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1. INTRODUCTION

Fractional differential equations have recently been applied in various areas of engi-
neering, mathematics, physics, bio-engineering, and other applied sciences [30]. For
some fundamental results in the theory of fractional calculus and fractional differen-
tial equations we refer the reader to the monographs of Abbas et al. [3, 6, 7], Kilbas
et al. [23], Samko et al. [28], and Zhou et al. [35], and the references therein. Implicit
functional differential equations have been considered by many authors; for example,
see [1, 2, 4, 8, 10, 11, 12, 33].

In [5], the authors studied a class of fractional differential equations involving the
Caputo-Hadamard fractional derivative, and in [17], the authors gave existence results
for a multipoint boundary value problem for fractional integro-differential equations.
In this article we discuss the existence and uniqueness of solutions to the coupled

system of Caputo-Hadamard fractional differential equations

(TeDf u)(t, w) = fi(t, u(t, w), v(t,w), (T DI u)(t, w), w),
(TeDf2v)(t, w) = fo(t, u(t,w), v(t,w), (T D?v)(t,w), w),

tel:=[1,T], we Q, subject to the multipoint boundary conditions

aru(l,w) — by’ (1, w) = dyu(&y, w),
T,w) + bou/ (T, w) = dau(&a, w),
1,w) — bsv'(1,w) = dzv(&s, w),

a0 (T, w) + bgv' (T, w) = dgv(&y, w),

(
asu(
azv(

(
where a € (1,2], T > 1, a;, b;, d; € R, & € (1,T), i = 1,2,3,4. Here, (Q, F, P)
is a complete probability space, f1, fo : I X R™ x R™ x R™ x Q — R™ are given

functions, R™, m € N* is the Banach space with a suitable norm || - ||, and #¢D{" is

the Caputo—Hadamard fractional derivative of order «;, i = 1, 2.
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2. PRELIMINARIES

Let C(I) be the Banach space of all continuous functions v from I into R with the

supremum (uniform) norm

[0]]o := sup [lu(#)]]-
tel

By L>(Q,R}), we denote the Banach space of measurable functions from {2 into R
that are essentially bounded. As usual, AC(I) denotes the space of absolutely contin-
uous functions from I into R™, and L!'(I) denotes the space of Lebesgue-integrable

functions v : I — R™ with the norm

[v]l1 Z/I||v(t)||dt.

For any n € N*, we denote by AC™(I) the space defined by
AC™(I):={w: I - E: ;if_”w(t) € AC(I)}.
Let

d
5=t = 1
dt? q > 07 n [q] + )

where [q] is the integer part of g. Define the space
ACY :={u:T— E: 5" u(t) € AC(I)}.
Also, by C := C(I) x C(I) we denote the Banach space with the norm
[[(w, v)lle = lulloo + [0l

Let Bgm be the o-algebra of Borel subsets of R”. A mapping v : Q@ — R™ is said

to be measurable if for any B € Brm,
v 1 (B)={weQ:v(w) € B} C A

To define integrals of sample paths of random process, it is necessary to define a

jointly measurable map.

Definition 1. A function 7' : Q x R™ — R™ is called jointly measurable if T'(-, u) is

measurable for all v € R™ and T'(w, -) is continuous for all w € Q.

A mapping T : @ x R™ — R™ is called a random operator if T'(w, u) is measurable
in w for all w € R™, and we express it as T(w)u = T(w,w). In this case we also say
that T'(w) is a random operator on R™. A random operator T'(w) on E is continuous
(resp. compact, totally bounded, or completely continuous) if T(w,u) is continuous
(resp. compact, totally bounded, or completely continuous) in u for all w € Q. Details
on completely continuous random operators in Banach spaces and their properties can
be found in Itoh [20].
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Definition 2. ([14]) Let P(Y) be the family of all nonempty subsets of Y and C
be a mapping from  into P(Y). A mapping T : {(w,y) :w € Q, y € C(w)} - Y
is called a random operator with stochastic domain C' if C' is measurable (i.e., for all
closed A C Y, {w € Q,C(w) N A # (0} is measurable) and for all open D C Y and
alyeY,{weQ:ye C(w),T(w,y) € D} is measurable. The mapping T is called

continuous if every T'(w) is continuous.

Definition 3. For a random operator T, a mapping y : {0 — Y is called a random
(stochastic) fixed point of T' if for P—almost surely all w € €, y(w) € C(w) and
T (w)y(w) = y(w) and for all open D C Y, {w € Q: y(w) € D} is measurable.

