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ABSTRACT: In this article we will consider the possibility of approximating the in-

put function s(t) (the nutrient supply for cell growth) of the forms: s1(t) =
L−t
L+t

e−mt

and s2(t) = (L−t)(P−t)
(L+t)(P+t)e

−mt where L, P and m are parameters. We prove upper

and lower estimates for the one–sided Hausdorff approximation of the shifted Heav-

iside function ht∗(t) by means of the general solutions of the differential equations

y′(t) = ky(t)s1(t) and y′(t) = ky(t)s2(t) with y(t0) = y0. We will illustrate the

advances of the solution y(t) for approximating and modelling of: ”data on the devel-

opment of the Drosophila melanogaster population”, published by Raymond Pearl in

1920 (see, also Alpatov, Pearl [21]), data Storm Identifications (Storm worm was

one of the most biggest cyber threats of 2008 [50], [49]), ”data on the growth of pop-

ulation of Oryzaephilus in renewed wheat” [51], ”experimental data for the biomass

for thermophilic bacterium Aeribacillus Pallidus 418” [52], ”experimental data for the

tumor spheroid growth” [53], ”data for the tumor growth model” [54], ”data of attack

rates observed on a single link” [55], ”data on Intracellular Adenosine Triphosphate

(ATP) concentration” [57], ”data on HIV/Kaposi’s Sarcoma Coinfection Dynamics in

Areas of High HIV Prevalence” [58], ”data of PI-103 induced concentration-dependent

growth inhibition” [59] and ”data of Infected Mosquitoes with Dengue” [60].

Numerical examples using CAS Mathematica, illustrating our results are given.
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1. INTRODUCTION

Sigmoidal functions find multiple applications to population dynamics, analysis of

nutrient supply for cell growth in bioreactors, population survival functions, classical

predator–prey models, debugging theory and others [23]–[49].

Evidently, the Verhulst model can be considered as a prototype of models used in

bioreactor modelling.

In batch growth, the rate of biomass production is given by dx
dt

= κx, where: x =

biomass concentration; κ = specific growth rate; t = time.

The rate κ is a function of nutrient supply and therefore can be a function of time

(i.e., if nutrient supply is changing with time).

In general, κ = F (S, P, I, X, T, osmotic pressure); S = substrate concentration;

P = product concentration; I = inhibitor concentration.

There, especially in the case of continuous bioreactor, the nutrient supply is con-

sidered as an input function s(t) as follows:

dy(t)

dt
= ky(t)s(t) (1)

where s is additional specified.

To the role and choice of nutrient supply for cell growth in bioreactors are devoted

to a number of studies [1]–[17].

In [13], the following hyper–logistic equation is considered:

dy(t)
dt

= ky(t)
2e−pt

1 + e−pt

y(t0) = y0,

where k > 0 and p > 0 with general solution:

y(t) = y0e
2k(t−t0)+

2k
p

ln(1+ept0 )− 2k
p

ln(1+ept).

For other approximations of the input function s(t), see, for example [14]–[20]:















dy(t)
dt

= ky(t)
1

(1 + t)p

y(t0) = y0;

where p > 0;















dy(t)
dt

= ky(t)
1 + θ + θt

1 + θ
e−θt

y(t0) = y0;
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where θ > 0;















dy(t)
dt

= ky(t)
1

1 +mt
e−mt

y(t0) = y0;

where m > 0;











dy(t)
dt

= ky(t)e−θ(eθt−1)

y(t0) = y0

where θ > 0;















dy(t)
dt

= ky(t)
θe−λt

θ + (1− θ)(1 − e−λt)

y(t0) = y0

where θ > 0; λ > 0;











dy(t)
dt

= ky(t)e−θ(eθt−1)(1−m+me−θ(eθt−1))

y(t0) = y0

where θ > 0; k > 0 and 0 < m < 1.

