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1. INTRODUCTION

By a dynamical system in the paper, we mean a pair (X, f), where X is a nontrivial

compact metric space with a metric d and f : X → X is a continuous mapping. In

[7], the authors proved the following

Theorem 1.1 ([7], Theorem 3.1). Let (X, d) be a compact metric space, and suppose

that fn : X → X are continuous and topologically transitive functions. If fnconverges

uniformly to f , then f is topologically transitive.

Unfortunately, a counterexample was given in [6] to show that Theorem 1.1 is

wrong. In order to correct Theorem 1.1, the the author in [6] established the following
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Theorem 1.2 ([6], Theorem 2). Let (X, d) be a perfect metric space, and let fn :

X → X be a sequence of continuous and topologically transitive functions such that

{fn}converges uniformly to a function f . Additionally, suppose that

(1) d∞(fn
n , f

n) → 0 as n → ∞, where d∞(fn
n , f

n) = supx∈X{d(fn
n (x), f

n(x)};

(2) {fn
n (x)} is dense in X for some x ∈ X.

Then f is topologically transitive.

Inspired by [6], the author in [4] presented a sufficient condition for the uniform

mapping f to be totally transitive and some necessary and sufficient conditions for the

uniform mapping f to be topologically transitive, syndetically transitive, respectively.

Concretely,

Theorem 1.3 ([4], Theorem 3.3). Let (X, d) be a compact and perfect metric space,

and let fn : X → X be a sequence of continuous and topologically transitive functions

such that {fn}converges uniformly to a function f . Additionally, suppose that

(1) d∞(fn
n , f

n) → 0 as n → ∞;

(2) {fn
n (x)} is dense in X for some x ∈ X.

Then f is totally transitive(i.e., fn is topologically transitive for every n ≥ 1).

Theorem 1.4 ([4], Theorem 3.4-3.7). Let (X, d) be a metric space, and let fn :

X → X be a sequence of continuous and topologically transitive functions such that

{fn}converges uniformly to a function f . Additionally, suppose that d∞(fn
n , f

n) → 0

as n → ∞. Then

(1) f is transitive if and only if sup{n ∈ N : fn
n (U) ∩ V 6= ∅} = ∞ for any opene

sets U, V ⊂ X;

(2) f is syndetically transitive if and only if {n ∈ N : fn
n (U) ∩ V 6= ∅} is syndetic

for any opene sets U, V ⊂ X;

(3) f is topologically weak mixing if and only if sup{n ∈ N : fn
n (U1) ∩ V1 6=

∅, fn
n (U2) ∩ V2 6= ∅} = ∞ for any opene sets Ui, Vi ⊂ X(i = 1, 2).

(4) f is topologically mixing if and only if sup{n ∈ N : fn
n (U) ∩ V 6= ∅ ⊃ [m,∞)

for some m > 0 and any opene sets U, V ⊂ X(i = 1, 2).

Furthermore, under the condition that limn→∞ d∞(fn
n , f

n) = 0, the author in [5]

gave an equivalence condition for the uniform mapping f to be syndetically sensi-

tive, cofinitely sensitive, multi-sensitive and ergodically sensitive, respective. See the

following results for more details.

Theorem 1.5 ([5], Theorem 3.3-3.6). Let (X, d) be a compact metric space. Suppose

that fn : X → X are continuous and converge uniformly f . Then

(1) f is ergodically sensitive if and only if there is a δ > 0 such that N(fn

n
)(V, δ)

has positive upper density for any nonempty open set V ⊂ X, where N(fn

n
)(V, δ) =
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{n ∈ Z
+ : there are x, y ∈ V with d(fn

n (x), f
n
n (y)) > δ};

(2) f is syndetically sensitive if and only if there is a δ > 0 such that N(fn

n
)(V, δ)

is syndetic for any nonempty open set V ⊂ X;

(3) f is multi-sensitive if and only if there is a δ > 0 such that
⋂k

i=1 N(fn

n
)(Vi, δ) 6=

∅ for any k ∈ N and any nonempty open set Vi ⊂ X, 1 ≤ i ≤ k;

(4) f is cofinitely sensitive if and only if there is a δ > 0 such that N(fn

n
)(V, δ) is

cofinite for any nonempty open set V ⊂ X.

