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QUENCHING FOR MULTI-DIMENSIONAL SEMILINEAR

PARABOLIC PROBLEMS ON A BALL WITH A LOCALIZED

SOURCE
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ABSTRACT. We study the quenching set of a multi-dimensional semilinear parabolic problem on

a ball subject to the first initial-boundary condition. The source term of this problem is a nonlinear

localized function. This function tends to infinity when the solution u approaches a finite number.

This mathematical model illustrates a nonlinear reaction of a dynamical system occurring at a single

location. The main result of this paper is that u quenches at a single point only and the blow-up

set of ut is the whole domain.
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1. INTRODUCTION

Let T ∈ (0,∞], a be a positive real number, c be a positive constant, x0 be

a fixed point in R
n where n = 1, 2, ..., and B1 (x0) be an n-dimensional open ball

such that B1 (x0) = {x ∈ R
n : ||x− x0|| < 1} centered at x0 with radius 1, where

||x− x0|| represents Euclidean distance between the points x and x0. We denote the

closure and boundary of B1 (x0) by B1 (x0) and ∂B1 (x0), respectively. We would like

to study the first initial-boundary value problem for the following multi-dimensional

semilinear parabolic differential equation with a localized source at x0:

(1.1) ut − ∆u = af (u (x0, t)) in B1 (x0) × (0, T ) ,

(1.2) u (x, 0) = 0 for x ∈ B1 (x0), u (x, t) = 0 for x ∈ ∂B1 (x0) and t > 0.

A solution u is said to quench at (x∗, T ) if there exists a sequence (xn, tn) such that

xn → x∗, tn → T−, and u (xn, tn) → c− as n → ∞. Here, x∗ is the quenching point,

and T is the quenching time.

Physically, equation (1.1) describes instabilities in a system with a localized re-

action (cf. [1, 8]). Without the localized source, the forcing function with a = 1 is
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f (u (x, t)). When f (u) = 1/ (1 − u), the concept of quenching in one spatial dimen-

sion was introduced by Kawarada [6] in 1975.

Throughout this paper, we assume that f (u) satisfies the hypothesis below:

(H) f (u) ∈ C2 ([0, c)), f > 0, f ′ > 0, f ′′ > 0, and f (u) → ∞ as u→ c−.

The purpose of this paper is to prove that ut blows up for all x ∈ B1 (x0) and

u quenches only at the single point x0 in some finite time T . In Section 2, we prove

some properties of u. In Section 3, we prove that u quenches in some finite time when

a is sufficiently large. Based on this result, we prove that ut tends to infinity in the

whole domain and u quenches at x0 only.

2. PROPERTIES OF THE SOLUTION

Let L be the parabolic operator given by Lu = ut−∆u, and b (x, t) be a nontriv-

ial and nonnegative bounded function on B1 (x0) × [0,∞). We prove the following

comparison theorem.

Lemma 2.1. Assume that U is a classical solution of the following problem

LU ≥ b (x, t)U (x0, t) in B1 (x0) × (0, T )

U (x, 0) ≥ 0 for x ∈ B1 (x0), U (x, t) ≥ 0 for x ∈ ∂B1 (x0) and t > 0,

then U (x, t) ≥ 0 on B1 (x0) × [0, T ).

Proof. Let ε and β be positive real numbers and W (x, t) = U (x, t) + εeβt. Then,

W (x, 0) > 0 for x ∈ B1 (x0), W (x, t) > 0 for x ∈ ∂B1 (x0) and t > 0. We have

LW = LU + εβeβt

≥ b (x, t)U (x0, t) + εβeβt

= b (x, t)
[

W (x0, t) − εeβt
]

+ εβeβt.

This gives

LW − b (x, t)W (x0, t) ≥ −εb (x, t) eβt + εβeβt = εeβt (β − b (x, t)) .

By choosing β > b (x, t) for (x, t) ∈ B1 (x0) × [0,∞), we have

LW − b (x, t)W (x0, t) > 0 in B1 (x0) × (0, T ) .

