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ABSTRACT: In this paper, we investigate the problem of Lyapunov-type inequal-

ity for a class of sequential fractional differential equations. By the properties of the

Green’s function and the eigenvalue intervals of the linear sequential fractional differ-

ential equation boundary value problem is considered, some sufficient conditions for

the existence solutions for the boundary value problem is established. An example is

given to show the validity of the results.
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1. INTRODUCTION

In [1], Lyapunov(1947) consider the following homogenous differential equation

y′′(t) + q(t)y(t) = 0, t ∈ (a, b) (1)

with the boundary value conditions y(a) = 0 = y(b)(a < b) and y(t) 6= 0, author

obtain the inequality as follow:

∫ b

a

|q(t)|dt >
4

b− a
.

The above inequality is named Lyapunov inequality. As we knows Lyapunov-type
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inequality is a very important inequalities. This type of inequality and many of its

generalizations have proved to be useful tools in eigenvalue problems, oscillation the-

ory and numerous other applications for the theories of differential and difference

equations. Such as to high-order differential equations, time-delay differential equa-

tions, even/odd differential equations, discrete or continuous differential equations,

linear Hamiltonian systems and so on. Recently, Ferreira (2013) obtained the follow-

ing fractional differential equation result,

(aD
αy)(t) + q(t)y(t) = 0, a < t ≤ b, 1 < α ≤ 2, (2)

y(a) = 0 = y(b),

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

|q(s)|ds > Γ(α)(
4

b − a
)α−1.

Later, Ferreira (2014) obtained the Caputo’s type fractional order differential equation

has a nontrivial solution
∫ b

a

|q(s)|ds >
Γ(α)αα

[(α− 1)(b− a)]α−1
.

There are several extensions and generalizations of Lyapunov-type inequality. For

some recent development on this topic, see [2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25] and the references therein. However, there are few

research results in Lyapunov-type inequality for the sequential fractional differential

equations.

In [11], Karay (2017) considered the problem of existence and uniqueness result for

linear sequential fractional boundary value problems (FBVP’s for short) via Lyapunov

type inequality

(aD
α(aD

βy))(t) + q(t)y(t) = 0, a < t < b,
1

2
< α, β ≤ 1, (3)

together with the boundary conditions y(a) = 0, y(b) = 0 has a solution as follows

∫ b

a

|q(s)|ds > Γ(α+ β)

(

4

b− a

)α+β−1

.

Motivated by the above works, we will consider more general FBVP’s. More

precisely, we will consider the following sequential fractional differential equation






(aD
α(aD

βy))(t) + q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = 0, y(b) = 0,
(4)

where 3
2 ≤ α < 2, 1

2 ≤ β < 1 and q : [a, b] → R is a continuous function.



LYAPUNOV-TYPE INEQUALITIES 861

2. PRELIMINARIES

In this section, we introduce preliminary facts and some basic results, which are used

throughout this paper.

Definition 1. (see [5, 6]) The Riemann-Liouville fractional integral of order α is

defined by

(Iαa+f)(x) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α > 0, t ∈ [a, b],

where Γ is the gamma function.

Definition 2. (see [5, 6]) The Riemann-Liouville fractional derivative of order α is

defined by

(Dα
a+f)(x) =

1

Γ(n− α)

(

d

dt

)n ∫ t

a

(t− s)n−α−1f(s)ds, t ∈ [a, b],

where n = [α] + 1.

Definition 3. (see [5, 6]) The sequential fractional derivative of order α ≥ 0 is

defined by

(Dα
a f)(x) = (aD

α1

aD
α2 · · · aD

αmf)(x),

where α = α1 + α2 + · · · + αm, and aD
αi , i = 1, 2, . . . ,m denote Riemann-Liouville

fractional derivative of order αi ≥ 0.

Definition 4. ([11]) The Riemann-Liouvile Fractional derivative of order α ≥ 0 is

defined by

(aD
αϕ)(t) =







(aD
n
a I

n−αϕ), α > 0,

ϕ(t), α = 0.
(5)

where n is the smallest integer greater or equal than α.