However, the proofs of Theorem 1.2-1.5 depend strongly on the condition that

{fn} converges uniformly to f and limn→∞ d∞(fn
n , f

n) = 0. In the paper,we delete

the superfluous assumption that {fn} converges uniformly to f , and obtain some

more general results which extend and improve the mentioned conclusions above. Of

course, we want to point out here that there is no any implication relation between

the conditions that {fn} converges uniformly to f and limn→∞ d∞(fn
n , f

n) = 0. Ones

can refer to [6] for the example which shows that {fn} converges uniformly to f

doesn’t imply limn→∞ d∞(fn
n , f

n) = 0. Conversely, the following example reveals

that limn→∞ d∞(fn
n , f

n) = 0 doesn’t imply that {fn} converges uniformly to f .

Example 1.1 Let S1 be the unit circle and identify each point on the circle by the

radian measure(in a counterclockwise direction) of the angle between the positive x-

axis and the ray beginning at the origin and passing through the point. Then, the

usual metric on S1 is defined by letting d(a, b) be the length of the shortest arc on

the circle connecting a and b. More precisely, d(a, b) = |a − b| if |a − b| ≤ π and

d(a, b) = |a − b| − π if |a − b| > π. Now consider the functions fn(θ) = θ
n
√
n

and

f(θ) = θ
λ
for any θ ∈ S1, where 1 < λ < ∞. Then limn→∞ d∞(fn

n , f
n) = 0 but {fn}

doesn’t converge uniformly to f .

2. SOME BASIC CONCEPTS AND NOTATIONS OF FAMILIES

In the section, we review some basic needed notations. Recall firstly the basic notions

related to Furstenberg families (see [1] for details). In the paper, we let N = {1, 2, · · · },

Z
+ = {0, 1, 2, · · · }.

Let P be the collection of all subsets of Z+. A collection F ⊂ P is called an

Furstenberg family (family in short) if it is hereditary upwards, i.e., F1 ⊂ F2 and

F1 ∈ F imply F2 ∈ F . A family F is proper if it is a proper subset of P , i.e. neither

empty nor the whole P . Throughout this paper, all the mentioned families are proper.

Denote by Finf the family consisting of all infinite subsets of Z+.

Let F be a family, denote △(F) = {F −F : F ∈ F}, where F −F = {i− j ∈ Z
+ :

i, j ∈ F}, and the dual family of F is defined by kF = {F1 ∈ P : F1∩F 6= ∅, ∀F ∈ F}.

Sometimes, we denote the dual family of △(F) by △∗(F). It is not difficult to prove
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that kF = {F1 ∈ P : Z
+\F1 /∈ F}. Also the block family of F is defined by

bF = {F ∈ P : there exists F1 ∈ F such that for any n ∈ Z
+, there exists an ∈

Z
+satisfying an + (F1 ∩ [0, n]) ⊂ F}.

Let I be a subset of Z+. We say that

(1) I is syndetic if it has a bounded gap, i.e., there exists m ∈ N such that

{n, n+ 1, · · · , n+m} ∩ I 6= ∅ for all n ∈ Z
+. Use Fs to denote the family consisting

of all syndetic subsets of Z+;

(2) I has positive upper density if

d(I)) = lim sup
n→∞

♯(I ∩ {0, 1, 2, · · · , n− 1})

n
> 0,

where ♯(·) denotes the cardinality of a set. And here Fpud stands for the family

consisting of all subsets of Z+ with positive upper density;

(3) I is thick if it contains arbitrarily long runs of positive integers, i.e., for every

n ∈ N there exists some an ∈ Z
+ such that {an, an + 1, · · · , an + n} ⊂ I. The set of

all thick subsets of Z+ is denoted by Ft;

(4) I is piecewise syndetic if it is just the intersection of a syndetic set and a thick

set. The set of all piecewise syndetic subsets of Z+ is denoted by Fps;

(5)I is called an IP-set if there exists a sequence {p1, p2, · · · } of positive integers

such that

I = FS{pi}
∞
i=1 =:

{
∑

i∈α

pi : α is a non-empty finite subset of N

}
.

Denote by Fip = {F ∈ P : F contains an IP-set};

(6)I is called weakly thick if there exists some k ∈ N such that {n ∈ Z
+ : kn ∈ I}

is thick. Let Fwt denote the family of all weakly thick sets.

(7) The Banach upper density of I is defined as

BD+(I) = lim sup
♯(J)→∞

♯(I ∩ J)

♯(J)
,

where J stands for a subset of Z+ in the form of {n, n+1, · · · , n+ l}, l ∈ N. Denoted

by Fpbud the family consisting of all subsets of Z+ with positive Banach upper density.