Following the ideas given in [13]–[20], in this paper we consider the following

differential models:















dy(t)
dt

= ky(t)
L− t

L+ t
e−mt

y(t0) = y0

(2)















dy(t)
dt

= ky(t)
(L − t)(P − t)

(L + t)(P + t)
e−mt

y(t0) = y0

(3)

where L, M and m are parameters.

We prove upper and lower estimates for the one–sided Hausdorff approximation

of the shifted Heaviside function ht∗(t) by means of the general solutions of these

differential equations.

We will illustrate the advances of the solution y(t) for approximating and modelling

of:
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- ”data on the development of the Drosophila melanogaster population”, published

by biologist Raymond Pearl in 1920 (see, also Alpatov, Pearl [21]);

- data Storm Identifications [50], [49]);

- ”experimental data for the biomass for thermophilic bacterium Aeribacillus Pal-

lidus 418” [52];

- ”experimental data for the tumor spheroid growth” [53];

- ”data for the tumor growth model” [54];

- ”data of attack rates observed on a single link” [55];

- ”data on the growth of population of Oryzaephilus in renewed wheat” [51].

- ”data of parasitic growth as a function of the immune serum inhibitory activity”

[56];

- ”datasets of the Intracellular Adenosine Triphosphate (ATP) concentration” [57];

- ”datasets of the number of infected individuals with HIV/Kaposi’s Sarcoma with

no treatment and with 10% treatment” [58];

- ”dataset of PI-103 induced concentration-dependent growth inhibition” [59];

- ”dataset of Infected Mosquitoes with Dengue” [60].

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =























0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗.

(4)

Definition 2. [22] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (5)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).
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Figure 1: The functions M(t)–(red) and s1(t)–(green) for k = 40;m = 7; L =

2.

3. MAIN RESULTS.

3.1. THE NEW MODEL (2)

The general solution of the differential equation (2) is of the following form:

y(t) = y0e
k
(

e−mt

m
+2eLmLEi(−m(L+t))

)

−k
(

e−mt0
m

+2eLmLEi(−m(L+t0))
)

, (6)

where Ei(.) is the exponential integral function defined by

Ei(z) = −

∫

∞

−z

e−t

t
dt

(for z > 0), where the principal value of the integral is taken.

It is important to study the characteristic - ”supersaturation” of the model to the

horizontal asymptote.

In this Section we prove upper and lower estimates for the one–sided Hausdorff

approximation of the Heaviside step–function ht∗(t) by means of families (6).

Without loss of generality, we consider the following class of this family for:

t0 = 0; y0 = ek(
1
m

+2LeLmEi(−Lm))

M(t) = e
k
(

e−mt

m
+2eLmLEi(−m(L+t))

)

. (7)

The function M(t) and the ”input function” s(t) are visualized on Fig. 1.

Denoting by t∗ the unique positive solution of the nonlinear equation:

e
k

(

e−mt∗

m
+2eLmLEi(−m(L+t∗))

)

−
1

2
= 0. (8)
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The one–sided Hausdorff distance d between the function ht∗(t) and the sigmoid

- (7) satisfies the relation

M(t∗ + d) = 1− d. (9)

The following theorem gives upper and lower bounds for d

Theorem 1. Let

α = − 1
2 ,

β = 1 + k
2
L−t∗

L+t∗
e−mt∗

γ = 2.1β.

(10)

For the one–sided Hausdorff distance d between ht∗(t) and the sigmoid (6) the

following inequalities hold for the condition: γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (11)

Proof. Let us examine the function:

F (d) = M(t∗ + d)− 1 + d. (12)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = α+ βd. (13)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) > 0.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (6) for various k, m and L are visualized

on Fig. 3–Fig. 4.

3.2. SOME APPLICATIONS

The proposed model can be successfully used to approximating data from Population

Dynamics, Debugging Theory and Theory of Computer Viruses Propagation.
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Figure 2: The functions F (d) and G(d) for k = 40; m = 7; L = 2.