Lemma 1. (see [5, 6]) Let α > 0. If u ∈ C[a, b]∩L(a, b), then the following equality

holds

Iαa+D
α
a+u(t) = u(t) +

n
∑

i=1

ci(t− a)α−i,

for some constants ci ∈ R, i = 1, 2, . . . , n, where n = [α] + 1.
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3. MAIN RESULTS

In this section, we are divided into two parts. First, with the help of Green’s function

the solution of the linear sequential fractional differential equations are obtained.

Then, the Lyapunov type inequality is derived from the solution of the Green function

in the previous step.

Lemma 2. Let y ∈ C[a, b], then the linear sequential fractional differential equations






(aD
α(aD

βy))(t) + q(t)y(t) = 0, a < t < b, 3
2 ≤ α < 2, 12 ≤ β,< 1

y(a) = y′(a) = 0, y(b) = 0,
(6)

has a unique solution

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) =
1

Γ(α+ β)



























−
(t− a)α+β−1(b− s)α+β−1

(b − a)α+β−1
+ (t− s)α+β−1,

a ≤ s ≤ t ≤ b,

−
(t− a)α+β−1(b− s)α+β−1

(b − a)α+β−1
, a ≤ t ≤ s ≤ b.

(7)

Proof. By using the semigroup property

(aI
α
a I

βy)(t) = (aI
α+βy)(t)

From Lemma 1, we obtain that

y(t) = c1(t− a)α+β−1 + c2(t− a)α+β−2 + c3(t− a)β−1

+
1

Γ(α+ β)

∫ t

a

(t− s)α+β−1q(s)y(s)ds, (8)

for some real constants ci, i = 1, 2, 3. By the boundary conditions y(a) = y′(a) = 0

yields c2 = c3 = 0. By applying the boundary value condition y(b) = 0, we get

c1 = −
1

Γ(α+ β)(b − a)α+β−1

∫ t

a

(b− s)α+β−1q(s)y(s)ds.

Therefore, the unique solution of the fractional differential equation is

y(t) = −
(t− a)α+β−1

Γ(α+ β)(b − a)α+β−1

∫ b

a

(b− s)α+β−1q(s)y(s)ds

+
1

Γ(α+ β)

∫ t

a

(t− s)α+β−1q(s)y(s)ds. (9)

Which yields the desired result.
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Lemma 3. The function G(t, s) defined by (7) satisfies the following property:

0 ≥ G(t, s) ≥ G(s, s) = −(
b− a

4
)α+β−1, (t, s) ∈ [a, b]× [a, b].

Proof. By the definition of G, let

g1(t, s) = −
(t− a)α+β−1(b − s)α+β−1

(b− a)α+β−1
+ (t− s)α+β−1, a ≤ s ≤ t ≤ b,

and

g2(t, s) = −
(t− a)α+β−1(b − s)α+β−1

(b− a)α+β−1
, a ≤ t ≤ s ≤ b.

We start with the function g2. Compute the differentiating g2(t, s) with respect to t,

we obtain

∂g2(t, s)

∂t
= −

(α+ β − 1)(t− a)α+β−2(b− s)α+β−1

(b − a)α+β−1
≤ 0, a ≤ t ≤ s ≤ b.

Notably, g2(·, s) is non-increasing for all t ∈ [a, b], hence, g2 satisfies the following

inequalities

g2(s, s) ≤ g2(t, s) ≤ 0, a ≤ t ≤ s ≤ b.

Thus, one has

min
(t,s)∈[a,b]×[a,b]

g2(t, s) = −(
b− a

4
)α+β−1.

Now, we will verify that ∂g1(t,s)
∂t

≥ 0, a ≤ s ≤ t ≤ b.

∂g1(t, s)

∂t
= −

(α+ β − 1)(t− a)α+β−2(b − s)α+β−1

(b − a)α+β−1
+ (α + β − 1)(t− s)α+β−2

= −(α+ β − 1)(t− a)α+β−2

[

(

1−
s− a

b− a

)α+β−1

−

(

1−
s− a

t− a

)α+β−2
]

≤ −(α+ β − 1)(t− a)α+β−2

[

(

1−
s− a

b− a

)α+β−1

−

(

1−
s− a

b− a

)α+β−2
]

≤ 0,

which implies that g1(·, s) is non-increasing for all t ∈ [a, b], hence, we obtain that

g1(s, s) ≤ g1(t, s) ≤ 0, a ≤ s ≤ t ≤ b.