In the following definition, we present an especial property of family, here we call

it finitely containing property(FCP in brief).

Definition 2.1. Let F be a family. We say that F has the finitely containing

property if F1 ∈ P , F2 ∈ F and F2 − F1 = {x ∈ Z
+ : x ∈ F2, but x /∈ F1} is finite,

then F1 ∈ F .

Remark 2.1. It is clear that the families Finf , Fs, Fpbud and Ft have the FCP.

However, there exists a family having no such a property(see Example 2.1 below).
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Example 2.1. Let F = {F ∈ P : there exists a prime number n ∈ N such that{nk :

k ∈ N} ∈ F}. Obviously, F is a family and has no the FCP.

Next we give several lemmas related to the FCP, which play a key role in the

proofs of our results.

Lemma 2.1. Let F1, F2 ∈ P, then F1 −F2 is finite if and only if there exists N ∈ N

such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}.

Proof. The proof is simple, so we omit it.

Lemma 2.2. If a family F has the FCP, so does the dual family kF of F .

Proof. Let F1 ∈ kF , F2 ∈ P and F1 − F2 be finite. By Lemma 2.1, there exists

N ∈ N, such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}.

Suppose on contrary that F2 /∈ kF , that is Z+\F2 ∈ F , which implies that

{n ∈ N : n > N, n ∈ N\F1} ⊃ {n ∈ N : n > N, n ∈ N\F2}. (2.1)

Since F has the FCP and Z
+\F2 ∈ F , {n ∈ N : n > N, n ∈ N\F2} ∈ F . From the

definition of family and (2.1), it is easy to see that {n ∈ N : n > N, n ∈ N\F1} ∈ F .

As F has the FCP, Z+\F1 ∈ F , which is contrary to F1 ∈ kF . This contradiction

gives that F2 ∈ kF .

3. AN EQUIVALENT CONDITION FOR F TO BE F-TRANSITIVE

In this section, we will present an equivalent condition for f to possess F -transitivity.

Although there are some works in which the similar results were proved, we want to

emphasize here that our results are obtained without the important assumption that

{fn} converges uniformly to f and that the known results are just the special cases

of our main result in the section.

First, we recall some necessary conceptions of transitivity. Let (X, f) be a dy-

namical system and F be a family. (X, f) is called F -transitive if for any pair of

opene (standing for nonempty open) subsets U, V of X , we have N(U, V ) ∈ F , where

N(U, V ) = {n ∈ Z
+|U ∩ f−n(V ) 6= ∅}. In particular(ones can refer to [3] for the

summary conclusions of transitivity),

(1)(X, f) is called transitive if for any pair of opene subsets U, V of X , N(U, V ) ∈

Finf ;



550 J. YIN AND Y. SHI

(2)(X, f) is called syndetically transitive if for any pair of opene subsets U, V of

X , N(U, V ) ∈ Fs;

(3)(X, f) is called topologically ergodic if for any pair of opene subsets U, V of X ,

N(U, V ) ∈ Fpud;

(4)(X, f) is scattering if for any pair of opene subsets U, V of X , N(U, V ) ∈

△∗(Fps);

(5)(X, f) is mild-mixing if for any pair of opene subsets U, V of X , N(U, V ) ∈

△∗(Fip).

Let x ∈ X . We denote by B(x, ε) = {y ∈ X : d(x, y) < ε} the ε-neighborhood of

x and write N(x, U) = {n ∈ Z
+|fn(x) ∈ U}. Let g be another continuous mapping

on X , define

d∞(f, g) = sup
x∈X

{d(f(x), g(x))},

then d∞ is a complete metric on C(X), where C(X) denotes the space of continuous

mappings on X .

For simplification, we always assume that X is a compact metric space with the

distance d, and F ⊂ Finf is a family satisfying the FCP.

Theorem 3.1. Let (X, f) be a dynamical system, {fn} be a sequence of continuous

self-mappings on X satisfying

lim
n→∞

d∞(fn
n , f

n) = 0. (3.1)

Then (X, f) is F-transitive if and only if for any pair of opene subsets U, V of X,

{n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ F .

