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1. INTRODUCTION

When one checks the literature, there are many articles on the stability theory of so-

lutions of constant delay differential equations (DDEs). In recent years, the stability

analysis of neutral differential equations/systems has been investigated extensively by

many researchers. It is well known that this equations or systems are frequently used
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in various practical engineering systems such as power systems, aircraft, chemical

and networked control systems. The problem exponential stability and asymptotic

behaviors for neutral equations/systems with variable lags has been investigated by

many researchers in recent years (see [1-15]). The problem of exponential stability

of solutions to DDEs is one of the important questions from theoretical and practi-

cal viewpoints. Because DDEs arise in many applied sciences when describing the

processes whose speed is described by both the present and previous cases [9, 10].

In 2017, Matveeva [12] considered the following neutral differential system with

periodic coefficients

d

dt
y(t) = A(t)y(t) +B(t)y(t − σ) + C(t)

d

dt
y(t− σ), t ≥ 0. (1)

Matveeva [12] gave some results on the exponential stability and exponential decay

rate of the solutions of equation (1) as t → +∞. This paper is a continuation of works

of the exponential stability of solutions to DDEs with periodic coefficients in linear

terms (see, [4-6] and [11, 12]).

In this paper, motivated by Matveeva [12], we consider the following nonlinear

neutral differential system with periodic coefficients and variable delay

d

dt
y(t) =A(t)y(t) +B(t)y(t − σ(t)) + C(t)

d

dt
y(t− σ(t))

+ F (t, y(t), y(t− σ(t))) (2)

where t(> 0) ∈ R, y ∈ ℜn, A(t), B(t) and C(t) are n × n- continuous T - periodic

matrices, that is,

A(t+ T ) ≡ A(t), B(t+ T ) ≡ B(t), C(t+ T ) ≡ C(t), T (> 0) ∈ R,

and F (t, u, v) is a real-vector valued continuous function satisfying the Lipschitz con-

dition in u and the inequality

‖F (t, u, v)‖ ≤ q1‖u‖+ q2‖v‖, q1, q2 ∈ ℜ, q1, q2 ≥ 0,

and σ(t) ∈ C1([0,∞)), σ(t) is differentiable and T - periodic variable delay. It also

satisfies that

σ(t+ T ) = σ(t), 0 < σ1 ≤ σ(t) ≤ σ2 < ∞, σ′(t) ≤ α < 1, α ∈ (0, 1) (3)

where σ1, σ2 and α are some constants.

Here, we benefit from the Lyapunov method as a basic tool to prove the results

of this paper. The main advantage of this method allows us to get information about

the qualitative behaviors of the trajectories of solutions without any knowledge of

about them.
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The main purpose of this article is to obtain some new sufficient conditions on the

exponential stability and exponential decay rate of the solutions of DDE (2). In the

cases F (t, y(t), y(t − σ(t))) = 0 and σ(t) = σ (constant), DDE (2) is reduced to the

DDE (1), which is discussed in ([12]). That is, DDE(2) includes and improves DDE

(1). This is the contribution of the paper to the relevant literature.

Through the study, we use the following inner product and vector norm

〈x, z〉 =

n
∑

j=1

xj , z̄j, ‖x‖ =
√

〈x, x〉.

The symbol ‖H‖ represents the spectral norm of the matrix H and H∗ is the

conjugate transpose of H .

2. MAIN RESULTS

We suppose that there are matricesH(t) ∈ C1([0, T ]) andK(s), L(s) ∈ C1([0, σ2])

such that

H(t) = H∗(t), H(t) = H(t+ T ) > 0, t ≥ 0, (4)

K(s) = K∗(s) ≥ 0,
d

ds
K(s) ≤ 0, s ∈ [0, σ2], (5)

L(s) = L∗(s) ≥ 0,
d

ds
L(s) ≤ 0, s ∈ [0, σ2]. (6)

Further, define the matrix

Q(t) =

(

M11(t) M12(t)

M∗
12(t) M22(t)

)

(7)

where

M11(t) =

(

Q11(t) Q12(t)

Q∗
12(t) Q22(t)

)

,M12(t) =

(

Q13(t) Q14(t)

Q23(t) Q24(t)

)

