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1. INTRODUCTION

In the past several years, the problem of various stability analysis for uncertain neu-

tral systems with delays has been intensively considered by several researchers [2]-[45].
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Since neutral delayed systems (equations) have already been applied in many fields,
such as population ecology, distributed networks containing lossless transmission lines,
propagation and diffusion models, and partial element equivalent circuits in very large
scale integration systems [25]. Furthermore, the delay-dependent stability criteria of
certain neutral differential equations (CNDE) have been received considerable atten-
tion in recent years. Delay-dependent asymptotic stability criteria for CNDE with
constant delays have greatly been discussed in [10, 22, 27, 29, 35, 41] by using several
model transformation method and Lyapunov-Krasovskii functional approach, while
the problem of exponential stability analysis has been studied with model transforma-
tion method in [35]. In [7, 8, 20], the authors investigated the problem of exponential
stability analysis for CNDE with time-varying delays by several methods. In [7],
the results are derived without the use of the model transformation methods and the
bounding technique, but using model transformation method, radially unboundedness
and Lyapunov-Krasovskii functional approach are presented in [20].

In the existing literatures, the CNDE with constant delays has extremely been
considered in [10, 22, 27, 29, 35, 41] of the form

d
E[a:(t) +px(t — 72)] = —ax(t) + btanhaz(t —02), t>0, (1)
where a, b, T2, 02 are positive real constants and [p| < 1. For each solution z(t) of

(1), we assume the initial condition
xo(t) = ¢(t)7 te [_w70]7

where ¢ € C([-w,0]; R); C([-w,0], R) denotes the space of all continuous vector
functions mapping [—w,0] into R when w = max{os,72} € R'. The asymptotic
stability of (1) has greatly been discussed in [10, 22, 27, 29, 35, 41].

More recently, the authors studied the problem of exponential stability analysis
for CNDE with time-varying delays in [7, 8, 20]

d
E[x(t) +px(t —7(t))] = —ax(t) + btanhz(t — o(t)), ¢>0, (2)
where a, b are positive real constants and [p| < 1. 7(¢) and o(¢) are neutral and
discrete time-varying delays, respectively,
0<7(t) <7, 7(t) <7a, (3)
0<o(t)<og, &(t) <oa, (4)

where 79, 09, 74 and o, are given positive real constants. For each solution z(t) of

(2), we assume the initial condition

wo(t) = ¢(t)7 le [_w7 0]7 (5)
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where ¢ € C([-w, 0]; R).

Motivated by above discussions, the main objective of this paper aim to study the
delay-dependent exponential stability problem for CNDE with time-varying delays.
Main contribution of our study is the following. By using the combinations of mixed
model transformations, mixed integral inequalities, mixed utilization of zero equations
and new Lyapunov-Krasovskii functional, improved delay-dependent exponential sta-
bility criteria are obtained and formulated in terms of LMIs for the equation [8, 20].
Finally, numerical examples are shown to illustrate the effectiveness and benifits of
the proposed methods.

2. PRELIMINARIES

Definition 2.1. [21] The equation (2) with (3)-(5) is said to be exponentially stable,
if there exist positive real constants «,  such that for each ¢(t) € C([-w,0], R), the
solution z(t, ¢) of the equation satisfies

llz(t, 9)|| < Bll¢lle” >, t=>o0.

Lemma 2.1. [37] For any constant matriz Q € R"*™,
Q = QT > 0, positive real constants ki1, ko and a vector-valued function i : [—k2,0] —

R™ such that the following integrals are well-defined, we have

t t

ks [ tkz " (s)Qits < - [ N #)ds) Q( / | les),
- (’“57; k) [ : /tj 27 () Qu () duds

<— ( [ : /t;x(u)duds)TQ( [ : /t ;x(u)duds).