If W (x, t) ≤ 0 somewhere in B1 (x0) × (0, T ), then the set

{t : W (x, t) ≤ 0 for some x ∈ B1 (x0)}

is nonempty. Let t̃ be the infimum of the above set. SinceW (x, 0) > 0 for x ∈ B1 (x0),

we have 0 < t̃ < T . At t̃, there exists some x1 ∈ B1 (x0) such that W
(

x1, t̃
)

= 0 and
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Wt

(

x1, t̃
)

≤ 0. On the other hand, W attains its local minimum at
(

x1, t̃
)

. Therefore,

∆W
(

x1, t̃
)

> 0. Then, at t = t̃,

0 ≥ Wt

(

x1, t̃
)

> LW
(

x1, t̃
)

− b
(

x1, t̃
)

W
(

x0, t̃
)

> 0.

This gives a contradiction. Hence, W (x, t) > 0 in B1 (x0) × (0, T ). As ε → 0, we

have U (x, t) ≥ 0 on B1 (x0) × [0, T ). �

By Lemma 2.1, 0 is a lower solution of the problem (1.1)-(1.2). On the other

hand, u is bounded above by c. Thus, 0 ≤ u < c on B1 (x0) × [0, T ). Since u ceases

to exist for u ≥ c. It follows from Theorem 2.1 of [2] that the problem (1.1)-(1.2) has

a unique classical solution u ∈ C
(

B1 (x0) × [0, T )
)

∩C2+α,1+α/2 (B1 (x0) × [0, T )) for

some α ∈ (0, 1) such that 0 ≤ u < c on B1 (x0) × [0, T ). From the hypothesis (H), f

is differentiable. By the mean value theorem, there exists some positive constant k1

(depending on a and f ′) such that

|af(u1 (x0, t)) − af(u2 (x0, t))| ≤ k1 |u1 (x0, t) − u2 (x0, t)| .

It follows from Theorem 8.9.2 of Pao [9, p. 436] that u either exists globally or only

exists in a finite time.

To clarify the calculation in proving Lemma 3.3, we give the detail of the proof

of the following lemma.

Lemma 2.2. Let u be the solution of the problem (1.1)-(1.2). Then, ut ≥ 0 on

B1 (x0) × [0, T ) and ut > 0 in B1 (x0) × (0, T ).

Proof. For h > 0, let us consider the equation (1.1) at t+ h. We have Lu (x, t+ h) =

af (u (x0, t+ h)) in B1 (x0) × (0, T − h). Subtract equation (1.1) from this equation,

and based on the mean value theorem, there exists some ζ1 where ζ1 is between

u (x0, t+ h) and u (x0, t) such that

Lu (x, t+ h) − Lu (x, t) = af ′ (ζ1) [u (x0, t+ h) − u (x0, t)] in B1 (x0) × (0, T − h) .

Since u ≥ 0 on B1 (x0)×[0, T ), we have u (x, h)−u (x, 0) ≥ 0 for x ∈ B1 (x0). From the

boundary condition, u (x, t+ h)−u (x, t) = 0 for t > 0 and x ∈ ∂B1 (x0). By Lemma

2.1, u (x, t+ h) ≥ u (x, t) on B1 (x0)× [0, T − h). Thus, (u(x, t+ h) − u(x, t)) /h ≥ 0

on B1 (x0) × [0, T − h). As h→ 0+, ut ≥ 0 on B1 (x0) × [0, T ).

From the equation (2.2) of Friedman [5, p. 61], the Hölder norm of f ′ (u (x0, t))

with an exponent α is given by

|f ′ (u (x0, t))|α = sup
[0,T )

|f ′ (u (x0, t))| + sup
t∈[0,T )
t̃∈[0,T )

∣

∣f ′ (u (x0, t)) − f ′
(

u
(

x0, t̃
))
∣

∣

[
√

∣

∣t− t̃
∣

∣

]α .