M22(t) =

(

Q33(t) Q34(t)

Q∗
34(t) Q44(t)

)

(8)

with

Q11(t) = −
d

dt
H(t)−H(t)A(t) −A∗(t)H(t) −K(0)

−A∗(t)L(0)A(t), Q12(t) = −H(t)B(t)−A∗(t)L(0)B(t),

Q13(t) = −H(t)C(t)−A∗(t)L(0)C(t), Q14(t) = −H(t)−A∗(t)L(0)

Q22(t) = (1− α)K(σ2)−B∗(t)L(0)B(t), Q23(t) = −B∗(t)L(0)C(t),



306 Y. ALTUN AND C. TUNÇ

Q24(t) = −B∗(t)L(0), Q33(t) = (1− α)L(σ2)− C∗(t)L(0)C(t),

Q34(t) = −C∗(t)L(0), Q44(t) = −L(0).

Theorem 1.Suppose that there exist matricesH(t) ∈ C1([0, T ]) andK(s), L(s) ∈

C1([0, σ2]), satisfying (4-6), such that Q(t) holds the inequality

〈

Q(t)











u

v

w

ρ











,











u

v

w

ρ











〉

≥ 〈P (t)u, u〉, u, v, w, ρ ∈ Cn, t ∈ [0, T ], (9)

where P (t) is a positive definite Hermitian matrix with continuous entries. If

d

dt
K(s) + kK(s) ≤ 0,

d

ds
L(s) + lL(s) ≤ 0, s ∈ [0, σ2], (10)

for some k, l > 0, then the zero solution to (2) is exponentially stable.

Proof.The proof of this theorem can be readily following the proof of the next

Theorem 2 and Theorem 3. Therefore, we omit the details of the proof.

We take into account the following initial value problem (IVP) for (2):

d

dt
y(t) =A(t)y(t) +B(t)y(t − σ(t)) + C(t)

d

dt
y(t− σ(t))

+ F (t, y(t), y(t− σ(t)))) (11)

y(t) =ϑ(t), t ∈ [−σ2, 0], y(+0) = ϑ(0),

where ϑ(t) ∈ C1([−σ2, 0]) is an initial valued function. Below we establish estimates

for solutions to the IVP (11) characterizing the exponential decay rate as t → ∞.

To state the results, we use the following notations. If a matrix H(t) satisfies the

conditions of Theorem 1, then

d

dt
H(t) +H(t)A(t) +A∗(t)H(t) ≤ −P (t)−K(0)−A∗(t)L(0)A(t);

i.e., H(t) is a solution to the following boundary value problem (BVP) for the Lya-

punov differential equation

d

dt
H +HA(t) +A∗(t)H = −G(t), t ∈ [0, T ], H(0) = H(T ) > 0, (12)

where G(t) is a positive definite Hermitian matrix with continuous entries. Thus the

conclusions of [3] imply that H(t) > 0 on [0, T ]. Extend the matrices H(t) and P (t)

T -periodically to semi-axis {t ≥ 0}, keeping the same notation.

Since the decay rate depends on P (t) there is the natural question on finding this

matrix. Under slightly more restrictive conditions than those in Theorem 1, we write

this matrix clearly below.
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By Theorem 1, if there exist matricesH(t) ∈ C1([0, T ]) andK(s), L(s) ∈ C1([0, σ2])

satisfying conditions (4-6) and (10) such that for t ∈ [0, T ], the matrix Q(t) is positive

definite. Then, the zero solution to (2) is exponentially stable. If the matrix of Q(t)

meets
d

dt
H(t) +H(t)A(t) +A∗(t)H(t) ≤ −K(0)−A∗(t)L(0)A(t);

i.e., H(t) is a solution to the BVP (12). As was mentioned above, from [3] it follows

that H(t) > 0 on [0, T ]. Including H(t) together with K(s) and L(s), we introduce

the following matrix

P (t) = M11(t)−M12(t)M
−1
22 (t)M∗

12(t) (13)

where M11, M12(t) and M22(t) are specified in (8). It is not difficult to show that

P (t) is positive definite if so is Q(t) (see the Lemma 1). Denote by pmin(t) > 0 the

minimal eigenvalue of P (t) and by hmin(t) > 0 the minimal eigenvalue of H(t).

