QUENCHING FOR MULTI-DIMENSIONAL SEMILINEAR PARABOLIC PROBLEMS ON A BALL WITH A LOCALIZED SOURCE

W. Y. CHAN

Department of Mathematics, Texas A&M University - Texarkana, Texarkana, TX 75503, USA.

ABSTRACT. We study the quenching set of a multi-dimensional semilinear parabolic problem on a ball subject to the first initial-boundary condition. The source term of this problem is a nonlinear localized function. This function tends to infinity when the solution u approaches a finite number. This mathematical model illustrates a nonlinear reaction of a dynamical system occurring at a single location. The main result of this paper is that u quenches at a single point only and the blow-up set of u_t is the whole domain.

Keywords. Localized Source; Quenching; Green's Function

AMS (MOS) Subject Classification. 35K20, 35K57, 35K58

1. INTRODUCTION

Let $T \in (0, \infty]$, *a* be a positive real number, *c* be a positive constant, x_0 be a fixed point in \mathbb{R}^n where n = 1, 2, ..., and $B_1(x_0)$ be an *n*-dimensional open ball such that $B_1(x_0) = \{x \in \mathbb{R}^n : ||x - x_0|| < 1\}$ centered at x_0 with radius 1, where $||x - x_0||$ represents Euclidean distance between the points *x* and x_0 . We denote the closure and boundary of $B_1(x_0)$ by $\overline{B_1(x_0)}$ and $\partial B_1(x_0)$, respectively. We would like to study the first initial-boundary value problem for the following multi-dimensional semilinear parabolic differential equation with a localized source at x_0 :

(1.1)
$$u_t - \Delta u = af(u(x_0, t)) \text{ in } B_1(x_0) \times (0, T),$$

(1.2)
$$u(x,0) = 0 \text{ for } x \in \overline{B_1(x_0)}, u(x,t) = 0 \text{ for } x \in \partial B_1(x_0) \text{ and } t > 0.$$

A solution u is said to quench at (x^*, T) if there exists a sequence (x_n, t_n) such that $x_n \to x^*, t_n \to T^-$, and $u(x_n, t_n) \to c^-$ as $n \to \infty$. Here, x^* is the quenching point, and T is the quenching time.

Physically, equation (1.1) describes instabilities in a system with a localized reaction (cf. [1, 8]). Without the localized source, the forcing function with a = 1 is f(u(x,t)). When f(u) = 1/(1-u), the concept of quenching in one spatial dimension was introduced by Kawarada [6] in 1975.

Throughout this paper, we assume that f(u) satisfies the hypothesis below:

(H) $f(u) \in C^2([0,c)), f > 0, f' > 0, f'' > 0, \text{ and } f(u) \to \infty \text{ as } u \to c^-.$

The purpose of this paper is to prove that u_t blows up for all $x \in B_1(x_0)$ and u quenches only at the single point x_0 in some finite time T. In Section 2, we prove some properties of u. In Section 3, we prove that u quenches in some finite time when a is sufficiently large. Based on this result, we prove that u_t tends to infinity in the whole domain and u quenches at x_0 only.

2. PROPERTIES OF THE SOLUTION

Let L be the parabolic operator given by $Lu = u_t - \Delta u$, and b(x, t) be a nontrivial and nonnegative bounded function on $\overline{B_1(x_0)} \times [0, \infty)$. We prove the following comparison theorem.

Lemma 2.1. Assume that U is a classical solution of the following problem

 $LU \ge b(x,t) U(x_0,t)$ in $B_1(x_0) \times (0,T)$

$$U(x,0) \ge 0 \text{ for } x \in B_1(x_0), U(x,t) \ge 0 \text{ for } x \in \partial B_1(x_0) \text{ and } t > 0,$$

then $U(x,t) \ge 0$ on $\overline{B_1(x_0)} \times [0,T)$.

Proof. Let ε and β be positive real numbers and $W(x,t) = U(x,t) + \varepsilon e^{\beta t}$. Then, W(x,0) > 0 for $x \in \overline{B_1(x_0)}$, W(x,t) > 0 for $x \in \partial B_1(x_0)$ and t > 0. We have

$$LW = LU + \varepsilon \beta e^{\beta t}$$

$$\geq b(x,t) U(x_0,t) + \varepsilon \beta e^{\beta t}$$

$$= b(x,t) [W(x_0,t) - \varepsilon e^{\beta t}] + \varepsilon \beta e^{\beta t}.$$

This gives

$$LW - b(x,t) W(x_0,t) \ge -\varepsilon b(x,t) e^{\beta t} + \varepsilon \beta e^{\beta t} = \varepsilon e^{\beta t} \left(\beta - b(x,t)\right).$$

By choosing $\beta > b(x,t)$ for $(x,t) \in \overline{B_1(x_0)} \times [0,\infty)$, we have

$$LW - b(x, t) W(x_0, t) > 0$$
 in $B_1(x_0) \times (0, T)$.