Lemma 2.2. [38] For any constant matrices Q1,Q2,Q3 € R™*™ Q1 > 0,Q3 > 0,

lQl QQ] > 0, k(t) is time-varying delay with 0 < k1 < k(t) < ko, k1,ks € R,
* 3

vector-valued functions x and & : [—ka, —ki] — R™ such that the following integration

is well-defined, we have

] e @l e
ot [ L-c@] l @J Lc@] "



654 K. MUKDASALI P. SUTRAK, Y. SUWANNATRAI, AND N. KAEWBANJAK

z(t — k1) —Q3 Q3 0 -QF 0 x(t — k1)

z(t — k(1)) *  —Q3-QF Q3 QF —Qi| | x(t—k@)

< | z(t— k) * * -Qs 0 QT z(t — k2)
ft kk(lt) (s)ds * * * —Q1 0 ft kk(lf) (s)ds
D a(s)ds] |+ * s x50 a(s)ds

Lemma 2.3. [38] Let x(t) € R™ be a vector-valued function with first-order continuous-
derivative entries. Then, the following integral inequality holds for any constant ma-
trices Q,M; € R™" i = 1,2,...,5 and k(t) is time-varying delays with 0 < k; <
k(t) < ko, ki,ko € RT,

t—k t_kl)
—/ T (s)Qi(s)ds < k(t))
ke t—kz)
[ My + MT —MT + My 0
X * M1—|—M1T—M2—Mér —MiT—FMQ
i * * —Ms — MQT
x(t — k1) x(t — k)
X |zt — k()| + [ha — ha] (t— k(t))
z(t — ko) — ko)
'M3 M, 0 t—kl)
X * Mz + Ms My )
L * % M5 t— k‘g)
where )
Q My Mo
_>|< * M5

Lemma 2.4. [36] For any constant matriz Q € R"*",
Q = QT > 0, nonnegative real constants ki,ks and a vector-valued function i :
[—ka, —k1] — R™ such that the following integrals are well-defined, we have

t—kq
(ke — k;l)/ T (5)Qi(s)ds < W © w,
t

t—kao

where w = [z7(t — k1), 27 (t — k2) )s T k1 ff . ] and

—-40Q -2Q 6Q
o= x —4Q 6Q
* * —12Q
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S
Lemma 2.5. [30, 32] For any constant matrices Q, S € R"*™, @Q > 0, lQ Q] >0,
*

h(t) is time-varying delay with 0 < k(t) < ko, ko € RT, a vector-valued function
% : [—k2,0] = R™ such that the concerned integrations are well-defined, we have

— t 1 (s)0x(s)ds < w¥ w
k/ (5)Qi(s)ds < wT (1) © w(t),

where w(t) = [a7(t), 2T (t — k(t)), 2T (t — kg)}T and

-Q Q-5 S
o=1|x* -20+S+5T Q-5
* * —Q

3. MAIN RESULTS

In this section, the following two theorems present the improved delay-dependent
exponential stability criteria for Equation (2) with (3)-(5) via two model transforma-

tions. Firstly, we consider the Leibniz-Newton formula of the form

t .
0=a(t) —z(t —o(t) — [,_,q) L(s)ds. (6)
By utilizing the following zero equation, we obtain
0 = via(t) — via(t — o(t) = o1 f,_, ) @(s)ds, (7)
where v; € R will be chosen to guarantee the exponential stability of Equation (2).
By descriptor system and (7), the CNDE (2) can be represented by the form
t

z(t) = y(t)+viz(t) —nzlt—o(t)) — v / y(s)ds, (8)

t—o(t)
0 = —y(t)—ax(t)+btanha(t — o(t)) — py(t — 7(1)). 9)

We introduce the following notation for later use:

Z - [A(i’j)} 15x15 (10)

Where A(’L,]) = A(],l)a

A(l,l) = 2kyvy —2qea + 2q5 + ko + k3 + ka + ks + k‘@O’% + 2ma

+ooms — dkge 292 — kge 22 4 rlag — pge 2002
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Az
Aws)
A
A
Ao
A
Aqg)
A110)
A1gy
A

Ao
A@s)
A2p)
A
Ass)

A
A
A3,10
A
Aa
A
A
A
A2
A5
As6)
A1)
A.2)
A5
A.o)
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4

o
2 2 —da 2
+kioo; — ki2o5e” 272 + k‘lsz,

k1 — qia — g2 + r203,

—2a0o2 —2aog
3

—k1v1 — 5 + g6 — M1 + Mo + maos + kee — s+ rse
—ki1v1 + g7 — g5,

bg> — qa,

—q2p — q4a,

—2kge™2%92 4 g,

6hge 2272,

_T2672a02 ,

kigooe ™42
k1 — qra — g2 + r203,
4 4
o o
—2q1 + 1303 + knf + k12f,
qlb — g3,
—q1P — 44,