Proof. Firstly, we suppose that the necessity holds, i.e., (X, f) is F -transitive. Take

arbitrarily two opene subsets U, V of X and choose x ∈ V and δ > 0 such that

B(x, δ) ⊂ V . By (3.1), there exists a sufficient large positive integer N , such that for

all n ∈ N with n > N , we have d∞(fn
n , f

n) < δ
2 . By the definition of F -transitivity

and note that F ⊂ Finf , if n ∈ N(U,B(x, δ
2 )) and n > N , then choose y ∈ U ∩

f−n(B(x, δ
2 )), so we have

d(fn
n (y), x) ≤ d(fn

n (y), f
n(y)) + d(fn(y), x) ≤ d∞(fn

n , f
n) +

δ

2
< δ.

Thus fn
n (y) ∈ B(x, δ) ⊂ V , which implies that

{
n ∈ N : n > N, n ∈ N

(
U,B

(
x,

δ

2

))}
⊂

{
n ∈ N : n > N,U ∩ f−n

n (V )) 6= ∅
}
.

From Lemma 2.1, we have

N

(
U,B

(
x,

δ

2

))
−
{
n ∈ N : U ∩ f−n

n (V )) 6= ∅
}
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is finite. Noting that N
(
U,B

(
x, δ

2

))
∈ F and F has the FCP, we get

{
n ∈ N : U ∩ f−n

n (V )) 6= ∅
}
∈ F .

Next we suppose that the sufficiency holds. Pick any pair of opene subsets U, V of

X , and choose z ∈ V and λ > 0 such that B(z, λ) ⊂ V . Then by (3.1), there exists a

sufficient large M ∈ N such that d∞(fn
n , f

n) < λ
2 provided n > M . By the sufficient

assumption, {
n ∈ N : U ∩ f−n

n

(
B

(
z,

λ

2

))
6= ∅

}
∈ F ⊂ Finf .

So if n ∈
{
k ∈ N : U ∩ f−k

k

(
B
(
z, λ2

))
6= ∅

}
, then there is q ∈ U ∩f−n

n

(
B
(
z, λ

2

))
, and

we have

d(fn(q), z) ≤ d(fn
n (q), f

n(q)) + d(fn
n (q), z)) ≤ d∞(fn

n , f
n) +

λ

2
< λ,

which gives that fn(q) ∈ B(z, λ) ⊂ V . So

{
n ∈ N : n > N,U ∩ f−n

n

(
B

(
z,

δ

2

))
6= ∅

}
⊂

{
n ∈ N : n > N,U ∩ f−n (V )) 6= ∅

}
.

Thus {
n ∈ N : U ∩ f−n

n

(
B

(
z,

δ

2

))
6= ∅

}
−N(U, V )

is finite. Since F has the FCP, by Lemma 2.1, we get that N(U, V ) ∈ F which means

that (X, f) is F -transitive.

Now according to Theorem 3.1, we have the following corollaries. For conve-

nience, in the next corollaries of this section, we always assume that (X, f) is a

dynamical system and {fn} is a sequence of continuous self-mappings on X satisfying

limn→∞ d∞(fn
n , f

n) = 0.

Corollary 3.1. (X, f) is transitive if and only if for any pair of opene subsets U, V

of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ Finf .

Proof. It is well known that (X, f) is transitive if and only if (X, f) is Finf -transitive.

And obviously Finf has the FCP, by Theorem 3.1, it is easy to get the rsult.

Corollary 3.2. (X, f) is syndetically transitive if and only if for any pair of opene

subsets U, V of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ Fs.

Proof. The proof is similar to that of Corollary 3.1 if one notes that Fs has the

FCP.

Corollary 3.3. (X, f) is topologically ergodic if and only if for any pair of opene

subsets U, V of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ Fpud.
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Proof. The proof is straight, so we omit it.

In order to prove the next corollary, we need the following lemma.

Lemma 3.1. ([3], Table 1) Let (X, f) be a dynamical system, then (X, f) is scat-

tering if and only if for any pair of opene subsets U and V of X,

N(U, V ) ∈ △∗(Fps).

Corollary 3.4. (X, f) is scattering if and only if for any pair of opene subsets U, V

of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ △∗(Fps).

Proof. It is well known that △(Fps) = △(Fs), thus by Lemma 3.1 and Lemma 2.2,

it need only prove that △(Fs) has the FCP.