Definition 4. A function f : I x R™ x R™ x R™ x  — R™ is called random

Carathéodory if the following conditions are satisfied:
(i) The map (t,w) — f(t,u,v,z,w) is jointly measurable for all u, v, x € R™; and

(ii) The map (u,v,z) = f(t,u,v,z,w) is continuous for all ¢ € I and w € Q.

Let z, y € R™ with ¢ = (z1,22,...,Zm), ¥ = (Yy1,Y2,---,Ym). By < y we

mean x; < y; for i = 1,...,m. Also, |z| = (Jz1|,|z2], ..., |Tm]|), max(z,y) =
{max(z1,y1), max(xa,y2), ..., Max(Tm,Ym)}, and R = {x € R™ : z; € Ry, i =
1,...,m}. If ce R, then x < ¢ means a; <c,i=1,...,m.

Definition 5. Let X be a nonempty set. By a vector-valued metric on X we mean
amap d: X x X — R™ with the following properties:

(i) d(z,y) >0 for all z,y € X, and if d(x,y) = 0, then = = y;
(i) d(z,y) =d(y,z) for all z,y € X;
(iii) d(z,z) < d(z,y) +d(y,z) for all z,y,z € X.

We call the pair (X, d) a generalized metric space with

dl (J?, y)
d2 (J?, y)
d(z,y) =
Notice that d is a generalized metric space on X if and only if d;, ¢ = 1,...,m, are
metrics on X.
For r = (r1,...,rm) € R™ and zp € X, we denote by

B, (z0) ={x € X : d(xo,z) <r}
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={ze X di(xg,x) <ry i=1,...,m}
the open ball centered at zy with radius r, and by
By(zo) ={x € X :d(wg,x) <r}={zv € X :di(xo,2) <1, i=1,...,m}

the closed ball centered at xg with radius r.
We mention that for generalized metric spaces, the notions of open, closed, com-
pact, convex sets, convergence, and Cauchy sequence are similar to those in usual

metric spaces.

Definition 6. ([9, 32]) A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius p(M) is strictly less than 1. That is, all
the eigenvalues of M are in the open unit disc i.e., |A\| < 1, for every A € C with
det(M — M) = 0, where I denotes the identity matrix in M, x ., (R).

Example 7. The matrix A € Msyo(R) defined by

A < a b >,
c d
converges to zero in the following cases:
(1) b=c=0, a,d >0 and max{a,d} < 1.
(2) c=0,a,d>0,a+d<1land -1 <b<0.
3) a+b=c+d=0,a>1,¢>0,and |a —c| < 1.

Let us now recall some definitions and properties of Hadamard fractional integra-

tion and differentiation. We refer to [23] for a more detailed analysis.

Definition 8. ([23]) (Hadamard fractional integral) The Hadamard fractional inte-
gral of order ¢ > 0 for a function u € L!(I) is defined by

(H 1) (x) = ﬁ /j (lng)q_l %ds,

provided the integral exists.
Example 9. Let 0 < g < 1. Then

Hrint = (Int)'*9, for a.e. t € [1,e].

1
I'(2+q)

Definition 10. ([23]) (Hadamard fractional derivative) The Hadamard fractional
derivative of order ¢ > 0 of the function u € AC§ (1) is defined as

("Diu)(x) = 6" ("I} "u) ().
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In particular, if ¢ € (0, 1], then
(" Diu)(z) = 6(" 1} ") ().
Example 11. Let 0 < g < 1. Then

HDiInt = (Int)' =9, for a.e. t € [1,e].

b
I'2-q)
It is known (see, e.g., Kilbas [22, Theorem 4.8]) that in the space L!(I), the

Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.,
(" DN [w)(w) = w(x).

From [23, Theorem 2.3], we have

(11" w) (1)
I'(q)

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional

("1{) (" Diw)(z) = w(z) — (Ina)=.

derivative is defined as follows.