—2a0o2

2002 _ 54 pge ,

—kir1 — g5 + g — M1 + Mo + myos + kee
—2q6 — koe 272 koo + 2my — 2ma + Moz
—2kge 2772 | 25 — Qpge 2002

—qe — 47,

—2(1(72 —201172
’

—m1 + mo + myos + kge —s+r3e

7“26_20“72 ,

—roe 2292,

—kir1 + g7 — g5,

—qe6 — 41,

—2¢r,

72b — gsa,

@b — gs,

2¢3b — kde 272 4 kdoy,
—q3p + qab,

—q2p — qaa,

—q1P — 44,

—q3p + qab,

—2qup — k1ae” 7 + k1a7a,
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Ay = —2kge 272 +5,
Aizg) = —mi1+mg+myos + ko207 _ g 4 pge=2002,
Nz = —kse 7 — 2my + msoy — dkge 272 — kge 272 — rge 272,
Ay = 6kge 272,
Ay = roe 2002
Aigg = —kge 202,
Aoy = 6kge 202
Aoy = 6kge 2902
A(9710) = _k605672a02 - 12]{?8672(102;
Agor) = —ree % Aq10,3) = rae”2%7,
Aaoo) = —rie e, Aai1z) = —rpe 2002,
Aarn = roe” 0%, Aaiany = —rie 2202,
A(12,12) = —/€1()€726w27 A(13713) — _k11674a02
Aaay = F1pope ™17, Aa1a) = —kype~da02 Aais,15) = —kyzete02

and the other terms are 0.

Theorem 3.1. For given positive real constants a,b, oo, 04, T2 and 74, Equation (2)
with (3)-(5) is exponentially stable with a decay rate v, if |p| < 1 and there exists pos-
itive real constants k; where ¢ = 1,2,...,14, and real constants s,vy,7r1,72,73,q;, M
where j = 1,2,...,7,k =1,2,...,5 such that the following symmetric linear matrix

inequalities hold

> <o, (11)

kge=2002 S
! Coaes | 20, (13)
* kg@ a2
kre™2992 i my
* m3 My > 0. (14)
* * ms
Proof. For k; are positive real constants wherei = 1,2, ..., 14, consider the Lyapunov-

Krasovskii functional candidate for Equations (8)-(9) with (3)-(5) of the form
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where
Vi(t)

Va(t)

Vs(t)

Va(t)

Vs (t)

Ve ()

Vz(t)

Va(t)

Vo(t)

kleQ (t),

¢ ¢
kg/ e2(=D22(5)ds + kg/ e2(s= 22 (5)ds,
t—o(t) t—o2

t
k4/ 2678 tanh? 2(s)ds
t—o(t)
t
+/€5/ 2= tanh? z(s)ds,
t—o
o
keoo / 20— 22(9)dods,
—oo Jt+s
0 gt
krog / / e20=12(0)dOds
—og Jt+s

0yt
+/€80'2/ / e2=92(9)dhds
—og Jt+s

0 t
+I€90’2/ / 2 O0=D02(9)dds,
—og Jt+s
oot x(0) ! r1 ro| |x(0)
02/ / e2(0-1) dbds,
—oy Jt+s y(0) 13| [y(0)
0 t
k‘l()O'Q/ / e22(0=1) tanh? x(0)dbds,
—oo Jt+s
o2 0 0 pt
ki1 (2) / / / 205020\ dhdsd¢
2 —o2 J( t+s
o2 0 0 st
+k12(72) / / / 2050 2(0)dOdsd¢
—0o2 J( t+s

2 0 0 ,t
+k13(%) / /C /t X 200578 tanh? 2(9)dfdsd,
—02 S

t
k14/ e22(5=0y2(5)ds.
t—7(t)

Calculating the time derivative of V(¢) along the solution of Equations (8)-(9) with

(3)-(5) yields

Vi) = > Vi), (16)

