ− c∗i (t) +Gi





1

ξi

n
∑

j=1

(|aij(t)|µje
λτij(t) + (|αij(t)|+ |βij(t)|)νj

×

∫ ∞

0

|Kij(v)|e
λvdv)ξj

]

< 0 (11)

Let ‖ϕ − x∗‖ = supt≤0 max1≤i≤n{
1
ξi
|ϕi(t) − x∗

i (t)|} and M =
∑n

i=1 Gi + 1. Conse-

quently, for any ε > 0it is clear that, for all t ∈ (−∞, 0],

‖u(t)‖ < (‖ϕ− x∗‖+ ε)e−λt < M(‖ϕ− x∗‖+ ε)e−λt (12)

In the following, we will show, for t ≥ 0, (12) hold true. Otherwise, there must exist

i ∈ {1, 2, · · · , n} and θ > 0 such that, for t ∈ (−∞, θ),

|ui(θ)| = M(‖ϕ− x∗‖+ ε)eλθ, ‖u(t)‖ < M(‖ϕ− x∗‖+ ε)eλt. (13)

Noting that (9), we have, for s ∈ [0, t], t ∈ [0, θ],

u′
i(s) + ci(s)ui(s) =

1

ξi

n
∑

j=1

aij(s)[fj(xj(s− τij(s))) − fj(xj(s− τij(s)))]

+
1

ξi





n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(xj(s− v))dv
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−

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(x
∗
j (s− v))dv





+
1

ξi





n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))ds

−

n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))dv



 (14)

Multiplying both sides of (14) by e
∫

s

0
ci(u)du, and integrating it on [0, t], we have

ui(t) = ui(0)e
−

∫
t

0
ci(u)du

+

∫ t

0

e−
∫

t

s
ci(u)du







1

ξi

n
∑

j=1

aij(s)[fj(xj(s− τij(s)))− fj(xj(s− τij(s)))]

+
1

ξi





n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(xj(s− v))dv

−

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(x
∗
j (s− v))dv





+
1

ξi





n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))ds

−
n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))dv











ds

for t ∈ [0, θ]. Thus we have

|ui(θ)| =
∣

∣

∣ui(0)e
−

∫
θ

0
ci(u)du

+

∫ θ

0

e−
∫

θ

s
ci(u)du







1

ξi

n
∑

j=1

aij(s)[fj(xj(s− τij(s))) − fj(xj(s− τij(s)))]

+
1

ξi





n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(xj(s− v))dv

−

n
∧

j=1

αij(s)

∫ ∞

0

Kij(v)gj(x
∗
j (s− v))dv





+
1

ξi





n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))ds
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−

n
∨

j=1

βij(s)

∫ ∞

0

Kij(v)gj(yj(s− v))dv











ds

∣

∣

∣

∣

∣

∣

≤ (‖ϕ− x∗‖+ ε)Gie
−

∫
θ

0
c∗i (u)du

+

∫ θ

0

e−
∫

θ

s
ci(u)duGi







1

ξi

n
∑

j=1

aij(s)µjξj |uj(s− τij(s))|

+
1

ξi

n
∑

j=1

(|αij(s)|+ |βij(s)|)

∫ ∞

0

|Kij(v)|νjξj |uj(s− v)|dv







ds

≤ (‖ϕ− x∗‖+ ε)Gie
−

∫
θ

0
c∗i (u)du

+

∫ θ

0

e−
∫

θ

s
c∗i (u)duGi







1

ξi

n
∑

j=1

aij(s)µjξj(‖ϕ− x∗‖+ ε)e−λ(s−τij(s))

+
1

ξi

n
∑

j=1

(|αij(s)|+ |βij(s)|)

×

∫ ∞

0

|Kij(v)|νjξjM(‖ϕ− x∗‖+ ε)e−λ(s−v)dv

}

ds

≤ (‖ϕ− x∗‖+ ε)e−λθGie
−

∫
θ

0
(c∗i (u)−λ)du

+

∫ θ

0

e−
∫

θ

s
(c∗i (u)−λ)duGi







1

ξi

n
∑

j=1

aij(s)µjξj(‖ϕ− x∗‖+ ε)e−λτij(s)

+
1

ξi

n
∑

j=1

(|αij(s)|+ |βij(s)|)