Assume that F1 ∈ △(Fs), F2 ∈ P such that F1 − F2 is finite. It follows from

Lemma 2.1 that there exists N0 ∈ N, such that

{n ∈ N : n > N0, n ∈ F1} ⊂ {n ∈ N : n > N0, n ∈ F2}. (3.2)

Since F1 ∈ △(Fs), there exists F ∗
1 ∈ Fs satisfying F ∗

1 − F ∗
1 = F1. Without loss of

generality, suppose F ∗
1 = {a1, a2, · · · , an, · · · }, where a1 < a2 < · · · < an < · · · . As

F ∗
1 ∈ Fs, there is N1 ∈ N such that ai+1 − ai ≤ N1 for any i ∈ N. Take b1 = a1 and

bi+1 = ak, where k = min{n : an − bi > N0}, i ∈ N. Set F ∗
2 = {b1, b2, · · · , bn, · · · },

then F ∗
2 − F ∗

2 ⊂ F ∗
1 − F ∗

1 . Due to ai+1 − ai ≤ N1, then bi+1 − bi ≤ N1 +N0 for any

i ∈ N, which yields that F ∗
2 ∈ Fs. Because of bi+1 − bi > N0 for any i ∈ N,

{1, 2, · · · , N0} ∩ (F ∗
2 − F ∗

2 ) = ∅.

Thus it follows from (3.2) that F ∗
2 − F ∗

2 ⊂ F2, i.e., F2 ∈ △(Fs).

Corollary 3.5. (X, f) is mild-mixing if and only if for any pair of opene subsets

U, V of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} ∈ △∗(Fip).

Proof. From Lemma 2.2 and the definition of mild-mixing, it suffices to prove that

△(Fip) has the FCP. Let F1 ∈ △(Fip), F2 ∈ P satisfying that F1 − F2 is finite. By

Lemma 2.1, there exists N ∈ N, such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}. (3.3)

Since F1 ∈ △(Fip), there is F̃1 ∈ Fip such that F̃1 − F̃1 = F1. Without loss of

generality, suppose that F̃1 = FS{pi}∞i=1, where {pi}∞i=1 is a sequence of positive

integers. Put qi = p(i−1)(N+1)+1 + · · · + pi(N+1), i = 1, 2, · · · , and F̃2 = FS{qi}∞i=1,

then F̃2 ⊂ F̃1 and

F̃2 − F̃2 ⊂ F̃1 − F̃1 = F1.
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As qi = p(i−1)(N+1)+1+ · · ·+pi(N+1) ≥ N for any i ≥ 1, {1, 2, · · · , N}∩(F̃2− F̃2) = ∅.

So from (3.3), one can get that F̃2 − F̃2 ⊂ F2, i.e., F2 ∈ △(Fip). Thus △(Fip) has

the FCP.

Corollary 3.6. (X, f) is weakly mixing if and only if for any pair of opene subsets

U, V of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} is thick.

Proof. The proof is simple if one notes that Ft has the FCP.

Corollary 3.7. (X, f) is strong mixing if and only if for any pair of opene subsets

U, V of X, {n ∈ N : U ∩ f−n
n (V ) 6= ∅} is cofinite.

Proof. The proof is obvious by Theorem 3.1, so we omit it.

Remark 3.1. Clearly, Theorem 3.1 and Corollary 3.1-3.7 improve Theorem 3.4-3.7

in [4].

4. AN EQUIVALENT CONDITION FOR F TO BE F-POINT

TRANSITIVE

In this section, a necessary and sufficient condition for a point in X to be F -transitive

is gotten. By this result, several equivalent conditions for (X, f) to be a P -system, an

M -system and an E-system are obtained, respectively. Before introducing the main

results in this section, we review some needed concepts.

Let (X, f) be a dynamical system and F be a family. A point x ∈ X is called an

F -transitive point if for every opene subset U of X , N(x, U) ∈ F . (X, f) is called

F -point transitive if there exists some F -transitive point in X .

We call that (X, f) is

(1) a P -system if (X, f) is transitive and it has dense periodic points;

(2) an M -system if (X, f) is transitive and it has dense minimal points;

(3) an E-system if (X, f) is transitive and it has an invariant measure with full

support, i.e., there exists an invariant measure m such that {x ∈ X : there exists ε >

0, such that m(B(x, ε)) > 0} = X ;

(4) a totally transitive system if for every k ∈ N, (X, fk) is transitive.