By the mean value theorem, we obtain

|f ′ (u (x0, t))|α ≤ sup
[0,T )

|f ′ (u (x0, t))| +

(

sup
B1(x0)×[0,T )

|f ′′|

)

|u|α .
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Thus, |f ′ (u (x0, t))|α is bounded when 0 ≤ u < c. From equation (3.2) of Friedman

[5, p. 66], we obtain

|af ′ (u (x0, t)) ut (x0, t)|α ≤ a |f ′ (u)|α |ut|α .

Since u ∈ C
(

B1 (x0) × [0, T )
)

∩ C2+α,1+α/2 (B1 (x0) × [0, T )), we have

af ′ (u)ut ∈ Cα,α/2 (B1 (x0) × [0, T )) .

It follows from Theorem 3.6 of Friedman [5, p. 65] that utt and uxixjt exist for i,

j = 1, 2, ..., n. To show that ut is positive, we differentiate equation (1.1) with respect

to t to get

Lut = af ′ (u (x0, t)) ut (x0, t) in B1 (x0) × (0, T ) .

For any (x, t) ∈ B1 (x0) × [0, T ), the integral representation form of ut is given by

(2.1)

{

ut (x, t) =
∫

B1(x0)
G (x, ξ, t)ut (ξ, 0) dξ

+a
∫ t

0

∫

B1(x0)
G (x, ξ, t− τ) f ′ (u (x0, τ))ut (x0, τ) dξdτ,

where G (x, ξ, t− τ) is Green’s function of the problem (1.1) subject to the homoge-

neous boundary condition. Since f ′ > 0, and G (x, ξ, t− τ) > 0 in the set {(x, ξ, t) : x

and ξ are in B1 (x0), and t > τ ≥ 0}, it follows from equation (2.1) that ut > 0 in the

domain B1 (x0) × (0, T ). �

Without loss of generality, let us assume that x0 is the origin 0. By the symmetry

of B1 (0), the polar form of the problem (1.1)-(1.2) is given by

(2.2)







ut (r, t) − urr (r, t) −
n− 1

r
ur (r, t) = af (u (0, t)) in (0, 1) × (0, T ) ,

u (r, 0) = 0 for r ∈ [0, 1] , ur (0, t) = 0 and u (1, t) = 0 for t ∈ (0, T ) .

Lemma 2.3. The solution u (r, t) of the problem (2.2) attains its maximum at r = 0

for t ∈ (0, T ).

Proof. The solution of the problem (2.2) is radial symmetric with respect to r = 0.

To show that ur < 0 for r ∈ (0, 1], let H (r, t) = ur (r, t). Differentiating the first

equation of the problem (2.2) with respect to r, we have

Ht −Hrr −
n− 1

r
Hr +

n− 1

r2
H = 0 for (r, t) ∈ (0, 1) × (0, T ) .

At t = 0, H (r, 0) = 0 for r ∈ [0, 1]. By Lemma 2.2, ut > 0 in B1 (0) × (0, T ). By

Hopf’s Lemma, H (1, t) < 0 for t ∈ (0, T ). Also, H (0, t) = ur (0, t) = 0 for t ∈ [0, T ).

By the maximum principle [9, p. 54], H < 0 for (r, t) ∈ (0, 1] × (0, T ). Therefore,

u (0, t) ≥ u (r, t) for (r, t) ∈ [0, 1] × (0, T ). �
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3. SINGLE POINT QUENCHING OF u AND BLOW-UP OF ut IN

THE WHOLE DOMAIN

Let φ (x) be the eigenfunction corresponding to the first eigenvalue λ1 (> 0) of

the Sturm-Liouville problem:

∆Z + λZ = 0 in B1 (0) ,

Z (x) = 0 for x ∈ ∂B1 (0) .

By Theorem 3.1.2 of Pao [9, p. 97], φ (x) > 0 in B1 (0). The following lemma shows

that u quenches in a finite time when a is sufficiently large, and give an upper bound

of the quenching time.