Figure 3: The model (7) for k = 40; m = 7; L = 2; t∗ = 0.246201; Hausdorff

distance d = 0.166121; dl = 0.125753; dr = 0.26074.

3.2.1. APPROXIMATING THE ”DATA ON THE DEVELOPMENT OF

THE DROSOPHILA MELANOGASTER POPULATION”

We will illustrate the advances of the solution y(t) for approximating and modelling

of ”data on the development of the Drosophila melanogaster population”, published

by biologist Raymond Pearl in 1920 (see, also [21]).
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Figure 4: The model (7) for k = 55;m = 16;L = 3; t∗ = 0.0936176; Hausdorff

distance d = 0.10808; dl = 0.0702664; dr = 0.18650.

We consider the following data:

data Pearl

:= {{9, 39}, {12, 105}, {15, 152}, {18, 225}, {21, 390}, {25, 547},

{29, 618}, {33, 791}, {36, 877}, {39, 938}}.

After that using the model

M∗(t) = ωe
k
(

e−mt

m
+2eLmLEi(−m(L+t))

)

for ω = 2.28719× 10−7, k = 0.41, m = 0.007 and L = 42 we obtain the fitted model

(see, Fig. 5).

3.2.2. APPROXIMATING THE

DATA STORM IDENTIFICATIONS [?], [49]

Storm worm was one of the most biggest cyber threats of 2008. In [50] are noticed

particular periods during which their Storm specimen published different IDs every

10 minutes, that behavior cannot account for the very large number of IDs.
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Figure 5: The fitted model M∗(t).

We analyze the following data:

data Storm Identifications :=

{{1, 0.843}, {4, 0.926}, {5, 0.954}, {6, 0.967}, {7, 0.976},

{8, 0.981}, {9, 0.985}, {10, 0.991}, {22, 0.995}, {38, 0.997},

{51, 0.998}, {64, 0.9985}, {74, 0.999}, {83, 1}, {100, 1}}.

After that using the model M∗(t) for ω = 1, k = 0.18, m = 0.394368 and L = 17.1

we obtain the fitted model (see, Fig. 6).

3.2.3. APPROXIMATING THE DATA: ”THE GROWTH OF

POPULATION OF ORYZAEPHILUS IN RENEWED WHEAT”

We also analyze the following experimental data obtained by the Crombie in 1945

[51]:

data Crombie 2

:= {{0, 4}, {14, 4}, {28, 4}, {35, 25}, {42, 44}, {49, 63}, {63, 147},

{77, 285}, {91, 345}, {105, 361}, {119, 405}, {133, 471}, {147, 420},

{161, 430}, {175, 420}, {189, 475}, {203, 435}, {231, 480}}.

After that using the model M∗(t) for L = 300, k = 2.4, m = 0.0505375 and ω = 450

we obtain the fitted model (see, Fig. 8).

The model of Crombie for the data Crombie 2 is illustrated in Fig. 7.
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Figure 6: The fitted model M∗(t).

Figure 7: The fitted model by Crombie for the data Crombie 2 [51].

3.3. THE NEW MODEL (3)

Without loss of generality, we consider the following class of this family for:

t0 = 0; y0 = e
k(P−L−2eLmLm(L+P)Ei(−Lm)+2emP mP(L+P)Ei(−mP ))

m(L−P )
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Figure 8: The fitted model M∗(t).

M1(t) = e
e−mtk(P−L−2em(L+t)Lm(L+P)Ei(−m(L+t))+2em(P+t)mP(L+P )Ei(−m(P+t)))

m(L−P) . (14)

It is important to study the characteristic - ”supersaturation” of the model to the

horizontal asymptote.

The function M1(t) and the ”input function” s2(t) are visualized on Fig. 9.

Denoting by t∗ the unique positive solution of the nonlinear equation M1(t
∗) −

0.5 = 0.