The time derivative of Vi (t) is calculated as

Vi(t)

k()i (t)
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= 2k(t) (1) + vaz(t) — vra(t — ot 01/ y(s)ds]
oqy(t) [ — y(t) — ax(t) + btanhz(t — o(t))
—py(t = (1) + 2(®)] - y(®) - az()
+btanha(t — o(t)) — py(t — 7(t))] + 2qs tanha(t — o(t))
x| = y(t) - aw(t) + btanha(t — o(t)) - py(t - 7(1))]
+2quy(t = 7(6)) | - y(t) — ax(t) + btanha(t - o (1))
—pylt = 7()] + 2a50(t) [a(t) — 2(t — o (1))
- [, w6 2l o0 o) — 0 - o0

_ /ft " y(s)ds} + 2q7 /tia(t) y(s)ds {x(t) —a(t — o(t))

- /t y(s)ds]. (17)
t—o(t)

where ¢;, j = 1,2,...,7 are real constants. For the time derivatives calculation of
Va(t) and V3(t), we obtain
Va(t) = koa®(t) — koe 227 Wa2(t — o (1))
koo (t)e 22722 (¢ — (1))
+hsx?(t) — kze 299222 (t — 09) — 2aVa(t)
koa?(t) — koe 227222 (t — o (t)) + koogx®(t — o(t))
+h3a? (t) — kze 27222 (t — 09) — 2aVa(t), (18)
Va(t) = kytanha?(t) — kee 227 tanh? 2(t — o(t))
+kao(t)e227® tanh? z(t — o(t))
+ks tanh? z(t) — kse 2772 tanh? 2(t — 09) — 2aV3(2)
ky2®(t) — kse™ 222 tanh® z(t — o(t))
+kyoqgtanh® z(t — o(t))
+ksx?(t) — kse 2992 tanh? z(t — o) — 2aV3(t). (19)

IN

IA

Obviously, for any scalar s € [t — 09,1], we get e=2%72 < ¢2*(5=1) < 1. Calculating
the time derivatives of V4 (t) and V5(¢) with Lemma 2.1, Lemma 2.3, Lemma 2.4 and
Lemma 2.5, we get

Vi) = keoo /0 [22() — 2(1 + 5)

—0o9
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t
—2a/ eQa(a_t)xQ(G)dG} ds
t

+s
1/ 2
< keo2a(t) — keole 200 [— / x(s)ds} —2aVi(t), (20)
02 Jt—0o
. 0 ’
Vs(t) = k702/ Y2 (t) — e**y2(t + 5) ds
0
+kgoo / Y2 (t) — e y>(t + s5) ds
o
+kgoo / Y2 (t) — 2y (t + 5) ds — 2aVs(t)
o
x(t)
< (krod + kgos + koo2)y? (t) + |a(t — o(t))
x(t — o2)
[y + mi —mT + my 0
X * my +m¥ —mo —mI  —mT +my
L * * —Mmao — mg
- . T
x(t) x(t) ms ma 0
X |zt —o(t)| + [x(t —o(t)) x  ms+ms My
| 2(t —02) | | 2(t —02) * * ms
oty 1 [ x(t)
x |x(t—o(t)| + z(t — o2)
L a(t—02) | |5 ftf;@ x(s) ds
_—4k3€_2m72 —2/€86_2a”2 6]€86_2a72
X * —4kge™2002 6kge 202
i * * —12kge 202
T
(t) (t)
X x(t — o2) + |z(t —o(t))
_(%2 f;@ x(s) ds z(t — 02)
_—kge*QO“’Z kge—2002 _ g s
X * —2kge—2002 g4 T fge2202 _ g
i * * —kge 2002
x(t)
X |z(t —o(t))| —2aVs(t) (21)
| z(t —02)
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From Lemma 2.2, the time derivative of Vj(t) is given by