Lemma 3.1. If af ′ (0) > λ1, then there exists some finite time T̂ such that u

quenches as t→ T̂− and

(3.1)
1

af ′ (0) − λ1
ln

[

c (af ′ (0) − λ1) + af (0)

af (0)

]

≥ T̂ .

Proof. From Lemma 2.3, u (0, t) ≥ u (x, t) for (x, t) ∈ B1 (0) × [0, T ). Let v (x, t) be

the solution to the following initial-boundary value problem:

(3.2)

{

Lv (x, t) = af (v (x, t)) for (x, t) ∈ B1 (0) × (0, T ) ,

v (x, 0) = 0 for x ∈ B1 (0), v (x, t) = 0 for x ∈ ∂B1 (0) and t > 0.

By the maximum principle, v (x, t) > 0 in B1 (0) × (0, T ). Since f ′ > 0, we have

u ≥ v on B1 (0) × [0, T ). We would like to prove that v quenches in some finite

time when a is sufficiently large. By the hypothesis (H) and Taylor’s Theorem,

f (v) = f (0) + f ′ (0) v + f ′′ (ζ2) v
2/2 for some ζ2 between 0 and v. Since f ′′ > 0, we

have f (v) ≥ f (0) + f ′ (0) v. From the first equation of (3.2),

Lv ≥ af (0) + af ′ (0) v.

Multiplying both sides by φ (x), integrating this inequality over B1 (0), and using the

boundary conditions of v and φ, we obtain
(
∫

B1(0)

vφdx

)

t

≥ af (0)

∫

B1(0)

φdx+ (af ′ (0) − λ1)

∫

B1(0)

vφdx.

Solving the above inequality on [0, t], we have

∫

B1(0)

vφdx ≥
af (0)

∫

B1(0)
φdx

[

e(af ′(0)−λ1)t − 1
]

af ′ (0) − λ1
.

Since af ′ (0) > λ1, the right side is an increasing function of t. Hence, v (x, t) reaches

c in some finite time T̃ for some x in B1 (0). We note that T̃ satisfies

c

∫

B1(0)

φdx ≥
af (0)

∫

B1(0)
φdx

[

e(af ′(0)−λ1)T̃ − 1
]

af ′ (0) − λ1
.
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Solving the above inequality for T̃ , we obtain an upper bound of the quenching time

for v (x, t) stated in the inequality (3.1). Since u ≥ v, the quenching time for u is

T̂ ≤ T̃ . The lemma is proved. �

From the result of Lemma 2.3, ur < 0 for (r, t) ∈ (0, 1] × (0, T ). This implies if

u quenches, then x = 0 is the quenching point. Let T be the supremum of the time

for which the problem (1.1)-(1.2) has a unique solution u ∈ C
(

B1 (0) × [0, T )
)

∩

C2+α,1+α/2 (B1 (0) × [0, T )). The following result shows that u (0, t) quenches at T if

T is finite.

Theorem 3.2. If T <∞, then u (0, t) quenches at T .

Proof. Suppose that u does not quench at x = 0 when t = T . There exists a positive

constant k2 such that u (0, t) ≤ k2 < c for t ∈ [0, T ]. This shows that f (u (0, t)) < Q

for some positive constant Q and t ∈ [0, T ]. Then, by Theorem 4.2.1 of Ladde et al.

[7, p. 139], u ∈ C
(

B1 (0) × [0, T ]
)

∩ C2+α,1+α/2 (B1 (0) × [0, T ]). This implies that

there exists a positive constant k3 such that u (x, t) ≤ k3 < c for (x, t) ∈ B1 (0)×[0, T ].

To arrive at a contradiction, we need to show that u can be continued into a larger

time interval [0, T + t1) for some positive t1. This can be achieved by extending the

upper bound. Let us construct an upper solution ψ (x, t) = k3m (t), where m (t) is a

positive function and satisfies

d

dt
m (t) =

a

k3

f (k3m (t)) for t ≥ T, m (T ) = 1.