The one–sided Hausdorff distance d1 between the function ht∗(t) and the function

- (14) satisfies the relation

M1(t
∗ + d1) = 1− d1. (15)

The estimates for the one–sided Hausdorff approximation of the Heaviside step–

function ht∗(t) by means of families (14) can be studied in manner outlined in Theorem

1.

Approximation of the ht∗(t) by model (14) for k = 3.9; m = 5.5; L = 50; P = 250

is visualized on Fig. 10.
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Figure 9: The functions M1(t)–(red) and s2(t)–(green) for k = 3.9; m =

5.5; L = 50; P = 250.

Figure 10: The model (14) for k = 3.9; m = 5.5; L = 50; P = 250 t∗ =

0.00253276; Hausdorff distance d1 = 0.202142; dl1 = 0.162923; dr1 = 0.29562.

3.3.1. APPROXIMATING THE ”EXPERIMENTAL DATA FOR THE

BIOMASS FOR THERMOPHILIC BACTERIUM AERIBACILLUS

PALLIDUS 418” [?]

We analyze the following experimental data of the biomass [52]:

data :=

{{0, 0}, {1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0.16}, {6, 0.45}, {7, 1},

{8, 1.3}, {12, 1.2}, {14, 1.2}, {16, 1.2}, {18, 1.1}, {21, 1.1}, {24, 1.1}}.



SOME NONSTANDARD DIFFERENTIAL MODELS 769

Figure 11: Solution of model [52].

Figure 12: The fitted model M∗

1 (t).

After that using the model M∗

1 (t) = ωM1(t) for ω = 1.11385, k = 113.818,

m = 0.42, L = 91 and P = 25 we obtain the fitted model (see, Fig. 12).

The solution of model by Radchenkova, Kambourova, Vassilev, R. Alt and Markov

is visualized on Fig. 11.

3.3.2. APPROXIMATING THE ”EXPERIMENTAL DATA FOR THE

TUMOR SPHEROID GROWTH” [?]

Properties of tumor spheroid growth exhibited by a simple mathematical models can

be found in [53].

Here we analyze the data of the proliferating pool (m = 0.002 and m = 0.001, see
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Figure 13: Solution of model [53].

Fig. 13) [53]:

data m002 :=

{{0, 0}, {385, 5}, {577, 10}, {769, 15}, {833, 20}, {1058, 25},

{1154, 30}, {1250, 35}, {1346, 40}, {2500, 34}, {5000, 22},

{7500, 21}, {15000, 20}, {35000, 20}}.

data m001 :=

{{0, 0}, {385, 5}, {577, 10}, {769, 15}, {833, 20}, {1058, 25},

{1154, 30}, {1250, 35}, {1346, 40}, {2500, 34}, {5000, 21},

{7500, 19}, {15000, 18}, {35000, 17}}.

After that using the model M∗

1 (t) = ωM1(t) for ω = 19.6915, k = 0.0153181,

m = 0.0009, L = 1650 and P = 35000 we obtain the fitted model (see, Fig. 14).

For ω = 18.1353, k = 0.0162692, m = 0.00088, L = 1650 and P = 35000 we

obtain the fitted model (see, Fig. 15).
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Figure 14: The fitted model M∗

1 (t) for m = 0.002.

Figure 15: The fitted model M∗

1 (t) for m = 0.001.

3.3.3. APPROXIMATING THE ”DATA FOR THE TUMOR GROWTH

MODEL” [?]

We analyze the data of the one noise–realization of Proliferating - P (final fit, see Fig.

16) [54]:

data :=

{{0, 0}, {200, 0.33}, {400, 1.16}, {600, 1.93}, {800, 1.87}, {1000, 1.42},

{1200, 1.35}, {1400, 1.02}, {1600, 0.90}, {1800, 0.83}, {2000, 0.95}}.