Theorem 2.Assume that conditions of Theorem 1 hold. Then, solutions of IVP

(11) satisfy the estimate

‖y(t)‖ ≤

√

V (0, ϑ)

hmin(t)
exp(−

1

2

∫ t

0

γ(ξ)dξ), t > 0, (14)

where

V (0, ϑ) =〈H(0)ϑ(0), ϑ(0)〉+

∫ 0

−σ(0)

〈K(−s)ϑ(s), ϑ(s)〉ds

+

∫ 0

−σ(0)

〈L(−s)
d

ds
ϑ(s),

d

ds
ϑ(s)〉ds, (15)

γ(t) = min{
pmin(t)

‖H(t)‖
, k, l} > 0. (16)

Proof . Let y(t) be a solution to the IVP (11). Using the matrix H(t) defined on

the whole quasi-axis {t ≥ 0} before the formulation of Theorem 2 and the matrices

K(s) and L(s) satisfying the conditions of Theorem 1, we take into account the

following LyapunovKrasovskii functional given by

V (t, y) =〈H(t)y(t), y(t)〉 +

∫ t

t−σ(t)

〈K(t− s)y(s), y(s)〉ds

+

∫ t

t−σ(t)

〈L(t− s)
d

ds
y(s),

d

ds
y(s)〉ds. (17)

Differentiating this functional (17), along solutions of equation (11), we obtain

d

dt
V (t, y) =〈

d

dt
H(t)y(t), y(t)〉
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+ 〈H(t)[A(t)y(t) +B(t)y(t − σ(t)) + C(t)
d

dt
y(t− σ(t))

+ F (t, y(t), y(t− σ(t)))], y(t)〉

+ 〈H(t)y(t), [A(t)y(t) +B(t)y(t− σ(t)) + C(t)
d

dt
y(t− σ(t))

+ F (t, y(t), y(t− σ(t)))]〉

+ 〈K(0)y(t), y(t)〉 − (1− σ′(t))〈K(σ(t))y(t − σ(t)), y(t− σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds+ 〈L(0)

d

dt
y(t),

d

dt
y(t)〉

− (1 − σ′(t))〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds.

Then, it follows that

d

dt
V (t, y) ≤〈

d

dt
H(t)y(t), y(t)〉

+ 〈H(t)A(t)y(t), y(t)〉 + 〈H(t)B(t)y(t − σ(t)), y(t)〉

+ 〈H(t)C(t)
d

dt
y(t− σ(t)), y(t)〉

+ 〈H(t)F (t, y(t), y(t− σ(t))), y(t)〉

+ 〈A∗(t)H(t)y(t), y(t)〉+ 〈B∗(t)H(t)y(t), y(t − σ(t))〉

+ 〈C∗(t)H(t)y(t),
d

dt
y(t− σ(t))〉 + 〈H(t)y(t), F (t, y(t), y(t− σ(t)))〉

+ 〈K(0)y(t), y(t)〉 − (1− σ′(t))〈K(σ(t))y(t − σ(t)), y(t − σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds

+ 〈L(0)[A(t)y(t) +B(t)y(t− σ(t)) + C(t)
d

dt
y(t− σ(t))

+ F (t, y(t), y(t− σ(t)))], [A(t)y(t) +B(t)y(t− σ(t))

+ C(t)
d

dt
y(t− σ(t)) + F (t, y(t), y(t− σ(t)))]〉

− (1− σ′(t))〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds.

Consider the expression

(1− σ′(t))〈K(σ(t))y(t − σ(t)), y(t− σ(t))〉

and

(1 − σ′(t))〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉.
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By (3) and the condition K(s) = K∗(s) > 0, L(s) = L∗(s) > 0 s ∈ [0, σ2], we

obtain

(1− σ′(t))〈K(σ(t))y(t − σ(t)), y(t− σ(t))〉

≥ (1− α)〈K(σ(t))y(t − σ(t)), y(t− σ(t))〉

and

(1− σ′(t))〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉

≥ (1− α)〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉.