Because f (u) ∈ C2 ([0, c)), the solution m (t) exists. Since f > 0, m (t) is an increas-

ing function of t. Let t1 be a positive constant determined by k3m (T + t1) = k4 < c

for some positive constant k4 greater than k3. By construction, ψ (x, t) is the solution

to the following problem:

Lψ = af (ψ) in B1 (0) × [T, T + t1) ,

ψ (x, T ) = k3 ≥ u (x, T ) on B1 (0),

ψ (x, t) = k3m (t) > 0 for x ∈ ∂B1 (0) and t ∈ (T, T + t1) .

By Lemma 2.1, ψ (x, t) ≥ u (x, t) on B1 (0)× [T, T + t1). Therefore, we find a solution

u to the problem (1.1)-(1.2) on B1 (0) × [T, T + t1). This contradicts the definition

of T . Hence, u (0, t) quenches at T . �

Let z = ut. Differentiating the differential equation in (2.2) with respect to t, we

have

(3.3) zt (r, t) − zrr (r, t) −
(n− 1)

r
zr (r, t) = af ′ (u (0, t)) z (0, t) .
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Using equation (3.3), we have

(3.4)







zt − zrr −
(n− 1)

r
zr = af ′ (u (0, t)) z (0, t) for (r, t) ∈ (0, 1) × (0, T ) ,

z (r, 0) ≥ 0 for r ∈ [0, 1] , z (0, t) > 0 and z (1, t) = 0 for t ∈ (0, T ) .

The following result shows that ut attains its maximum at r = 0.

Lemma 3.3. ut (r, t) < ut (0, t) for (r, t) ∈ (0, 1] × (0, T ).

Proof. Using a similar calculation as in the proof of Lemma 2.2, we obtain uttr, urt,

urrt, and urrrt. By differentiating the first equation of the problem (3.4) with respect

to r, we obtain

ztr − zrrr −
(n− 1)

r
zrr +

(n− 1)

r2
zr = 0.

For r ∈ [0, 1), urt (r, 0) is given by

urt (r, 0) = lim
h→0

ur (r, h) − ur (r, 0)

h
.

Using ur (r, 0) = 0 and Lemma 2.3, we have urt (r, 0) ≤ 0. Thus, zr (r, 0) ≤ 0 for

r ∈ [0, 1). By Lemma 2.2,

∂z (1, 0)

∂r
= lim

h→0

z (1, 0) − z (1 − h, 0)

h
≤ 0.

By Hopf’s lemma, ∂z (1, t) /∂r < 0 for t > 0. By the symmetry of B1 (0) with respect

to r = 0, ∂z (0, t) /∂r = 0 for t ≥ 0. Let V = zr. Then, V satisfies the following

initial-boundary value problem:

Vt − Vrr −
(n− 1)

r
Vr +

(n− 1)

r2
V = 0 for (r, t) ∈ (0, 1) × (0, T ) ,

V (r, 0) ≤ 0 for r ∈ [0, 1] , and V (0, t) = 0 and V (1, t) < 0 for t ∈ (0, T ) .

By the maximum principle, V (r, t) < 0 for (0, 1]×(0, T ). Integrating V (r, t) < 0 over

(0, r), we obtain z (r, t) < z (0, t), that is, ut (r, t) < ut (0, t) for (r, t) ∈ (0, 1]×(0, T ).�

We modify Theorem 5 of Chan and Liu [3] to prove the following theorem.

Theorem 3.4. u (r, t) quenches only at r = 0.

Proof. Let I (r, t) = rn−1ur (r, t). From the result of Lemma 2.3, I (r, t) < 0 for

(r, t) ∈ (0, 1] × (0, T ). From the first equation of the problem (2.2), I (r, t) satisfies

the following differential equation,

ut −
1

rn−1
Ir = af (u (0, t)) .

