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ABSTRACT: In this paper we study the asymptotic behavior of the Hausdorff

distance between Heaviside function and the Yun’s activation function of algebraic
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We also consider a new activation function of trigonometric type.

Numerical examples using CAS Mathematica, illustrating our results are given.
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1. INTRODUCTION

Sigmoidal functions (also known as ”activation functions”) find multiple applications

to population dynamics, biostatistics, analysis of nutrient supply for cell growth in

bioreactors, controllability of tumor growth, classical predator–pray models, artifi-

cial neural networks, nucleation theory, machine learning, antenna–feeder technique,

debugging theory, computer viruses propagation theory and others [1]–[12], [16]–[32].

In this paper we study the asymptotic behavior of the Hausdorff distance between

Heaviside function σH(t) and the Yun’s parametric activation function of algebraic

type [12].

We also consider a new activation function of trigonometric type.

The basic approaches for approximation of functions and point sets of the plane by
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algebraic and trigonometric polynomials in respect of Hausdorff distance (H–distance)

are connected to the work and achievements of Bl. Sendov who established a Bulgar-

ian school in Approximation theory, particularly developing the theory of Hausdorff

approximations.

2. PRELIMINARIES

Definition 1. The Heaviside function is defined by

σH(t) =







0, if t < 0,

1, if t > 0.
(1)

Definition 2. [13], [14] The Hausdorff distance (the H–distance) ρ(f, g) between

two interval functions f, g on Ω ⊆ R, is the distance between their completed graphs

F (f) and F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 3. The Yun’s parametric activation function of algebraic type is defined

by [12]

σ[m](t) =































0, if t < −L,

(L+ t)m

(L + t)m + (L − t)m
, if |t| ≤ L,

1, if t > L,

(3)

for a fixed L > 0.

In [12], the author proves the following properties of the new activation function:

(A1) σ[m] is strictly increasing over [−L,L] and σ[m] ∈ C∞(−L,L)∩Cm−1R) for an

integer m ≤ 1.

The Hausdorff distance d between the σH(t) and the function σ[m](t) satisfies

(

L+ d

L− d

)m

=
1

d
− 1, 0 ≤ d ≤ min{

1

2
, L}.
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Figure 1: The Yun’s activation function for m = 1.6 and L = 0.2.

That is, m = O

(

ln(1/d)

ln(1 + d)

)

for d small enough.

(A2) For m large enough σ[m] has the asymptotic behavior

σ[m](t) =











O (θ(t)m), if −L ≤ t < 0,

1 +O (θ(t)m), if 0 < t ≤ L,

where

θ(t) =

(

L− t

L+ t

)sgn(t)

,

satisfying 0 ≤ θ(t) < 1 for all t ∈ [−L,L]\{0}.

Based on the new activation function, the author consider a constructive feed–

forward neural network approximation on a closed interval.

3. MAIN RESULTS

The Yun’s considerations (see (A1)–(A2)) can be precised. Without loss of generality,

we consider the case L = 1. Let m = [n2 ].

It is interesting to study the asymptotic behavior of d = d(n) when n tends to

infinity.

Theorem 1. For d = d(n) the following is valid
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d =
lnn

n
+O

(

1

n

)

. (4)

Proof. Let us examine the relation:
(

1 + d

1− d

)m

+ 1 =
1

d
. (5)

Following the ideas given in [14], [15] we have

(

1 + t

1− t

)m

− e2mt =
2

3
mt3 +

4

3
m2t4 + ct5 + · · ·

and

(

1 + t

1− t

)m

= e2mt +O(mt3) (6)

for small t.

Using (6), from (5) we obtain e2md + 1 +O(md3) = 1
d
, that is for m = [n2 ]

end + 1 +O(nd3) =
1

d
. (7)

From (7) we are lead to write

d =
lnn

n
+

(

θ1(n)

n

)

, (8)

where θ1(n) is to be estimated.