∫ ∞

0

|Kij(v)|νjξje
λvdv







ds

×M(‖ϕ− x∗‖+ ε)e−λθ

≤ (‖ϕ− x∗‖+ ε)e−λθGie
−

∫
θ

0
(c∗i (u)−λ)du

+

∫ θ

0

e−
∫

θ

s
(c∗i (u)−λ)du(c∗i (s)− λ)dsM(‖ϕ− x∗‖+ ε)e−λθ

= M(‖ϕ− x∗‖+ ε)e−λθ

[

1− (1−
Gi

M
)e−

∫
θ

0
(c∗i (u)−λ)du

]

< M(‖ϕ− x∗‖+ ε)e−λθ

This contradicts the first equation of (13). Let ε → 0+, we have ‖u(t)‖ ≤ M‖ϕ −

x∗‖e−λt for all t > 0. The proof of Theorem 3 is completed.

Remark 3.1 In compared with [14], the activation function fj(·), gj(·) only satisfy

Lipschtiz continuous and need not to be bounded and differentiable. The results

obtained dependents on system parameters. Moreover the system (1) contains fuzzy

AND and fuzzy OR template. One can observe that all the results in [12, 13, 15, 16,
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17, 18, 19, 20, 21, 22] and the references therein can not be applicable to system (1).

Therefore, the results obtained are new and generalize the results of publication.

4. NUMERICAL EXAMPLE

In this section, we give a numerical example to illustrate effectiveness of the results

obtained.

Example Considering the following two neurons fuzzy cellular neural networks

with variable coefficients in the leakage terms.

x′
i(t) = −ci(t)xi(t) +

2
∑

j=1

aij(t)fj(xj(t− τij(t)))

+
2
∧

j=1

αij(t)

∫ ∞

0

Kij(u)gj(xj(t− u))du

+

2
∨

j=1

βij(t)

∫ ∞

0

Kij(u)gj(xj(t− u))du+ Ii(t), (15)

where i = 1, 2,

c1(t) = 3 + sin 20t, c2(t) = 3 + cos 20t, c∗1(t) = c∗2(t) = 3, G1 = G2 = e
1

10 .

a11(t) = a21(t) =
1

16
sin 4t, a12(t) = a22(t) =

1

16
cos 4t, ω =

π

2
,

α11(t) = α21(t) =
1

8
sin 2t, α12(t) = α22(t) =

1

10
sin 2t, f1(x) = f2(x) = arctanx,

β11(t) = β21(t) =
1

6
sin 2t, β12(t) = β22(t) = −

1

8
sin 2t, g1(x) = g2(x) = |x|,

Ii(t) = 5 sin 2t, I2(t) = 3 sin 2t, τ11(t) = 2, τ12(t) = 3, τ21(t) = 2, τ22(t) = 4,

K11(t) = K12(t) = e−t,K21(t) = K22(t) = e−2t, µ1 = µ2 = 1, ν1 = ν2 = 1,

Take ξ1 = 1
2 , ξ2 = 1

3 , δ1 = δ2 = 0.8. Clearly,
∫∞

0
|K11(u)|du =

∫∞

0
|K12(u)|du =

1,
∫∞

0
|K21(u)|du =

∫∞

0
|K22(u)|du = 1

2 , γ = 1
2 .

By simple computation, we have

sup
t∈R







−c∗1(t) +Gi





1

ξ1

2
∑

j=1

(|a1j(t)|µj

+(|α1j(t)|+ |β1j(t)|)νj

∫ ∞

0

|K1j(s)|ds

)

ξj

]}

= −1.3054 < −0.8 < 0
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sup
t∈R







−c∗2(t) +G2





1

ξ2

2
∑

j=1

(|a2j(t)|µj

+(|α2j(t)|+ |β2j(t)|)νj

∫ ∞

0

|K2j(s)|ds

)

ξj

]}

= −2.5764 < −0.8 < 0

Hence, it follows that the assumptions (A1)–(A5) are satisfied. Therefore, accord-

ing to Theorem 2 and Theorem 3, system (15) has one π
2 -anti periodic solution which

is globally exponentially stable.

5. CONCLUSION

In this paper, applying contraction mapping and fixed point theorem and differential

inequality, we obtained some sufficient conditions for the existence, uniqueness and

exponentially stability of anti periodic solution for fuzzy cellular neural networks

with variable coefficients in leakage term. These conditions dependent on system

parameters. The proposed results are less conservative than some recently known

ones in the literature. The sufficient conditions obtained on existence and global

stability of anti periodic solution are easily verifiable.
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