Definition 12. (Caputo-Hadamard fractional derivative) The Caputo-Hadamard

fractional derivative of order ¢ > 0 of the function v € ACY is defined as
("eDiu)(z) = (T 176" u) ().
In particular, if ¢ € (0, 1], then
("eDiu)(x) = ("1, "6u)(x).
Next, we prove the following lemma.
Lemma 13. Let h € C(I) and « € (1,2]. Then the unique solution of problem

(HeDSu)(t) = h(t), t €I,
alu(l) - blul(l) = dlu(fl)a
asu(T) + bou/ (T) = dau(&2),

is given by
T
u(t) :/ G(t,s)h(s)ds,
1

where the Green function G is given by

G(t,s) =
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1 (lni)afl

sT'(a)
n a—2 nt a—1 a e _ o
e [ (0 D)+ iy (n )22 — i (I )07
a—1
—%(n%)“_l[ag(lnTY’ 24 b (@ - 2)(InT)* 3 — da(In &) 2]
a—2
A (In ) ag (In )2~ + % (a — 1)(InT)*~2 = dy(In &) ]
di(Iné)* Int)* "2 4 a— _ a—
_da( E1)SA( t) [p(i)(ln;) 1+F(a 1)(ln )e 2_F((1(21)(1n%) 1]’
S S gla S S ta
a—2 n a—1 — a— a—
B [0 517 4 el 2 — )

,_.

a—1
—7‘118(2‘;()&) (In %)0‘ as(InT)>~ 2—|—%2( 2)(InT)*~

(
a—2
+dls(21rt()a) ~(In &) Hag(In 7)1 + b—z( —1)(InT)*"2 — dy(In &)1
(

n a=l(n¢)*—2 a— _ a—

AT [ (I D)0+ iy (n )7 — gy (n )07,
s <&, t<s,

sl—%a) (hlé)ail

n a—2 nt a—1 a e e o
+aes) SA(I 2 [F =) (In %) L r(i ) (In %) - r((ii) (In %2) ']

n a—1 nt a—2 a e e o
— o et [t (In )t + F(i 0 (InT)* 2 — F((ii) (In &2)o=1),

dq (In E] < Int as n 1 oa— n a—2 do n 52 a—
( ) SA( ) [F(a)( S ) F(a 1)( ) F(Ot)( S ) ]
dq(In f] “ nt as ’1 oa— a—2 do 52 a—

& <5 < &, tS&

sF(a) (ln )0;_1 .
di(In&)* “(Int)>~ a a— a—
4 da(ng) SA( t) [F(Z) (ln%) 1 F(b2 )(ln%) 2]
di(In€)* Ynt)*"2; 4 a— a—
_da( &1)S (Int) [F(Z)(ln%) 1+F(a 1)(1 Z) 2),
52 S S, S S ta
n a—2 nt a—1 a o o
di(1 El)sA(l t) [ _as_ ( ) 1y F( )(1n ) 2]
n a—1 nt)e— 2 a o a—
_dl(l — sA ) [1"((2)/) (1 ) ! + 1"(()/ 1) (h’l ) 2])
52 S S, t S S,

with
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A= d1 (h’l fl)a_l[ag(ln T)a - 2)(111 T)a_g - dQ(h’l 52)04—2]

o
— dl(lnfl)“_Q[ag(lnT) Ly b?(oz —1)(InT)*? — dg(lngg)“—l] #0.

Proof. Solving the linear equation

("eDfu)(t) = h(t),

we obtain

u(t) = TI0h(t) + c;(Int)* ! 4 co(Int) =2, (3)
On the other hand, from the relation DY Iu(t) = I?~Pu(t), we see that

o —

/ _ 1 ’ 7(’-()/2 ds Oé—lc n a—2 co(In a—3
u(t)——)/la Lya2p ()& L2+ 22 ()

NG s s

From the boundary conditions, we have

[di(In&1)* ey + [di(In &) PJea = ay' ITh(1) = b1 IT " h(1) — di' ITh (&),

ax(nT)" 4 22 (0~ DI T)" ~ dy(in )"y

Flas ) + 2o~ 2T — dy(ln )" ey
= df]{”h(@) - CLgII{’h(T) — bglf‘flh(T),

Thus,

and
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T
+b2/1 (1n§)a27sr(h() )d —dg/l (1n%2) SF((OZ)ds.