Insertion of d into (7) gives

e
n
(

lnn

n
+

θ1(n)

n

)

+ 1 +O

(

n

(

lnn

n
+

θ1(n)

n

)3
)

=
n

lnn+ θ1(n)

or

neθ1(n) + 1 +O

(

1

n2
ln3(n)

)

=
n

lnn+ θ1(n)

and hence the function θ1(n) is bounded.

In this way we obtain from (8) that

d =
lnn

n
+O

(

1

n

)

.

This completes the proof of the theorem.

Remark. In a number of cases, researchers working in the following areas: popu-

lation dynamics, neural networks, biostatistics and others, for the values of the best

Hausdorff approximations reliable interval estimates are required.
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Figure 2: The functions F (d) and G(d) for m = 3; L = 1.

In this connection, let us examine the functions:

F (d) =

(

1 + d

1− d

)m

+ 1−
1

d
,

G(d) = e2md + 1−
1

d
.

The following upper and lower bounds for d are valid

dl =
1

2m
< d <

ln 2m

2m
= dr.

Evidently G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2) and for m > 2

we have

G(dl) < 0; G(dr) > 0.

Approximations of the σH(t) by σ[m](t) for variousm are visualized on Fig. 3–Fig.

5.

4. A NEW ACTIVATION FUNCTION OF TRIGONOMETRIC TYPE

Definition 4. We consider the following activation function of trigonometric type



538 N. KYURKCHIEV

Figure 3: The case m = 3; L = 1; Hausdorff distance d = 0.21374; dl =

0.166667; dr = 0.298027.

Figure 4: The case m = 10; L = 1; Hausdorff distance d = 0.106139; dl =

0.05; dr = 0.149787.

σ
[m]
T (t) =



































0, if t < − π
m
,

(1 + tan(t))m

(1 + tan(t))m + (1 − tan(t))m
, if |t| ≤ π

m
,

1, if t > π
m
.

(9)

The Hausdorff distance d between the σH(t) and σ
[m]
T (t) satisfies

(

1 + tan(d)

1− tan(d)

)m

+ 1 =
1

d
.
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Figure 5: The case m = 50; L = 1; Hausdorff distance d = 0.0335831;

dl = 0.01; dr = 0.0460517.

Then
(

1 + tan(d)

1− tan(d)

)m

− e2mt =
4

3
mt3 + c1t

4 + · · ·

and
(

1 + tan(d)

1− tan(d)

)m

= e2mt +O(mt3)

for small t.

The asymptotic behavior of the function σ
[m]
T (t) can be studied in the manner

outlined in Theorem 1.

Approximation of the σH(t) by σ
[m]
T (t) for m = 15 is visualized on Fig. 6.

In this case the following bounds for d are valid:

0.0333333 ≤ d = 0.0807295 ≤ 0.11373.

Remark. The reader may also consider the following function

E(t) =
e(1+t)m

e(1+t)m + e(1−t)m

for |t| ≤ 2
m
.

Evidently, the Hausdorff distance d between the σH(t) and E(T ) satisfies

e(1+d)m

e(1+d)m + e(1−d)m
= 1− d

or

e(1+d)m−(1−d)m =
1

d
− 1.
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Figure 6: The case m = 15; H-distance between σH(t) and σ
[m]
T (t): d =

0.0807295; dl = 0.0333333; dr = 0.11373.

Then

e(1+d)m−(1−d)m − e2md =
1

3
m(2 − 3m+m2)d3 +O(md4)

for small d.

For example, let m = 15. Then for the Hausdorff distance d between the σH(t)

and E(T ) we have d = 0.0727489 and the model has good ”saturation to horizontal

asymptote”.

Constructive results of approximation by superposition of sigmoidal functions can

be obtained using the methodology given, for example, in the articles [6]–[12].

Of course, we will explicitly note that the estimates are in line with the basic

approaches for the approximation of functions by algebraic and trigonometric poly-

nomials with respect to H-distance [14].

5. CONCLUSION

In this paper we study the asymptotic behavior of the Hausdorff distance between

Heaviside function σH(t) and the Yun’s parametric activation function of algebraic

type [12].

A new activation function of trigonometric type is also analyzed.
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We hope that the results will be useful for specialists working in this scientific

area.
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