We call that (X, f) has dense small periodic sets(see [2] for more details) if for

every open subset U of X there exists a closed subset Y of U and k ∈ N such that Y

is invariant for fk(i.e., fkY ⊂ Y ). And (X, f) is called an HY -system if it is totally

transitive and has dense small periodic sets.

For simplification, in the following, we always assume that (X, f) is a compact

metric space with the distance d in X , and F is a family satisfying the FCP.
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Theorem 4.1. Let {fn} be a sequence of continuous self-mappings on X satisfying

lim
n→∞

d∞(fn
n , f

n) = 0. (4.1)

Then x ∈ X is an F-transitive point of f if and only if for any opene subset U of X,

{n ∈ N : fn
n (x) ∈ U} ∈ F .

Proof. Suppose that x ∈ X is an F -transitive point of f and U is an opene subset

of X . Take u ∈ U and B(u, ε), an ε-neighborhood of u, such that B(u, ε) ⊂ U . From

limn→∞ d∞(fn
n , f

n) = 0, there is N ∈ N, such that for any n > N ,

lim
n→∞

d∞(fn
n , f

n) <
ε

2
.

For any n ∈ N(x,B(u, ε
2 )) with n > N , it is easy to get that

d(fn
n (x), u) ≤ d(fn

n (x), f
n(x)) + d(fn(x), u) ≤ d∞(fn

n , f
n) +

ε

2
< ε.

So fn
n (x) ∈ B(u, ε) ⊂ U . By the definition of point transitivity, N(x,B(u, ε

2 )) ∈ F ,

thus

{
n ∈ N : n > N, n ∈ N

(
x,B

(
u,

ε

2

))}
⊂ {n ∈ N : n > N, fn

n (x) ∈ B(u, ε)}

⊂ {n ∈ N : n > N, fn
n (x) ∈ U}.

Note that F has the FCP, according to Lemma 2.1, {n ∈ N : fn
n (x) ∈ U} ∈ F .

Next, suppose that for any opene subset V of X , {n ∈ N : fn
n (x) ∈ V } ∈ F .

Take y ∈ V and a δ-neighborhood B(y, δ) of y, such that B(y, δ) ⊂ V . Since

limn→∞ d∞(fn
n , f

n) = 0, there is N ∈ N, such that for any n > N ,

lim
n→∞

d∞(fn
n , f

n) <
δ

2
.

For any n ∈ {k ∈ N : k > N, fk
k (x) ∈ B(y, δ

2 )}, it is easy to get that

d(fn(x), y) ≤ d(fn(x), fn
n (x)) + d(fn

n (x), y) ≤ d∞(fn
n , f

n) +
δ

2
< δ,

which implies that fn(x) ∈ B(y, δ) ⊂ V . By the given assumption, {n ∈ N : fn
n (x) ∈

B(y, δ
2 )} ∈ F . So

{
n ∈ N : n > N, fn

n (x) ∈ B

(
y,

δ

2

)}
⊂ {n ∈ N : n > N, n ∈ N(x,B(y, δ))}

⊂ {n ∈ N : n > N, n ∈ N(x, V )}.

As F has the FCP, from Lemma 2.1, N(x, V ) ∈ F , that is , x is an F -transitive

point.
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In the next corollaries of this section, we always assume that the following con-

dition holds: “Let {fn} be a sequence of continuous self mappings on X satisfying

limn→∞ d∞(fn
n , f

n) = 0.” For the sake of proving the next Corollary 4.1, we give a

lemma firstly.

Lemma 4.1. If a family F has the FCP, so does the block family bF of F .

Proof. Let F1 ∈ bF , F2 ∈ P and F1 − F2 be finite. By Lemma 2.1, there exists

N ∈ N such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}.

From the definition of block family, there are F ∗
1 ∈ F and a sequence {an} of positive

integers such that for any n ∈ N,

an + {F ∗
1 ∩ [0, n]} ⊂ F1,

where [0, n] denotes the set {0, 1, 2, · · · , n}. Take F ∗
2 = {n ∈ N : n > N, n ∈ F ∗

1 },

then for any n ∈ N,

{an + {F ∗
2 ∩ [0, n]}} ∩ [0, N ] = ∅.

Note that F ∗
2 ⊂ F ∗

1 , for every n ∈ N,

an + {F ∗
2 ∩ [0, n]} ⊂ an + {F ∗

1 ∩ [0, n]} ⊂ F1.