Using the conditions d
ds
K(s) < 0, d

ds
L(s) < 0 and σ(t) ≤ σ2, we have K(σ(t)) ≥

K(σ2), L(σ(t)) ≥ L(σ2). Hence,

(1− σ′(t))〈K(σ(t))y(t − σ(t)), y(t− σ(t))〉

≥ (1 − α)〈K(σ2)y(t− σ(t)), y(t− σ(t))〉

and

(1− σ′(t))〈L(σ(t))
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉

≥ (1− α)〈L(σ2)
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉.

It is clear that,

d

dt
V (t, y) ≤〈

d

dt
H(t)y(t), y(t)〉

+ 〈H(t)A(t)y(t), y(t)〉 + 〈H(t)B(t)y(t − σ(t)), y(t)〉

+ 〈H(t)C(t)
d

dt
y(t− σ(t)), y(t)〉 + 〈H(t)F (t, y(t), y(t− σ(t))), y(t)〉

+ 〈A∗(t)H(t)y(t), y(t)〉+ 〈B∗(t)H(t)y(t), y(t − σ(t))〉

+ 〈C∗(t)H(t)y(t),
d

dt
y(t− σ(t))〉 + 〈H(t)y(t), F (t, y(t), y(t− σ(t)))〉

+ 〈K(0)y(t), y(t)〉 − (1− α)〈K(σ2)y(t− σ(t)), y(t − σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds

+ 〈A∗(t)L(0)A(t)y(t), y(t)〉 + 〈B∗(t)L(0)A(t)y(t), y(t − σ(t))〉

+ 〈C∗(t)L(0)A(t)y(t),
d

dt
y(t− σ(t))〉

+ 〈L(0)A(t)y(t), F (t, y(t), y(t− σ(t)))〉

+ 〈A∗(t)L(0)B(t)y(t− σ(t)), y(t)〉
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+ 〈B∗(t)L(0)B(t)y(t − σ(t)), y(t− σ(t))〉

+ 〈C∗(t)L(0)B(t)y(t− σ(t)),
d

dt
y(t− σ(t))〉

+ 〈L(0)B(t)y(t− σ(t)), F (t, y(t), y(t − σ(t)))〉

+ 〈A∗(t)L(0)C(t)
d

dt
y(t− σ(t)), y(t)〉

+ 〈B∗(t)L(0)C(t)
d

dt
y(t− σ(t)), y(t− σ(t))〉

+ 〈C∗(t)L(0)C(t)
d

dt
y(t− σ(t)), y(t − σ(t))〉

+ 〈L(0)C(t)
d

dt
y(t− σ(t)), F (t, y(t), y(t − σ(t)))〉

+ 〈A∗(t)L(0)F (t, y(t), y(t− σ(t))), y(t)〉

+ 〈B∗(t)L(0)F (t, y(t), y(t− σ(t))), y(t − σ(t))〉

+ 〈C∗(t)L(0)F (t, y(t), y(t− σ(t))),
d

dt
y(t− σ(t))〉

+ 〈L(0)F (t, y(t), y(t− σ(t))), F (t, y(t), y(t − σ(t)))〉

− (1− α)〈L(σ2)
d

dt
y(t− σ(t)),

d

dt
y(t− σ(t))〉

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds.

Since y(t) satisfies (2), then we have

d

dt
V (t, y) ≤

〈

−Q(t)











y(t)

y(t− σ(t))
d
dt
y(t− σ(t))

F (t, y(t), y(t− σ(t)))











,











y(t)

y(t− σ(t))
d
dt
y(t− σ(t))

F (t, y(t), y(t− σ(t)))











〉

+

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds, (18)

where Q(t) is defined by (7). From (9) we deduce that

d

dt
V (t, y) ≤− pmin(t)‖y(t)‖

2 +

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds,

where pmin(t) > 0 the minimal eigenvalue of P (t). It is clear that, we have

hmin(t)‖y(t)‖
2 ≤ 〈H(t)y(t), y(t)〉 ≤ ‖H(t)‖‖y(t)‖2, (19)
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where hmin(t) > 0 the minimal eigenvalue of H(t). Then,

d

dt
V (t, y) ≤−

pmin(t)

‖H(t)‖
〈H(t)y(t), y(t)〉

+

∫ t

t−σ(t)

〈
d

dt
K(t− s)y(s), y(s)〉ds

+

∫ t

t−σ(t)

〈
d

dt
L(t− s)

d

ds
y(s),

d

ds
y(s)〉ds.