T
. 2 x(t) r1 ro| |x(t)
) = QL/@] l rs L/@)]
. /0 G2 x(t+ s ’ r1 ro| |x(t+s) ds
e S| v s |yt
—2aVis(t)
T
< o x(t) r1 ro| |x(t)
y)| | * 73] |y@®)
oty ]
x(t —o(t))
—|—e_20“72 :C(t 02)
ft_a(t) x(s) ds
tt:;(t) x(s) ds
—r3 r3 0 —rr 0 x(t)
x  —2r3 13 ri  —rf x(t —o(t))
X | % * -3 0 7”2T z(t — 02)
* * * =7 0 ftt_a(t) x(s) ds
* * * Y tt__;(t) x(s) ds
—2aVg(t). (22)

By applying tanh?2(t) < 22(t) and Lemma 2.1, the time derivatives of Vz(t) and
Vs (t) are calculated as

0

Vi(t) = kyoo? tanh?® z(t) — k‘l()O'Q/ e tanh? 2(t + s) ds
o
—20[V7(t)
t 2
< kpoosx(t)? — kijpe 202 [/ tanh x(s) ds
t—o2
—2aV7(t), (23)
. g2\ [0 [0
W) = k(%) [ e - et s) dsdc
—o2 J(¢
g2\ [0 [0
bo(Z) [ [ et - g ) dsd
—o2 J(¢
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< kn( ) () ki1e” 40‘72 / /< dsd(
—o2 Ji+

4
o (Z A1) — kaze ™07 (0322 (1)

t t

-2 d d¢)?

) [ a(Qac+ ([ atocr)

ol
this(Z2 1 2) tanh? 2(t)
0t 5

—kyge 1002 tanh z(s)dsd

13€ (/_02 /f,+< anh z(s)ds Q)
—2aVi(t). (24)

From (3), the time derivative of Vy(t) is given by

Volt) = kaa[y?(t) = (1= #()e TNy — (1))

t
-2 / aezo‘(s_t)yQ(t)ds}
t—7(t)

kray?(t) — kiae 20722 (t — 7(t)) + kraray®(t — 7(t))
—2aVy(t). (25)

IN

According to (16)-(25), it is straightforward to see that

V(t)+ 20V (1) <€T(1) ) &), (26)

where

€0 = [p0v0.0 o), [ y(s)s tanhatt — ()

y(t —7(t)), x(t — 02)), tanh z(t — o2), Ji? /ti x(s)ds,

/tt[,(t 2(s)ds, /tt:) 2(s)ds, /t tanh 2(s),
[ ] o [ i, [ [ ]

and Y is defined in (10). It is true that if Conditions (11)-(14) hold, then
V(t)+2aV(t) <0, VteR'. (27)
From (27), it is easy to see that
lz(t, @)l < Bliglle™", vt e RT.

This means that Equation (2) with (3)-(5) is exponentially stable. The proof of the

theorem is complete. [l
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Then, we consider the CNDE (2) with (3)-(5). By model transformation and (7),
system (2) can be represented by the form
z(t) = —ax(t)+btanhz(t —o(t)) — pz(t — 7(t))

t

tona(t) — vzt — o(t)) — v / i(s)ds. (28)

t—o(t)

We introduce the following notation for later use:

i\ - {P(i’j)} 1616 (29)

where T';; ;) = T'(j.4),

L1y = —2ak +25 —2q2a +2q5 + ko + ks + ksag T 2my
+ogms — dkge 22 — kge 22 4 g7 — e 202
—k12056740‘”2 +e,

Fao = —J—a5+qs—m1+ma+oamg+ ke 2002 _ g
+rze” 2902

Tag = —2kse > + s,

Tas = +bki+qb—gsa,

Pap = —@ia— g2 +1203,

Fag)y = —kip—qp— qa,

Li10) = +6kse 2272,
Dy = —ree 2902,
Tais) = —j—a+ar,
L = +hiaose 072,

Lo = —2g5 — koe 2% + kyog + 2my — 2mg + oams
+ooms — 2kge %92 4 25, — 2rze” 2292,

Tos) = —mi+ma+oama+koe 222 — s + rze2272,

Dog) = —rae 7,

Lo11) = +rae 2272,
Peus) = —g6—ar,

T3 = —kse 272 —2my + ogms — dkge 2272 — kge 2272
—7"36’20“’2,

Loy = 4ree 272,

L0y = +6kge 2902,
Fua = +katks+ ]{;100'5 + k13 (UZ%) e,
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Ls.5)
L5,
INEE)
Ls.6)

Lz
L8
Fs8)
L9,9)
10,10
INCEREY:
T12,12
13,13
Ca14
15,15
T (16,16)
J

and the other terms are 0.