So

{an + {F ∗
2 ∩ [0, n]} ⊂ {n ∈ N : n > N, n ∈ F2} ⊂ F2,

which yields that F2 ∈ bF . Thus bF has the FCP.

Corollary 4.1. (X, f) is transitive if and only if there exists x ∈ X such that for

any opene subset U of X, {n ∈ N : fn
n (x) ∈ U} ∈ bFip.

Proof. By virtue of Table 2 in [3], (X, f) is transitive if and only if there exists x ∈ X

such that x is a bFip-transitive point. From Theorem 4.1, it only need prove that Fip

has the FCP.

Let F2 ∈ P , F1 ∈ F and F1 − F2 be finite. By Lemma 2.1, there exists N ∈ N

such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}.

Without loss of generality, assume that the IP-set contained in F1 is

A = FS{pi}
∞
i=1 =:

{
∑

i∈α

pi : α is a non-empty finite subset of N

}
,
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where {pi}∞i=1 is a sequence in N. For any i ∈ N, take qi = p(i−1)(N+1)+1 + · · ·+ piN ,

then

B = FS{qi}
∞
i=1 =:

{
∑

i∈α

qi : α is a non-empty finite subset of N

}

is also an IP-set and B ⊂ A. Furthermore, n > N for any n ∈ B. Since A ⊂ F1,

B ⊂ {n ∈ N : n > N, n ∈ F2} ⊂ F2.

Thus F2 contains the IP-set B, that is, F2 ∈ Fip. So Fip has the FCP.

Corollary 4.2. (X, f) is an E-system if and only if there exists x ∈ X such that

for any opene subset U of X, {n ∈ N : fn
n (x) ∈ U} ∈ Fpubd.

Proof. Due to Table 2 in [3], (X, f) is an E-system if and only if there exists x ∈ X

such that x is an Fpubd-transitive point. From Theorem 4.1, it is left to prove that

Fpubd has the FCP. The left proof process is simple, so we omit it.

Corollary 4.3. (X, f) is an M -system if and only if there exists x ∈ X such that

for any opene subset U of X, {n ∈ N : fn
n (x) ∈ U} ∈ Fps.

Proof. According to Table 2 in [3], (X, f) is an M -system if and only if there exists

x ∈ X such that x is an Fps-transitive point. From Theorem 4.1, it suffices to prove

that Fps has the FCP. Let F2 ∈ P , F1 ∈ Fps and F1 − F2 be finite. The left proof is

straight-forward, so we omit it.

Corollary 4.4. (X, f) is an HY -system if and only if there exists x ∈ X such that

for any opene subset U of X, {n ∈ N : fn
n (x) ∈ U} ∈ Fwt.

Proof. By Table 2 in [3], (X, f) is an M -system if and only if there exists x ∈ X such

that x is an Fwt-transitive point. From Theorem 4.1 and Lemma 3.4, it is sufficient

to prove that Fwt has the FCP. Let F2 ∈ P , F1 ∈ Fwt and F1 − F2 be finite. By

Lemma 2.1, there exists N ∈ N, such that

{n ∈ N : n > N, n ∈ F1} ⊂ {n ∈ N : n > N, n ∈ F2}.

Duo to the definition of weakly thick sets, there is k ∈ N such that {n ∈ N : kn ∈ F1}

is thick, so clearly, {n ∈ N : kn ∈ F2} is thick too.

Corollary 4.5. (X, f) is transitive and has dense minimal periodic set if and only

if there exists x ∈ X such that for any opene subset U of X, {n ∈ N : fn
n (x) ∈ U} ∈

bFwt.

Proof. From Table 2 in [3], (X, f) transitive and has dense minimal periodic set if

and only if there exists x ∈ X such that x is a bFwt-transitive point. From Theorem
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4.1 and Lemma 3.4, it only needs to prove that Fwt has the FCP, which is proved in

Corollary 4.4, so Corollary 4.5 holds.

5. AN EQUIVALENT CONDITION FOR F TO BE F-SENSITIVE

In this section, an equivalent condition for (X, f) to be F -sensitive is given. As its

corollaries, we present the equivalent conditions for (X, f) to be sensitive, syndeticly

sensitive, ergodicly sensitive and cofinitely sensitive, respectively. Before showing the

main conclusions, we recall some necessary conceptions.