Differentiating the above equation with respect to r, we get

urt −
1

rn−1
Irr +

(n− 1)

rn
Ir = 0.

By rewriting the above equation in terms of I, we have

It
rn−1

−
1

rn−1
Irr +

(n− 1)

rn
Ir = 0.
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That is,

(3.5) It − Irr +
(n− 1)

r
Ir = 0.

From Lemma 2.3, there exists a number δ ∈ (0, 1) such that ur < 0 for (r, t) ∈

(1 − δ, 1] × (0, T ). Thus, there exist positive real numbers t2 (< T ) and µ such that

I (r, t2) < −µ for r ∈ (1 − δ, 1). Let r1 be an arbitrary positive real number such that

1 − δ < r1 < 1, κ be a positive number, and R (r, t) = I (r, t) + κ (1 − r). At t = t2,

let us choose κ such that R (r, t2) < −µ+κ (1 − r) < 0 for r ∈ [r1, 1). By Lemma 3.3,

urt (r1, t) < 0 for t ∈ [t2, ω) where ω ≤ T . That is, ur (r1, t) is a decreasing function

of t. Since rn−1
1 ur (r1, t2) < −µ, we then obtain rn−1

1 inf [t2,T ) ur (r1, t) + κ (1 − r1) <

−µ+ κ (1 − r1) < 0. Clearly, R (1, t) < 0 for t ∈ (0, T ). Also, Rr = Ir − κ, Rrr = Irr,

and Rt = It. With these, we can rewrite equation (3.5) in terms of R as

Rt − Rrr +
(n− 1)

r
Rr =

−κ (n− 1)

r
< 0.

By the maximum principle, R < 0 for (r, t) ∈ [r1, 1] × [t2, T ). That is, rn−1ur +

κ (1 − r) < 0. Equivalently,

ur < −κ
(1 − r)

rn−1
.

Integrating both sides from r2 to r3 where r1 < r2 < r3 < 1, we have

u (r3, t) − u (r2, t) < −κ

∫ r3

r2

(1 − r)

rn−1
dr.

Since
∫ r3

r2

(1 − r) /rn−1dr > 0,

u (r3, t) < u (r2, t) − κ

∫ r3

r2

(1 − r)

rn−1
dr

< c− κ

∫ r3

r2

(1 − r)

rn−1
dr,

which shows that u (r3, t) < c for t2 ≤ t < T . Thus, u does not quench at r3 for

any r3 ∈ (r1, 1). Because δ ∈ (0, 1) and r1 is an arbitrary real number such that

1 − δ < r1 < 1, we have r1 ∈ (0, 1). Therefore, for any r3 ∈ (r1, 1) ⊆ (0, 1), r3 is not

a quenching point. Hence, the solution u (r, t) quenches only at r = 0. �

Let ϕ0 (x) ∈ C
(

B1 (0)
)

∩C2 (B1 (0)) such that ∆ϕ0 (x) < 0, ϕ0 (x) > 0 in B1 (0),

and ϕ0 (x) = 0 for x ∈ ∂B1 (0) and maxx∈B1(0)
ϕ0 (x) ≤ 1. Let ϕ (x, t) be the solution

to the following first initial-boundary value problem:

Lw = 0 in B1 (0) × (0,∞)

w (x, 0) = ϕ0 (x) on B1 (0)

w (x, t) = 0 for (x, t) ∈ ∂B1 (0) × (0,∞) .
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By the maximum principle, ϕ (x, t) > 0 in B1 (0) × (0,∞) and is bounded above by

ϕ0 (x). Further,

max
(x,t)∈B1(0)×[0,∞)

ϕ (x, t) ≤ 1.

By Lemma 2.2, ut (x, t) > 0 in B1 (0) × (0, T ). From equation (3.3), we have

zt (r, t) − zrr (r, t) −
(n− 1)

r
zr (r, t) = af ′ (u (0, t)) z (0, t) .