After that using the model M∗

1 (t) = ωM1(t) for ω = 1.6879, k = 0.0403256,

m = 0.001, L = 650 and P = 2000 we obtain the fitted model (see, Fig. 17).
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Figure 16: One noise–realization of Proliferating - P (initial and final fit)

[54].

Figure 17: The fitted model M∗

1 (t).

3.3.4. APPROXIMATING THE ”DATA OF ATTACK RATES

OBSERVED ON A SINGLE LINK” [?]

We analyze the data of attack rates observed on a single link, under the hypotheses

that links hold (upper curve) or randomly fail (lower curve), see Fig. 18 [55]:

data upper :=

{{0, 0}, {3, 294}, {4, 1471}, {5, 10882}, {6, 35000}, {7, 63529},
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Figure 18: Attack rates observed on a single link [55].

data lower :=

{{0, 0}, {3, 294}, {4, 1471}, {5, 10882}, {6, 35000}, {7, 63529},

{8, 78529}, {9, 84117}, {10, 85294}, {11, 85588}, {12, 85000},

{13, 83823}, {14, 83529}, {15, 83235}, {20, 81765}, {25, 80294},

{30, 79118}, {35, 78235}, {40, 77647}, {45, 77059}, {50, 76470}}.

After that using the model M∗

1 (t) = ωM1(t) for ω = 83593.2, k = 43.0354,

m = 0.42, L = 10.2 and P = 150 we obtain the fitted model (see, Fig. 19).

For ω = 79727.2, k = 37.3208, m = 0.42, L = 10.5 and P = 95 we obtain the

fitted model (see, Fig. 20).

As should expected, the experiments conducted (see, Sections 3.2 - 3.3) show a

very good approximation of data from the field of population dynamics and computer

viruses propagation, with suggested in this article, modified logistic model.

Remark. Parasitic infections are often chronic and affect many people.

The effect of antibody on malaria parasites as well as the differential model of

parasitic growth as a function of the immune serum inhibitory activity are well studied

(see, e.g. [56]).
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Figure 19: The fitted model M∗

1 (t).

Figure 20: The fitted model M∗

1 (t).

The presence of immune serum blocks the continued increase in number of Plas-

modium Knowlesi (a malaria parasite of monkeys), see Fig. 21: Parasite growth and

immune serum (blue) [56].
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Figure 21: Parasitic growth as a function of the immune serum inhibitory

activity (blue) [56].

Figure 22: The fitted model M∗

1 (t).

We analyze the following data:

data immune serum :=

{{0, 0}, {2.67, 1.42}, {5.33, 1.95}, {8, 2.21}, {10.67, 2}, {11, 1.86},

{13.33, 1.84}, {16, 1.79}, {18.67, 1.78}, {21.33, 1.74},

{24, 1.7192059}}.
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After that using the model M∗

1 (t) = ωM1(t) for ω = 2.21098, k = 1.21016,m = 0.088,

L = 7 and P = 21.03 we obtain the fitted model (see, Fig. 22).

4. APPROXIMATING THE ATP CONCENTRATION

The Intracellular Adenosine Triphosphate (ATP) concentration (see, Fig. 23) [57]

indicates that the stationary state (ss) is asymptotically stable for both cell types,

assuming the initial concentration of glucose extracellular (Gluout) as a control pa-

rameter.

We analyze the following datasets [57]:

data A := {{0, 0.7}, {0.2, 9.85}, {0.3, 9.9}, {0.4, 9.85}, {0.6, 9.5},

{0.8, 9.2}, {1, 8.95}, {1.2, 8.75}, {1.4, 8.65}, {1.6, 8.55}, {1.8, 8.5},

{2, 8.47}, {2.2, 8.45}, {2.4, 8.44}, {3, 8.42}, {4, 8.4}, {5, 8.37}};