Substituting the values of ¢; and ¢y into (3) gives
1 bt h(s)
) = —— In = afl_d
u(®) F(a)/l(ns) s O
di(In&)*2(Int)*? /T T o1 h(s)
A [as : (In s) (o) ds

T & .
+b2/1 (1n§)°‘_2%ds—dg/l (1n%)“_1%(a))ds]

[as(InT)*2 4 %(a —2)(InT)>~3

dq (ln t)a71
- Al(w)

&1
- (&) [ (m
dq (ln t)a72

5—1)“—1Mals

S S

[ag(InT)* ! + %(a —1)(InT)>~2

AT («)
& 5

~ ol ] [y 2y

dy(In &) (Int)*—2 T 1 ., his)
- [ag/ (In —)* " ——ds

A 1 s sT'(a)
T Tias  h(s) # gy h(s)

—f—bg\/1 (hl ;) ﬁdS—dg/l (hl?) mdS]

Remark 14. Notice that the function G(-,-) is not continuous over [1,77] x [1,7],

however the function ¢ — flf G(t, s)ds is continuous on [1,T].
From [27, Theorem 21], we can conclude the following lemma.

Lemma 15. Let f; : IXR™XR™xR™xQ — R™, i = 1,2, such that f;(-,u,v,z,w) €
C(I) for each u,v,z € C(I) and w € Q. Then the coupled system (1)-(2) is equivalent
to the problem of obtaining the solution of the coupled system

g1t w) =11 (1, [ Ga(t,5)gu(s,w)ds, [} Gat, 8)ga(s,w)ds, g1 (1), w)
QQ(t,w :f2< afl Gl 78)g1(87w)d87f1T GQ(t7s)g2(saw)dsaQQ(t)’w)7
and if g;(-,w) € C(I), w € Q, are the solutions of this system, then

u(t,w) = flT G1(t, 8)g1(s,w)ds,
v(t,w) = flT Ga(t, 5)g2(s, w)ds,
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) =

Int )al*l
ef(al)(
+d1(]n€1)a;Ai(lnt)ﬁl_l[r(al)(ln ) 4 r(al 1) (In 5 )a172 F(Ofl)(ln 2)o 1]
A (1 €0 gy (I T2 o By — 2(InT) 0 — dyfln €)1
+ AT (In £) oy (InT)™ 1 + B (ag = 1)(InT)* 2 — dy(In &)™
dq(In a1 =1 ¢)>1—2 a a1 — «
A OO [ (I D)™ gy (In D)2 — ey ()Y,
S S fla S S ta
n (1721,1/(171 o aq— o —
) ;Al(l o [F(al)(ln ) 1"’1“((1 )(hl )2 — F(d(jl)(ln%) ]
AT (0 )™ az(n 7)™ + B ag =20 T)" 7 — dy(In )
+ Ay (In D)7 o)+ frar = DI T2 = da(lne)™
di(In &)1 Y (Int)¥1— a P ay—
_di(In&) sAl( t) [r(al)(ln yon = 1+r(a1 1)(ln yer=2 _ F(m)(ln 2)ar—1],
S S fla t S S,
1n )alfl
ef(al)(

" 00 (i Tyt b Ty Sy
di(In€&)*1 = (Int)>1 2 _ a— oy —
_di(Iné&i) SAl( t) [F(al)(ln yon 1+F(abrl)(1n%) 1—2 F(dazl)(ln%) -1,

&1 <5< &, s<t,
di(In&)*1 2 (In¢t)*1 1 o aq— ap—
ke [y ()™ o iy (I E) 7 - e (in )]
di(In€& 1= L(p )1~ a Ty — ol —
e T [y (n D)™ gy (tn T) =2 — oy (in ) 1),
§1 <5< &, t<s,
g1_‘(011)(11/1 )a171
Al )T [ (in ) ol (n D)2
SAq [e5) Qp
di(In&)*1 (Int)>1 2 o bo Tyay—
_ @1 1 A [F(al)(ln ) 1— 1+F(a1—1)(1 ;) 1 2],
52 S S, S S ta
dl(]ngl)wl:(lnt)“l_l[F(al)(ln 5T 1+F(a1 1)(1n )arQ]
di(In& )11 (Int)*1—2 o o —
_di(In&) SAl( t) [F(al)(ln yon— 1_|_F(a )(ln ) 2]’
52 S S, t S S,
with

b
Ay =dy(In&)*  Hap(InT)* =2 + %(al —2)(InT)*~3
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—da(In &) %] =dy(In &) ~*[az(In T)al_l+% (a1 =1)(InT)* " —dy(In&)* 7' #0

and Go(t,s) =

Sr(az) (1n )042—1

+d3(ln£3)QzAz(lnt)Q271 [F(ag) (ln )22+ F(a )(ln )a2_2 - F(az) (ln & )21
Al ) (I €)22 fag(In )2~ 4 B (an — 2)(InT)*2 3 — dy(In €4)* 7
+ LG (In £)°2 Vay (In 7)™ + B (0 — 1)(InT)*2 2 — dy(In&y)*> ]

ds(In&3)*2 " t(Int)*2 2 a g — P
e SA2( . [F(OQ)(IH ) o 1+F(oz2 1)(ln ) 22— F(az)(ln 54) 2 1]7