Using (10), we have

d

dt
V (t, y) ≤−

pmin(t)

‖H(t)‖
〈H(t)y(t), y(t)〉

− k

∫ t

t−σ(t)

〈K(t− s)y(s), y(s)〉ds

− l

∫ t

t−σ(t)

〈L(t− s)
d

ds
y(s),

d

ds
y(s)〉ds.

The definition of the functional (17) yields that

d

dt
V (t, y) ≤ −γ(t)V (t, y),

where γ(t) is defined by (16). Integrating this inequality on the interval [0, t], we

obtain

V (t, y) ≤ V (0, ϑ) exp(−

∫ t

0

γ(ξ)dξ),

where V (0, ϑ) is defined in (15). Inequality (19) and the definition of the functional

(17) imply that

‖y(t)‖2 ≤
1

hmin(t)
〈H(t)y(t), y(t)〉 ≤

V (t, y)

hmin(t)
≤

V (0, ϑ)

hmin(t)
exp(−

∫ t

0

γ(ξ)dξ).

This completes the proof.

For further transformations we use the following auxiliary lemma of the theory of

matrices.

Lemma 1. Let

R(t) =

(

R11(t) R12(t)

R∗
12(t) R22(t)

)

, t ∈ [0, T ],

be a Hermitian positive definite matrix with continuous entries. As is easily seen,

R(t) =

(

I R12(t)R
−1
22 (t)

0 I

)(

R11(t)−R12(t)R
−1
22 (t)R

∗
12(t) 0

0 R22(t)

)
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×

(

I 0

R−1
22 (t)R

∗
12(t) I

)

where the I is the identity matrix. Hence, R(t) is positive definite for t ∈ [0, T ] if

and only if the matrices R11(t)−R12(t)R
−1
22 (t)R

∗
12(t), R

∗
22(t) are positive definite for

t ∈ [0, t].

Theorem 3. We suppose that, there exist H(t) ∈ C1([0, T ]) and K(s), L(s) ∈

C1([0, σ2]) satisfying (4-6), such that the matrix Q(t) is positive definite for t ∈ [0, T ].

Then the solution of IVP (11) satisfy (13), where P (t) is defined by (13).

Proof. Using the matrix H(t) defined on the whole quasi-axis {t ≥ 0} before the

formulation of Theorem 3 and the matrices K(s) and L(s) satisfying the conditions

of Theorem 3, we consider the functional (17) on solutions to the IVP (11). As in the

proof of Theorem 2, differentiation validates (18). The Lemma 1 yields

〈

Q(t)











y(t)

y(t− σ(t))
d
dt
y(t− σ(t))

F (t, y(t), y(t− σ(t)))











,











y(t)

y(t− σ(t))
d
dt
y(t− σ(t))

F (t, y(t), y(t− σ(t)))











〉

≥ 〈P (t)y(t), y(t)〉,

where P (t) is a positive definite Hermitian matrix given by (13).

Then

〈P (t)y(t), y(t)〉 ≥ pmin(t)‖y(t)‖
2,

where pmin(t) > 0 the minimal eigenvalue of P (t). In view of (10) and (19), from (18)

it follows that

d

dt
V (t, y) ≤−

pmin(t)

‖H(t)‖
〈H(t)y(t), y(t)〉

− k

∫ t

t−σ(t)

〈K(t− s)y(s), y(s)〉ds

− l

∫ t

t−σ(t)

〈L(t− s)
d

ds
y(s),

d

ds
y(s)〉ds.

The definition of the functional (17) yields that

d

dt
V (t, y) ≤ −γ(t)V (t, y),

where γ(t) is defined by (16). Hence, as in the proof of Theorem 2, we derive (14).

Then, Theorem 3 is proven.
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Corollary 1. Suppose that there exist H(t) ∈ C1([0, T ]) and K(s), L(s) ∈

C1([0, σ2]) satisfying (4-6) and (10), such that

P (t) > 0, M11(t)−M12(t)M
−1
22 (t)M∗

12(t) > 0,M22(t) > 0, t ∈ [0, T ],

where M11(t),M12(t),M22(t) and P (t) are given in (8) and (13), respectively. Then

the zero solution to (2) is exponentially stable.