data B := {{0, 7.9}, {0.05, 8.55}, {0.2, 7.6}, {0.4, 7.25}, {0.6, 7.15},

{0.8, 7.25}, {1, 7.3}, {1.2, 7.4}, {1.4, 7.5}, {1.6, 7.55}, {1.8, 7.62},

{2, 7.65}, {2.2, 7.67}, {2.4, 7.69}, {2.6, 7.71}, {2.8, 7.72}, {3, 7.73},

{4, 7.73}, {5, 7.73}};

data C := {{0, 5.2}, {1, 9.7}, {2, 9.6}, {4, 9.4}, {6, 9.2}, {8, 8.9},

{10, 8.7}, {12, 8.5}, {14, 8.3}, {16, 8.2}, {18, 8.1}, {20, 8}, {22, 7.9},

{24, 7.87}, {26, 7.84}, {30, 7.82}, {40, 7.8}, {50, 7.8}};

data D := {{0, 5.4}, {1, 10.5}, {2, 10.3}, {4, 9.3}, {6, 5.8}, {8, 4.2},

{10, 4}, {12, 3.8}, {20, 3.8}, {30, 3.8}, {40, 3.8}, {50, 3.8}}.

The fitted models (see, Fig. 24):

A) M∗

1 (t) - L = 0.3; P = 100; m = 6; ω = 8.58611; k = 34.841;

B) M∗

1 (t) - L = 0.79; P = 4; m = 0.492; ω = 7.58418; k = −0.515663;

C) M∗

1 (t) - L = 2.9; P = 3500; m = 0.2; ω = 7.63379; k = 0.242045;

D) M∗

1 (t) - L = 1.75; P = 50; m = 0.23; ω = 3.48735; k = 1.20129.
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Figure 23: [57]

Figure 24: The fitted models M∗

1 (t).

5. APPROXIMATING THE HIV/KAPOSI’S SARCOMA

COINFECTION DYNAMICS

The model for HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV

Prevalence is presented in [58].

Here we will fit the number of infected individuals with HIV/Kaposi’s Sarcoma

with no treatment (see Fig. 25) and with 10% treatment (see Fig. 27).
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Figure 25: [58].

We analyze the given datasets [58]:

data HIV/KS co− infection no treatment := {{0.24138, 0},

{0.31034, 2000}, {0.37931, 4000}, {0.44828, 6000}, {0.48276, 8000},

{0.49655, 8480}, {0.51724, 8590}, {0.55172, 8440}, {0.86207, 6670},

{1, 6440}, {1.17241, 6300}, {1.34483, 6260}, {2, 6220}, {6, 6220},

{7, 6190}, {10, 6190}};

data HIV/KS co− infection 10% treatment := {{0.27586, 0},

{0.44828, 5680}, {0.51724, 5840}, {0.55172, 5600}, {0.79310, 3640},

{1, 3440}, {1.20690, 3360}, {2, 3360}, {10, 3360}}.

The fitted models (see, Fig. 26 and Fig. 28):

A) M∗

1 (t) - L = 0.58 P = 10; m = 5.53; ω = 6121.15; k = 449.493;

C) M∗

1 (t) - L = 0.5; P = 10; m = 9.35; ω = 3355.32; k = 7590.8;

Since the mathematical model of HIV/Kaposi’s Sarcoma Coinfection Dynamics in

Areas of High HIV Prevalence is well-studied, we will note that it is described with a

known system of stratified differential equations which we will not explore here.
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Figure 26: The fitted model M∗

1 (t).

Without be a specialists on this subject we will only note that the approximation

of the above-mentioned data for ”infected individuals” - Fig. 25 (red-dashed) and Fig.

27 (red-dashed) with the model function discussed in this chapter gives us unexpected

good results for which we have insufficient scientific reasoning at this stage.

The specialists working in the field of ”reaction-kinetic mechanisms” have the

word.