S§£3a Sgta

ds(In€3)*2 2 (Int)*2 1 el x2— @
5(In &) m( t) [F(m)(ln Yoz 1+F(a2 1)(1n )22 r{f@)( n & )er]

a2 ] 1y &1 [, (InT)22 + Y (ap — 2)(InT)*2~ — dy(In &)
A (n )22 Yay(In )22~ + B (an — 1) (In 7)™ 2 — da(In &)

n ag—1 (], $)*2—2 o o — o
—dalnge)™ Mt [t (in T)oeml 4 b (in D)2 — i (i &a)ee-1],
S S 53; t S S,
sr(az)(ln )O;zﬂ 1
ds(In a2 Int)*2— g — Q2 — 2~
+ 3(In&s) SAI2( t) 2[F(a2)(ln S) 2=l 4 F(ab; 0 (1 %) 2—2 _ F(d;z)(ln %4) 2 1]
néz)*2  (Int)*2~ Qz— @2=
_ ds(Ing&s) sA2(1 t) [F(a2)(ln )2 1+ﬁ(1 Z) 22— F(d(:g)(ln%) 21,
§3<s<&, s<t,
n (1721,1/(171 o Qo — o —
ds(In &s) zAg(l t)*2 [F(az)(ln )2~ 1+m(1n ) 2 - F(déz)(ln%) 2 1]
n a2 —1(]p )22 « Q2 — X2~
_ ds(Ings) SAQ(I t) [F(az)(ln )2 1+m(ln )*2 2 — %(ln%) 2,

3 <5< &y, t<s,

SF(az) (In t)(’: 1 1
ds(In &3) ™2 Int)*2~ ag— o —
4 ds(In&s) SA12( ) [F(ag)(ln yoa—l 4 F(ab24 . (ln%) 2=2]
ds(In€3)*2 1 (In¢)*2—2 a o —
3(Ings) SA2( t) [r(a2)(ln yoz= 1+m(1 Z) 2-2],

£4§S, Sgta

ds(In€3)*2~2(Int)*2 ! a o —
3; €3) SA22(1 ;‘) - [F(az)(ln Yo 1+m(1n )22
Iné&3)*27 " (Int)” a o —
3(Ings) SA2( ) [r(aQ)(ln yoea—l 4 F(a2 . (ln ye2=2),

£4§S,t§8,
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with
Ay = d3 (ln 53)“271[a4(1n T)a272 + %4(042 — 2)(1n T)a273
—dy(In&4)??72] — d3(In &3)*2 2 [ag(In T)*2~*

+ %4(0@ —1)(InT)**72 —dy(In&y)*2 71 #£0.

In the sequel we will make use of the following random fixed point theorems. The
first of these is a Banach type theorem.

Theorem 16. ([18, 26]) Let (Q,F) be a measurable space, X be a real separable
generalized Banach space, F : Q x X — X be a continuous random operator, and
let M(w) € Muxn(Ry) be a random variable matriz such that for every w € Q, the
matriz M(w) converges to 0 and

d(F(w,x1), F(w,z2)) < M(w)d(x1,x2)

for each x1, x5 € X and w € Q. Then there exists a random variable x : Q — X that

is the unique random fixed point of F'.
The next theorem is in the spirit of the Leray-Schauder theorem.

Theorem 17. ([18, 26]) Let (Q,F) be a measurable space, X be a real separable
generalized Banach space and F : Q x X — X be a completely continuous random
operator. Then, either:

(i) the random equation F(w,x) = x has a random solution, i.e., there is a mea-
surable function x : Q — X such that F(w,z(w)) = z(w) for all w € Q; or

(i1) the set M = {z : Q — X is measurable : \Nw)F(w,z) = x} is unbounded for
some measurable function A : Q — X with 0 < Aw) <1 on Q.

3. MAIN RESULTS

In this section, we are concerned with the existence and uniqueness of solutions of
the coupled system (1)—(2).

Definition 18. By a random solution of the problem (1)—(2) we mean coupled
measurable functions (u,v) € C(I) x C(I) satisfying the boundary conditions (2) and
the equations (1) on I.