+2q3b — kae 272 + kyoy,
+q1b — (g3,
—q3p + qab,

—20&(72
—k56 s

a
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4

1
—2q1 + k14 + 1303 + ki (ZQ) + k12 (%),

—q1P — 44,
—2qap — k1ae™ 2™ 4 kg7,

_7,_16—201(72 ,

—k60'5672a02 — 12k3672a02

_T1€72a02 ,

—2()((7'2
_kl(]e )

_2q77

—4dao
—kize %,

—4dao
_klle 27

—4daosg
—kize )

klvlv

)

Theorem 3.2. For given positive real constants a,b, oo, 04, T2 and T4, Equation (2)

with (3)-(5) is exponentially stable with a decay rate v, if |p| < 1 and there exist pos-

itive real constants k; where 1 =1,2,...
where j = 1,2,...,7 and k = 1,2,...

matriz inequalities hold

5 <o
r T2
' >0,
* T3
kge 2292 S
’ s | =0,
* kge™ =292
k‘7€_2a”2 mi Mo
* m3z my| >0
* * ms

Proof. For k; are positive real constants wherei = 1, 2,

, 14, and real constants sy,v1,71,72,73,q;, My

,5 such that the following symmetric linear

(30)

(31)

(32)

(33)

..., 14, consider the Lyapunov-
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Krasovskii functional candidate for Equation (28) with (3)-(5) of the form

Vi) = > Vi), (34)

where Vi (t) to Voy(t) are defined in Theorem 3.1. Calculating the time derivatives of
V(t) along the solution of Equation (28) with (3)-(4) yields

9
V()= Vi(). (35)
=1

The time derivatives of Vj(¢) is calculated as

Vi(t) = 2kx(t)i(t)
= 2kix(t)| —ax(t) + btanhx(t — o(t)) — pa(t — 7(t))

t

+urz(t) — viz(t — o(t)) — v1 /

t—o(t)

= —2akix?(t) 4 2bkiz(t) tanh 2(t — o (t))
—2pk1x(t)(t — 7(t)) + 2k1v122(t)

x'(s)ds}

t

ko (t)a(t — o(t)) — 2krvra(t) / #(s)ds

t—o(t)

+2q10(t) [ — &(t) — az(t) + btanha(t — o(t))
—pi(t — ()]

+2g02(t) [ — i(t) — az(t) + btanh z(t — o(t))
—pir(t = (1))

+2¢3 tanh 2(t — o (1)) [ — i(t) — ax(t)

+btanhz(t — o(t)) — pi(t — T(t))}

F2qui(t — (1)) [ — &(t) — az(t) + btanhz(t — o(t))

—pi(t — ()]

t

+2g52() [x(t) —a(t—olt) - /t o i(s)ds]
F2g6(t — o (1)) [x(t) —a(t—o(t) — /f ;(t) x'(s)ds}

+2gs /t ) s [a(t) 2t~ o (1)
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- / t ;t(s)ds}, (36)
t—o(t)

where gj, j = 1,2,...,7 are real constants. The time derivatives of Va(t)-Vo(t) are
defined by Theorem 3.1. According to the proof of Theorem 3.1 and (35)-(36), it is
straightforward to see that

V(t) + 2oV (t, ) < n( Z" (37)
where

i) = [e).2( - o).t - o),

tanh x(t), tanh (¢t — o(t)), tanh z(t — o2),
t—o(t)

x'(t),x'(t—T(t)),/ti 2(s)ds,
1t ’

t
— x(s)ds,/ x(s)ds,
t—o(t)

02 tfo'z

/t tanh 2(s)ds, /ttn(f)j:(s)ds,
/_ ) /+<tanha: §)dsdC,
1 . /+< $)dsdC, /t (0],

and Y is defined in (29). It is true that if Conditions (30)-(33) hold, then
V(t)+2aV(t) <0, VteRT. (38)
From (38), it is easy to see that
l=(t, @)l < Bllole™, te R

This means that Equation (2) with (3)-(5) is exponentially stable. The proof of

the theorem is complete. O

4. NUMERICAL EXAMPLES

Three numerical examples are given to present the effectiveness of our main results
by comparing the upper bounds of the delays o and the parameter b as well as

investigating the rate of convergence.