Let (X, f) be a dynamical system and F be a family. (X, f) is called F -sensitive

if there exists γ > 0 such that for any opene U ⊂ X ,

Sf (U, γ) = {n ∈ Z
+ : there exist x, y ∈ U such that d(fn(x), fn(y)) > γ} ∈ F .

Particularly, (X, f) is called

(i) sensitive if there exists δ > 0 such that for any opene U ⊂ X , Sf(U, δ) 6= ∅;

(ii) syndeticly sensitive if there exists δ > 0 such that for any opene U ⊂ X ,

Sf (U, δ) ∈ Fs;

(iii) ergodicly sensitive if there exists δ > 0 such that for any opene U ⊂ X ,

Sf (U, δ) ∈ Fpud;

(iv) confitinely sensitive if there exists δ > 0 such that for any opene U ⊂ X ,

Sf (U, δ) ∈ Fcf .

For the sake of simplicity in the following proofs, we always assume that (X, f) is

a dynamical system with the distance d in X , and F is a family satisfying the FCP.

Theorem 5.1. Let {fn} be a sequence of continuous self-mappings on X satisfying

lim
n→∞

d∞(fn
n , f

n) = 0. (5.1)

Then (X, f) is F-sensitive if and only if there exists δ > 0 such that for any opene

subset U of X,

{n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) > δ} ∈ F .

Proof. Suppose that (X, f) is F -sensitive, then there exists γ > 0 such that for any

opene subset U ofX , Sf (U, γ) = {n ∈ Z
+ : there exist x, y ∈ U such that d(fn(x), fn(y)) >

γ} ∈ F . For the above γ, it follows from (5.1) that there exists N ∈ N such that

when n > N , d(fn
n (z), f

n(z)) < γ
4 for all z ∈ X . Put Tf (U, γ) = Sf (U, γ) ∩

{N + 1, N + 2, · · · }. Since F has the FCP and Sf (U, γ), Tf (U, γ) ∈ F . For any
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n ∈ Tf (U, γ)(clearly, n > N), there exist x, y ∈ U such that d(fn(x), fn(y)) > γ,

which implies that

d(fn
n (x), f

n
n (y)) ≥ d(fn(y), fn(x)) − d(fn(x), fn

n (x))− d(fn(y), fn
n (y))

> γ −
γ

4
−

γ

4
=

γ

2
.

Take δ = γ
2 , then we prove the necessity.

Conversely, suppose that there exists δ > 0 such that for any opene subset U of

X ,

Sf (U, δ) = {n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) > δ} ∈ F .

For the above δ, by (5.1) there exists K ∈ N such that when n > K, d(fn
n (z), f

n(z)) <
δ
4 for all z ∈ X . Hence when n ∈ Sf (U, δ) and n > K, there exist x, y ∈ U such that

d(fn
n (x), f

n
n (y)) > δ, which yeilds that

d(fn(x), fn(y)) ≥ d(fn
n (y), f

n
n (x)) − d(fn(x), fn

n (x))− d(fn(y), fn
n (y))

> δ −
δ

4
−

δ

4
=

δ

2
.

As F has the FCP and Sf (U, δ) ∈ F , Sf (U, δ) ∩ {K + 1,K + 2, · · · } ∈ F . Therefore

(X, f) is F -sensitive.

In the rest of the section, we invariably assume that the following condition holds:“

Let {fn} be a sequence of continuous self mappings on X and limn→∞ d∞(fn
n , f

n) =

0”. Then we have the following corollaries.

Corollary 5.1. (X, f) is sensitive if and only if there exists δ > 0 such that for

any opene subset U of X, {n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) >

δ} ∈ Finf .

Corollary 5.2. (X, f) is syndeticly sensitive if and only if there exists δ > 0 such

that for any opene subset U of X, {n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) >

δ} ∈ Fs.

Corollary 5.3. (X, f) is ergodiclly sensitive if and only if there exists δ > 0 such that

for any opene subset U of X, {n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) >

δ} ∈ Fpud.

Corollary 5.4. (X, f) is cofinitely sensitive if and only if there exists δ > 0 such that

for any opene subset U of X, {n ∈ Z
+ : there exist x, y ∈ U such that d(fn

n (x), f
n
n (y)) >

δ} ∈ Fcf .

Remark 5.1. The proofs of Corollary 5.1-5.4 are similar to those of the forgoing

corollaries, so we omit them.
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Remark 5.2. Theorem 5.1 and Corollary 5.1-5.4 extend and improve Theorem

3.3-3.6 in [5].
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