The following conditions will be used in the sequel.
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(H1) The functions f;, i = 1,2, are Carathéodory.

(Hz) There exist continuous functions p;, ¢;, r; : I — L (Q,Ry), i = 1,2, such that

”fi(taulavlaxlaw) - fi(tau%v%x?aw)”
< pi(t,w)[lur — uzl + qi(t, w)llvr — va|

+7i(t, w)||z1 — w2

for a.e. t € I and each u;, v;, z; € R™, i =1,2.

(H3) There exist continuous functions k;, l;, ki, I; : I — L>®(Q,R,), i = 1,2, such
that
it u, 0,2, w)|| < kit w) + Lt w)|ull
+ Bt w)lol + Tt w)lal

for a.e. t € I and each u, v, x € R™.

First, we prove an existence and uniqueness result for the coupled system (1)-
(2) by using the Banach type random fixed point theorem type given in Theorem 16
above. As a consequence of Lemma 13, we define the operators N1, Ny : CxQ — C([)
by

T
(NVi(u, v)) (2, w) =/1 Gi(t, 5)gi(s, w)ds, i =1,2, (4)

where g;(-,w) € C(I) for w € Q is given by
T
gi(t,w) = fi (t,/ G1(t,5)g1(s, w)ds,
1

T
/1 Gg(t,s)gg(s,w)ds,gi(t,w),w> ,1=1,2. (5)

Set .
G; = sup / |Gi(t,s)|ds, i =1,2.
1

te[1,T)
Theorem 19. Assume that conditions (Hy) and (Hz) hold. If ||ri(-,w)]leo < 1,
i1 =1,2, and for every w € Q, the matrix

Gillpi(wllee  Gillg (W) llo
I=flriCwillee I=llri(w)lleo

M(w) :=
Gilp2(w)lloe  G3llg2(w)llos
I=fr2Cw)flee  I=JIr2(w)lloe

converges to 0, then the coupled system (1)—(2) has a unique random solution.
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Proof. Consider the operator N : C x Q — C defined by

(N (u, 0))(t, w) = (N1 (u, v)) (£, w), (N2 (u, v))(t, w)). (6)

Clearly, the fixed points of the operator N are random solutions of the coupled system
(1)-(2). We need to show that N is a random operator on C. Since f;, i = 1,2, are
Carathéodory functions, w — f;(t,u, v, z,w) are measurable maps in view Definition
1. We conclude that the maps

w — (N1(u,v))(t, w) and w — (Na(u,v))(t,w)

are measurable. As a result, IV is a random operator on C x 2 into C. Next, we show
that IV satisfies all the conditions of Theorem 16.
For any w € Q, (u1,v1), (u2,v2) € C, and t € I, we have

T
(Vi (ur, v1))(E, w) = (Ni(ug, v2)) (¢, w)| S/l |Gi(t, $)lllgi(t, w) — gi(t, w)llds,

where g;(-,w), g;(-,w) € C(I) for w € Q are given by
T
gi(t,w) = f; <t,/ G1(t,s)g1(s,w)ds ,
1

T
/ GQ(ta S)QZ(Saw)dsagi(taw)aw> ) 1= 172a
1

T
gi(t,w) = fi (t,/l G1(t,$)g1 (s, w)ds,

T
/ GQ(ta S)QQ(Saw)dSagi(taw)aw> , 1=1,2.
1
Then, from (Hs),

lgi(t,w) = gi(t, w)|| < pit, w)llui(s, w) —vi(s, w)l
+ ai(t, w)|[uz(s, w) — va(s, w)|
+ri(t, w)lgi(t,w) — gi(t, w)|l, i =1,2.
Thus,

19 (-, w)lloo I
L= lri(, w)lloo

ul('vw) - Ul('aw)HOO

+ 'u,g(',w)_v2('aw)”00)
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for i = 1,2. Hence,

(i, 00)) () — (N (2, 92)) (- 10) oo
G i, )

= T G w)llee

G2l w)lloo
T (> w) o

[ur(-;w) = v1(; w)loo

+ [[ua (-, w) = w2, w)|loo)

for i = 1,2. Consequently,

d((N(ur,01)) (- w), (N (uz,v2))(-, w))
< M(w)d((ua (-, w), 01 (- w)), (w2 (-, w), va (- w))),

where

U1(',’LU) - Ul('vw)”DO

(1)1 (). (- 0) v ) = [ | |
[[uz(, w) = v2 (-, w)lloo

Since for every w € ), the matrix M (w) converges to zero, Theorem 16 implies that

the coupled system (1)—(2) has a unique random solution. O

We will now prove an existence result for the coupled system (1)—(2) using the
Leray—Schauder type random fixed point Theorem 17 above. Set

Gills (- w)lloe  G3lliaw)]
1= (o)l 1= [a(ow)l’
G () oo G;mz(-,w)nm} -
TG o)l * 1 ()l

Theorem 20. Assume that conditions (Hy) and (H3z) hold. If ||li(-,w)|s < 1,
i = 1,2, and C(w) < 1, then the coupled system (1)-(2) has at least one random
solution.