Thus, we obtain

min
t∈[a,b]

g1(t, s) = g1(s, s) = −(
s− a

b− a
)α+β−1(b− s)α+β−1.

Obviously,

min
(t,s)∈[a,b]×[a,b]

G(t, s) = −(
b− a

4
)α+β−1,



864 Y. PENG AND X. WANG

when s = t = a+b
2 .

Consequently, the function G(t, s) is non-increasing with respect to t, we have

follows that

0 ≥ G(t, s) ≥ G(s, s), (t, s) ∈ [a, b]× [a, b].

The proof is complete.

Theorem 5. If y(t) is a nontrivial continuous solution of the linear sequential

fractional boundary value problem

(aD
α(aD

βy))(t) + q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = 0, y(b) = 0,

exists, where 3
2 ≤ α < 2, 1

2 ≤ β < 1, q is a real and continuous function, then

∫ b

a

|q(s)|ds >
4α+β−1Γ(α+ β)

(b− a)α+β−1
.

Proof. Let B = C[a, b] be the Banach space endowed with norm

‖ y ‖∞= max
t∈[a,b]

|y(t)|.

Using Lemma 2 we obtain that a nontrivial solution y to the FBVP satisfies the

integral equation

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds, t ∈ [a, b].

Obviously, q cannot be the zero function on [a, b] otherwise y is a trivial solution.

Thus, for all t ∈ [a, b], we get

|y(t)| ≤

∫ b

a

|G(t, s)||q(s)||y(s)|ds ≤

(

∫ b

a

sup
a≤t≤b

|G(t, s)||q(s)|ds

)

‖ y ‖∞ .

Since y is nontrivial ,then ‖ y ‖∞ 6= 0.

1 ≤

∫ b

a

sup
a≤t≤b

|G(t, s)||q(s)|ds

Now, an application of Lemma 3 yields

1 ≤

∫ b

a

|G(b, s)||q(s)|ds.

Then we have
∫ b

a

|q(s)|ds >
4α+β−1Γ(α+ β)

(b− a)α+β−1
.

we obtain the desired result.
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Remark 1. If α + β = 2 (i.e. α = 3
2 , β = 1

2 ) and the boundary value condition

satisfy y(a) = 0 = y(b) in Theorem 5, we have
∫ b

a
|q(s)|ds > 4

b−a
.

Corollary 6. If the linear sequential fractional boundary value problem (4) has a

nontrivial continuous solution, where q is a real and continuous function with q(t) 6≡ 0,

then we have the Lyapunov type inequality
∫ b

a

q+(s)ds >
4α+β−1Γ(α+ β)

(b− a)α+β−1
.

Remark 2. Note that the linear sequential fractional boundary value problem (4)

with β = 0 reduces to FBVP’s, we have Lyapunov-type inequality
∫ b

a
q+(s)ds >

Γ(α)

(

4
b−a

)α−1

.

4. APPLICATION

In this section, we give an application of the above results for the eigenvalue problem.

Let α, β > 0 be fixed. The real zeros of the Mittag-Leffler function with parameters

(α, β) follows as:

Eα,β(z) =
∞
∑

k=0

zk

Γ(kα+ β)
, α > 0, β > 0, z ∈ C. (10)

Theorem 7. Let 3
2 ≤ α < 2, 1

2 ≤ β < 1. The Mittag-Leffler function Eα,β(y) has a

real zeros for

y ∈ (−4α+β−1Γ(α+ β), 0].

Proof. Let (a, b) = (0, 1), and consider the sequential fractional boundary value eigen-

value problem






(0D
α(0D

βy))(t) + λy(t) = 0, 0 < t < 1, 3
2 ≤ α < 2, 1

2 ≤ β < 1,

y(a) = y′(b) = 0, y(b) = 0.
(11)

We known that the eigenvalue λ ∈ R of the above problem satisfy

λ > 0, Eα,β(−λ) = 0.

The corresponding eigenfunction are

y(t) = AEα,β(−λtα+β), t ∈ [0, 1].

Therefore, if a real eigenvalue λ exists, i.e., Eα,β(−λ) = 0, then λ ≥ 4α+β−1Γ(α+ β).

Which concludes the proof.
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