Remark 1. By Lemma 1, the matrix Q(t) is positive definite if and only if the

matrices P (t), M11(t)−M12(t)M
−1
22 (t)M∗

12(t) > 0 and M22(t) are positive definite.

Example 1. For the case n = 2, as a special case of equation (2), we consider

the following system of nonlinear neutral differential with periodic coefficients

d

dt

(

[

y1(t)

y2(t)

]

)

=

[

0.1 cos t 1.5− 0.5 cos t

1 + 0.2 cos t −4− 0.2 cos t

]

×

[

y1(t)

y2(t)

]

+

[

−1 + 0.1 sin t 0.2 cos t

1 −1

]

×

[

y1(t− σ(t))

y2(t− σ(t))

]

+

[

0.2 cos t 1− 0.4 cos t

−1 −1 + 0.1 sin t

]

×

[

d
dt
y1(t− σ(t))

d
dt
y2(t− σ(t))

]

+

[

y1(t)e
−y2

1
(t) + y1(t− σ(t))e−y2

1
(t−σ(t))

y2(t)e
−y2

2
(t) + y2(t− σ(t))e−y2

2
(t−σ(t))

]

, t > 0. (20)

where σ(t) = (1+sin2 t)/20. When we compare differential system (20) with equation

(2), it can be seen that

A(t) =

[

0.1 cos t 1.5− 0.5 cos t

1 + 0.2 cos t −4− 0.2 cos t

]

,

B(t) =

[

−1 + 0.1 sin t 0.2 cos t

1 −1

]

,

C(t) =

[

0.2 cos t 1− 0.4 cos t

−1 −1 + 0.1 sin t

]

,

F (t, y(t), y(t− σ(t))) =

[

q1y1(t)e
−y2

1
(t) + y1(t− σ(t))e−y2

1
(t−σ(t))

q2y2(t)e
−y2

2
(t) + y2(t− σ(t))e−y2

2
(t−σ(t))

]

and

σ1 =
1

20
≤ σ(t) =

1 + sin2 t

20
≤

1

10
= σ2. (21)

It is obvious that, F (t, u, v) is a real-vector valued continuous function satisfying

the Lipschitz condition in u and the inequality

‖F (t, u, v)‖ ≤ q1‖u‖+ q2‖v‖,
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Figure 1: Trajectory of y(t) of Eq. (20) in Example 1, for (21).

for some positive constants q1 = 0.06 and q2 = 0.02.

In addition, it can be seen that

H(t) =

[

5− 2.4 sin t 1− 1.3 sin t

1− 1.3 sin t 6 + 2.4 sin t

]

and

K(s) = e−ksK0, k = 0.09, K0 =

[

1 0

0 4

]

,

L(s) = e−lsL0, l = 0.06, L0 =

[

1 0

0 2

]

.

Let hmin(t) > 0 be the minimal eigenvalue of the matrix H(t).

Hence,

2.52 ≤ hmin(t) ≤ 4.38, 6.62 ≤ ‖H(t)‖ ≤ 8.48.

Therefore, for α = 0.05, and the former particular choices, one can easily check

that the matrix P (t) is positive definite for all t ∈ [0, 2π] and the minimal eigenvalue

pmin(t) of the matrix P (t) satisfies pmin(t) ≥ 1.5675 by MATLAB-Simulink. Finally,

we have

γ(t) = min{
pmin(t)

‖H(t)‖
, k, l} > 0,

and so that

‖y(t)‖ ≤ µ max
−σ2≤s≤0

‖y(s)‖e−0.03t, t ≥ 0,
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Figure 2: The zoom out trajectories of y(t) of Eq. (20) in Example1.

for a proper positive constant µ.

Consequently, all the assumptions of Theorem 1 hold.

The desired result for the behaviors of the paths of the solutions of the system

considered in the special case can be shown by the Figure1 and Figure2 benefited

from MATLAB-Simulink.

REFERENCES
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[14] C. Tunç, Y. Altun, Asymptotic stability in neutral differential equations with

multiple delays, J. Math. Anal., 7, no. 5 (2016), 40-53.
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