6. APPROXIMATING TUMOR SPHEROID GROWTH INHIBITION

WITH PI-103

For evaluation of the effects of molecularly targeted agents on three-dimensional tu-

mor growth kinetics, 4-day-old spheroids (for example, U-87 MG) were treated with

compounds for 72 h [59]. The results are visualized by logarithmic scale of ’X’ axis.

PI-103 induced concentration-dependent growth inhibition.

We analyze the following dataset [59]:

data PI − 103 induced concetr.− depen. growth inhibition :=

{{0.009, 94.554}, {0.017, 93.564}, {0.053, 86.634},

{0.080, 76.733}, {0.180, 58.911}, {0.450, 35},

{0.721, 20}, {0.984, 15}, {2, 14}, {3.628, 12}}.

By the help of the model M∗

1 (t) = ωM1(t) for L = 1.9; P = 3.2; m = 0.1; ω =

0.000728774 and k = −3.79042 we obtain the fitted model (see, Fig. 29).
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Figure 27: [58].

Figure 28: The fitted model M∗

1 (t).

7. APPROXIMATING INFECTED MOSQUITOES WITH DENGUE

In Fig. 30 [60] (red line), there is no considerable difference between the cases of

without control and with control in the dengue-infected mosquitoes.
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Figure 29: The fitted model M∗

1 (t).

We will use the following dataset which we took from Fig. 30 [60] (red line):

data Infected Mosquitoes with Dengue := {{0, 111},

{0.455, 200}, {1.364, 300}, {2.045, 400}, {3.182, 500},

{4.545, 600}, {5, 630}, {6.818, 700}, {7.5, 730}, {10, 778},

{12.5, 787}, {15, 776}, {17.5, 750}, {20, 713}, {21.136, 700},

{26.591, 600}, {30, 539}, {32.272, 500}, {38.409, 400},

{40, 374}, {46.136, 300}, {50, 259}, {56.591, 200},

{60, 167}, {65, 139}, {70, 113}, {72.727, 100}, {80, 64},

{85, 45}, {90, 25}, {95, 15}, {100, 0}}.

By the usage of the model M∗

1 (t) = ωM1(t) for ω = 10.3733; k = 0.208036; m =

0.185; L = 14.45 and P = 4590 we receive the fitted model (see, Fig. 31).

8. CONCLUSION.

A special choice of nutrient supply for cell growth in a continuous bioreactor is intro-

duced.

We prove upper and lower estimates for the one–sided Hausdorff approximation

of the shifted Heaviside function ht∗(t) by means of the general solutions of the dif-
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Figure 30: [60].

Figure 31: The fitted model M∗

1 (t).

ferential equations:y′(t) = ky(t)s1(t) and y′(t) = ky(t)s2(t) with y(t0) = y0, where

s1(t) =
L−t
L+t

e−mt and s2(t) =
(L−t)(P−t)
(L+t)(P+t)e

−mt.

Since the determination of the inflexion points of the functions S1(t) and S2(t) is

not a difficult, we will note that the parameters L and P can be used as ”limiters of

specifically located data”.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of functions.

The module offers the following possibilities:
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- calculation of the H-distance between the ht∗ and the model M(t) (6);

- generation of the functions under user defined values of the parameters k, m and

L;

- generation of the functions by model (14) under user defined values of the pa-

rameters k, m, L and P ;

- numerical solution of the differential models (2) and (3) and opportunities for

comparison with other logistics models;

- software tools for animation and visualization.

There are many approaches for modelling computer viruses propagation.

Here we give new modelling ways and make subsequent steps to give more precise

approximations of these epidemics.

At present, the authors are working hard to construct and study new differential

models designed to approximate ”specific” data from the propagation of computer

viruses usually concentrated in unexpected intervals.

Such results will help to fully capturing the epidemic outbreak of virus spreading.

We can conclude that the Hausdorff apparatus used to evaluate ”supersatura-

tion” in the treatment of relational problems in various scientific fields is proved its

sufficiently reliable. For other applications of Hausdorff distance, see [61].
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