Example 4.1. Consider the following equation studied in [8, 20]:

d

dt[ x(t) + 0.2z(t — 7(¢))] = —0.6x(t) + 0.5 tanh z:(¢t — o (2)). (39)
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when 7(t) = Sinlzo(t) and o4 = 0.2. By solving the linear matrix inequalities (11)-(14),

the maximum upper bounds oy for exponential stability of this example are listed in

the comparison in Table 1, for different values of . We obtain that our results in

Theorem 3.1-3.2 are much less conservative than those obtained in [8, 20].

Table 1: The upper bounds of time delay o(t) for Example 4.1

Methods a = 0.0038 o =0.02 a=0.028

Chen, et al. (2011) [8] infeasible infeasible infeasible
Keadnarmol, et al. (2014) [20] 7.5231 0.5234 0.0321
Theorem 3.2 10.0061 1.8978 1.3544

Theorem 3.1 3.5 x 103 564.9979 448.9991

Example 4.2. Consider the following equation, which is considered in [2, 7, 8, 10,
13, 22, 20, 23, 27, 31, 35]:

d

E[x(t) +0.352(t — 0.5)] = —1.5x(¢) + btanh (¢t — 0.5). (40)
Table 2 lists the comparison of the upper bounds b for asymptotic stability (a = 0)
and exponential stability (o« = 0.177) of Equation (40) by different methods. We get
from Table 2 that our result (Theorem 3.1-3.2) is better than other existing works.

Example 4.3. Consider the following equation in [7, 8, 22, 20, 23, 27, 29, 31, 35]:
d

E[a:(t) +0.2z(t — 0.1)] = —0.6z(¢) + 0.3 tanh x(t — o3). (41)
Table 3 lists the comparison of the upper bounds delay for asymptotic stability (o = 0)
and exponential stability (o = 0.0038) of (41) by different methods. It is clear that

our result (Theorem 3.1) are significantly better than some existing criteria.

5. CONCLUSIONS

Two model transformations were constructed to study the delay-dependent exponen-
tial stability criteria for CNDE with time-varying delays in this paper. By employing
mixed integral inequalities, mixed utilization of zero equations and new Lyapunov-
Krasovskii functional, the proposed exponential stability criteria have been formulated
in the form of LMIs. Finally, three numerical examples are given to show that the

proposed criteria are less conservative than some existing stability criteria.
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Table 2: Upper bounds of b for Example 4.2 when v = 0.5.

Methods AS. (a=0) E.S. (a« =0.177)
09 =79 =0.5 b b
Agarwal, et al. (2000) [2] 0.318 -
El-Morshedy, et al. (2000) [13] 0.424 -
Park, et al. (2008) [31] 0.422 -
Kwon, et al. (2008) [22] 1.49 -
Li (2009) [23] 0.699 0.722
Deng et al. (2009) [10] 0.889 -
Nam, et al. (2009) [27] 1.405 -
Rojsiraphisal, et al. (2010) [35] 1.405 0.478
Chen, et al. (2011) [§] 1.346 -
Chen (2012) [7] 1.405 1.092
Keadnarmol, et al. (2014) [20] 1.405 1.1089
Theorem 3.1 1.4051 1.2686
Theorem 3.2 2.5624 1.9744

Table 3: Upper bounds of o2 for Example 4.3 when ~ = 0.05.

Methods AS. (a=0) E.S. (a = 0.0038)
9 = 0.1 o9 092
Park (2004) [29] 0.444 -
Park, et al. (2008) [31] 1.90 -
Kwon, et al. (2008) [22] 107 -
Li (2009) [23] 2.07 -
Nam, et al.t (2009) [27] 2.32 -
Rojsiraphisal, et al. (2010) [35] 2.32 1.947
Chen, et al. (2011) [8] 10 -
Chen (2012) [7] 1.34 x 102! 175.289
Theorem 3.1 139.7466 132.7331
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