O(w) = max{

Proof. Let N : C x Q — C be the operator defined in (6). We need to show that N
satisfies the conditions in Theorem 17. The proof will be given in several steps.
Step 1. N(-,-,w) is continuous. Let (un,,v,) be a sequence such that (u,,v,) —

(u,v) € C as n — oo. For any w € Q and each t € I, we have
(N1 (un, vn))(E, w) — (N1 (u, 0)) (¢, w)]|

T
= / Gt $)]| f1(5, un (5, 0), va (5,0), (DT ) (5, w), w)
1

— fi(s,u(s,w), v(s,w), (T° DY u) (s, w), w)) | ds
< GTHfl(vun(’ w)’ Un(" w)’ (HCDixlun)(" w)’ w)
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= filulw),o( w), (DT ) (- w), w))| oo
Since f; is Carathéodory, we have
[(N1(tn, 0n)) (- w) = (N1(u, 0)) (-, w)[[eo = 0 as n — oo.
Similarly, for any w € 2 and each t € I,
[[(Na(un, vn))(t, w) = (Na(u, 0)) (¢, w)]
< /1T|G2(t7S)IIIfz(wun(-,w),vn(-,w),(HCD?ZUn)(ww)vw)
= fo(ul, w), v, w), (1D ) (-, ), w)| oo
The fact that fs is Carathéodory implies
[(Na(tn, vn)) (-, w) = (N2 (u, 0)) (-, w)[[oo = 0 as n — oo.

Hence, N (-, -, w) is continuous.
Step 2. N(-,-,w) maps bounded sets into bounded sets in C. Let R > 0 and set

Bri={(1v) €C: ulls < R, [Vl < R).

For any w € Q, each (u,v) € Bg, and t € I, we have

T
(N1 (, 0)) (t, w) | < /1 1G1(t,5)[ll91(s, w)l|ds,
where, g1(-,w) € C(I) for w € Q is given in (5). From (Hs) we have

191t w)l| < kr(t, w) + Lt w)|[u(s, w)||
+ k1 (t, w)|[o(s, w)l| + L (¢, w)lgr (£, w)]-

This gives
151 (- w) oo 162.(-, )| oo
g1(w)l < > = (- w) oo
L= lh(Cw)lleo 1= [0, w)lleo
11 w)[loo
+ v W)|l
TG w0
Ira(ow)lloo | RIBCw)]oe
ST Cwle T Gw)l
BRIy w)lloe
L= 1[[li(w)leo
Thus,

T
(N1 (u, v))(E, w)]| S/l 1G1(t,8)[[l91 (s, w)l|ds
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o k(s w)o
<qr (e
- <1— 111 w) oo

Rl(w)loo . RlFa(ow)] )
L=l w)llec 1= [[0(w)loo
= 61(w)

_|_

Hence,
(N1 (u, 0)) (-, w)loo < £1(w).

Similarly, for any w € €, (u,v) € Bg, and t € I,

[(Na(u,v)) (-, w)]loe < G5 <%

L=l w)loe 1= [ll2(- w)loo
= KQ(IU)

Consequently,
[(N (u, 0)) (- w)lle < (£r(w), b2(w)) = £(w).