By Hopf’s lemma, ∂z/∂r < 0 at r = 1 for t > 0. Then for any positive ν (< T ),

there exists a positive number σ depending on ν such that ∂z/∂r ≤ −σ at t = ν for

r ∈ (1 − γ, 1), where γ is some positive number less than 1. Integrating ∂z/∂r ≤ −σ

over (r, 1) at t = ν, we obtain
∫ z(1,ν)

z(r,ν)

dz ≤

∫ 1

r

−σdr,

which gives

z (1, ν) − z (r, ν) ≤ −σ (1 − r) .

From z (1, ν) = 0, we obtain σ (1 − r) ≤ z (r, ν). Let ρ = minx∈B1−γ (0) ut (x, ν). Then,

ρ is a positive constant. Let us choose η1 ∈ (0, 1) such that

ρ ≥ η1ϕ (x, ν) f (u (0, ν)) for x ∈ B1−γ (0).

For x ∈ B1 (0) \B1−γ (0), there exists η2 ∈ (0, 1) such that

σ (1 − r) ≥ η2ϕ (r, ν) f (u (0, ν)) for r ∈ (1 − γ, 1) ,

where r = ||x||. From this, we get

z (x, ν) = ut (x, ν) ≥ η2ϕ (x, ν) f (u (0, ν)) for x ∈ B1 (0) \B1−γ (0).

Let η = min {η1, η2}. We obtain

ut (x, ν) ≥ ηϕ (x, ν) f (u (0, ν)) for x ∈ B1 (0) .

For x ∈ ∂B1 (0), the above inequality becomes an equality, and the left and right

sides equal. Therefore,

(3.6) ut (x, ν) ≥ ηϕ (x, ν) f (u (0, ν)) for x ∈ B1 (0).

Let J (x, t) = ut (x, t)− ηϕ (x, t) f (u (0, t)). We modify the proof of Lemma 3.4 of [4]

to obtain the following result.

Lemma 3.5. For a fixed positive number ν (< T ), J (x, t) ≥ 0 on B1 (0) × [ν, T ).

Proof. We have

Jt = utt − ηϕtf (u (0, t)) − ηϕf ′ (u (0, t))ut (0, t) ,

∆J = ∆ut − ηf (u (0, t))∆ϕ.
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Then,

LJ = Lut − ηf (u (0, t))Lϕ− ηϕf ′ (u (0, t))ut (0, t)

= f ′ (u (0, t))ut (0, t) (1 − ηϕ) .

By f ′ > 0, ϕ ≤ 1 and η < 1, and ut (0, t) > 0 for t ∈ (0, T ), we obtain LJ ≥ 0

in B1 (0) × (0, T ). By equation (3.6), J (x, ν) ≥ 0 on B1 (0). By the boundary

conditions, J (x, t) = 0 on ∂B1 (0) × [ν, T ). By the maximum principle, J (x, t) ≥ 0

on B1 (0) × [ν, T ). �

Based on Lemma 3.5, we obtain the following corollary.

Corollary 3.6. If u (0, t) quenches at t = T , then ut (x, t) → ∞ as t → T− for all

x ∈ B1 (0).

Proof. From the result of Lemma 3.5, ut (x, t) ≥ ηϕ (x, t) f (u (0, t)) in B1 (0)× [ν, T ).

If u (0, t) → c− as t → T−, then f (u (0, t)) → ∞. Because 0 < ϕ (x, t) ≤ 1 in

B1 (0) × (0,∞), we have ut (x, t) → ∞ as t→ T− for all x ∈ B1 (0). �

4. CONCLUSION

In this paper, we prove that ut (x, t) blows up in the whole domain of an n-

dimensional ball if u (x0, t) quenches in some finite time. The technique used is

through determining a lower bound of ut. This lower bound tends to infinity when

u (x0, t) quenches. A necessary condition for quenching of u is also given. Also, we

show that u (x, t) quenches at x0 only in some finite time.
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