Step 3. N(-,-,w) maps bounded sets into equicontinuous sets in C. Let Bg be
the ball defined in Step 2. For each ¢y, to € I with t; < ¢9 and any (u,v) € Bg and

w € (), we have

T
(N1 (w, 0)) (t1, w) — (N1 (u, 0)) (t2, w) | S/ |G1(t1,8) = Ga(tz, s)lllg1 (s, w)l|ds,
1
where, g1(-,w) € C(I) for w € Q is given by (5) Thus,

[(N1(, 0)) (1, w) = (N1 (w, 0))(E2, w)|

Gl BlGw)le | RlIFC )]
= (1 G wle  1-ThCwle 1o |l‘1<-,w>||oo>

T
x/ |G1(t1,s) — G1(ta,s)|ds — 0 as t; — to.
1

Similarly,

[[(N2(u, 0)) (1, w) = (Na(u, v))(t2, w)|

<( koo w)lloe | Rlla(w)]loe R|/%2_<-,w>||oo>
S\ LG w)le  T-BGw)le | 1B w)l

T
x/ |Ga(t1,s) — Gi(ta, s)|ds — 0 as t1 — to.
1

As a consequence of Steps 1 to 3 and the Arzela—Ascoli theorem, we conclude that

N(-,-,w) maps Bp into a precompact set in C.
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Step 4. We want to show that the set E(w) consisting of (u(-,w),v(-,w)) € C
such that (u(-,w),v(-,w)) = AMw)(N((u,v))(-,w) for some measurable function A :
Q2 — (0,1) is bounded in C. Let (u(-,w),v(-,w)) € C such that (u(-,w),v(-,w)) =
Aw)(N((u,v))(-,w). Then u(,w) = MNw)(Ni((u,v))(,w) and v(,w) =
AMw) (N2 ((u,v)) (-, w). Thus, for any w € Q and each t € I, we have

T
[Ju(t, w)| S/1 G1(E, 9)lllg1(s, w)|ds,

where g1(-,w) € C(I) for w € Q is given in (5). Hence,

T
1 (- ) oo 112 w)] e
[u(t, w)|| < / G (t,s>|( s y u(s, w)]|
; 1[Gl 1= [10(w)]o
1F1( )| oo )
+——— | |v(s,w|| | ds
TGy el
Gk (-, w)]| oo /T 113 w)] e
< Tl Gyt )] | (s, )|
e T ARG py oo e
151.(- )| oo
+—————||v(s,w|| | ds
1= [[h(Cw)]e
Gk w)le . GilLG, W)l
< =zl ! (-, w)loo
1 [[hG e 1= 10(w)]le
Gl (-, w) | oo
D T () oo
1= [[11( w) |
Also,
Gsllk2( w)lloe . G3lll2(,w)|oo
[o(t, w)|| < —202 2 (s )
1— [l o 1— (s w)]lo
Gllka (- ) oo
22 T () e
= Tl 100
Setting

Sl uC e 1=l w)lls]

we see that
[u(w)lloo + [[0(, W)[loo < A(w) + C(w)([[ul- w)lloe + [[v(, w)]lo0)-

where C'(w) is given in (7). It follows that

Aw)
[l w)loo + [v( w)[loo < =) L(w).

Hence,
([ (u(-; w),v(-; w))le < Lw).
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This shows that the set E(w) is bounded, so part (ii) of Theorem 17 does not apply.
As a consequence of Steps 1 to 4, together with part (i) of Theorem 17, we conclude

that N has at least one random fixed point in By that in turn is a random solution
of the coupled system (1)—(2).

O

4. AN EXAMPLE

Let Q = (—00,0) be equipped with the usual o-algebra consisting of Lebesgue measur-

able subsets of (—o0,0). Consider the random coupled system of Caputo—Hadamard
fractional differential equations

K

T
o]
S T
vl oles
o
0
£
Il
=
=
£
0
£
«@
=
£
T
[
S o

ol oles

for w € Q and ¢ € [1, €], with the multi-point boundary conditions

u(l,w) — o' (1,w) = u(2,w),
u(T,w (T, w) = u%,w,
(T, )+2/ (T, w) 25( ) ©)
v(l,w) —v'(1,w) = 3v(3,w),
20(T, w) + v (T, w) = v(2,w),

for w € Q, where

A ) et wu(t) sint
,u7v7y,w = 3
' 64(1 +w? + VA (1 + [u] + [o] + [y])
ot 0,9,1) cw?v(t) cost

~ G4(1 + ful + o[+ ly])’
and ¢ < m Condition (Hj) is satisfied with

pa(t,w) = q1(t,w) = r1(t,w) = rao(t,w) =0,

(t,w) cw?sint (t,w) cw? cost
W) = ——— W) = ——.
Piit 64(1+w?) BV 64(1 + w?)

Also, if for every w € 2, the matrix

cw? Gy 0
64(1+w?) \ 0 G3

converges to 0, Theorem 19 implies that the random coupled system (8)—(9) has a
unique random solution defined on [1, €].
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