If $W(x,t) \leq 0$ somewhere in $B_1(x_0) \times (0,T)$, then the set

 $\{t: W(x,t) \le 0 \text{ for some } x \in B_1(x_0)\}\$

is nonempty. Let \tilde{t} be the infimum of the above set. Since W(x,0) > 0 for $x \in \overline{B_1(x_0)}$, we have $0 < \tilde{t} < T$. At \tilde{t} , there exists some $x_1 \in B_1(x_0)$ such that $W(x_1, \tilde{t}) = 0$ and $W_t(x_1, \tilde{t}) \leq 0$. On the other hand, W attains its local minimum at (x_1, \tilde{t}) . Therefore, $\Delta W(x_1, \tilde{t}) > 0$. Then, at $t = \tilde{t}$,

$$0 \ge W_t\left(x_1,\tilde{t}\right) > LW\left(x_1,\tilde{t}\right) - b\left(x_1,\tilde{t}\right)W\left(x_0,\tilde{t}\right) > 0.$$

This gives a contradiction. Hence, W(x,t) > 0 in $B_1(x_0) \times (0,T)$. As $\varepsilon \to 0$, we have $U(x,t) \ge 0$ on $\overline{B_1(x_0)} \times [0,T)$.

By Lemma 2.1, 0 is a lower solution of the problem (1.1)-(1.2). On the other hand, u is bounded above by c. Thus, $0 \le u < c$ on $\overline{B_1(x_0)} \times [0,T)$. Since u ceases to exist for $u \ge c$. It follows from Theorem 2.1 of [2] that the problem (1.1)-(1.2) has a unique classical solution $u \in C\left(\overline{B_1(x_0)} \times [0,T)\right) \cap C^{2+\alpha,1+\alpha/2}(B_1(x_0) \times [0,T))$ for some $\alpha \in (0,1)$ such that $0 \le u < c$ on $\overline{B_1(x_0)} \times [0,T)$. From the hypothesis (H), fis differentiable. By the mean value theorem, there exists some positive constant k_1 (depending on a and f') such that

$$|af(u_1(x_0,t)) - af(u_2(x_0,t))| \le k_1 |u_1(x_0,t) - u_2(x_0,t)|$$

It follows from Theorem 8.9.2 of Pao [9, p. 436] that u either exists globally or only exists in a finite time.

To clarify the calculation in proving Lemma 3.3, we give the detail of the proof of the following lemma.

Lemma 2.2. Let u be the solution of the problem (1.1)-(1.2). Then, $u_t \ge 0$ on $\overline{B_1(x_0)} \times [0,T)$ and $u_t > 0$ in $B_1(x_0) \times (0,T)$.

Proof. For h > 0, let us consider the equation (1.1) at t + h. We have $Lu(x, t + h) = af(u(x_0, t + h))$ in $B_1(x_0) \times (0, T - h)$. Subtract equation (1.1) from this equation, and based on the mean value theorem, there exists some ζ_1 where ζ_1 is between $u(x_0, t + h)$ and $u(x_0, t)$ such that

$$Lu(x,t+h) - Lu(x,t) = af'(\zeta_1) [u(x_0,t+h) - u(x_0,t)] \text{ in } B_1(x_0) \times (0,T-h).$$

Since $u \ge 0$ on $\overline{B_1(x_0)} \times [0,T)$, we have $u(x,h) - u(x,0) \ge 0$ for $x \in \overline{B_1(x_0)}$. From the boundary condition, u(x,t+h) - u(x,t) = 0 for t > 0 and $x \in \partial B_1(x_0)$. By Lemma 2.1, $u(x,t+h) \ge u(x,t)$ on $\overline{B_1(x_0)} \times [0,T-h)$. Thus, $(u(x,t+h) - u(x,t))/h \ge 0$ on $\overline{B_1(x_0)} \times [0,T-h)$. As $h \to 0^+$, $u_t \ge 0$ on $\overline{B_1(x_0)} \times [0,T)$.

From the equation (2.2) of Friedman [5, p. 61], the Hölder norm of $f'(u(x_0, t))$ with an exponent α is given by

$$|f'(u(x_0,t))|_{\alpha} = \sup_{[0,T)} |f'(u(x_0,t))| + \sup_{\substack{t \in [0,T)\\\tilde{t} \in [0,T)}} \frac{\left|f'(u(x_0,t)) - f'(u(x_0,\tilde{t}))\right|}{\left[\sqrt{|t - \tilde{t}|}\right]^{\alpha}}.$$

By the mean value theorem, we obtain

$$|f'(u(x_0,t))|_{\alpha} \le \sup_{[0,T)} |f'(u(x_0,t))| + \left(\sup_{B_1(x_0) \times [0,T)} |f''|\right) |u|_{\alpha}$$

Thus, $|f'(u(x_0,t))|_{\alpha}$ is bounded when $0 \le u < c$. From equation (3.2) of Friedman [5, p. 66], we obtain

$$|af'(u(x_0,t)) u_t(x_0,t)|_{\alpha} \le a |f'(u)|_{\alpha} |u_t|_{\alpha}.$$

Since $u \in C\left(\overline{B_1(x_0)} \times [0,T)\right) \cap C^{2+\alpha,1+\alpha/2}(B_1(x_0) \times [0,T))$, we have

$$af'(u) u_t \in C^{\alpha, \alpha/2} \left(B_1(x_0) \times [0, T) \right)$$

It follows from Theorem 3.6 of Friedman [5, p. 65] that u_{tt} and $u_{x_ix_jt}$ exist for i, j = 1, 2, ..., n. To show that u_t is positive, we differentiate equation (1.1) with respect to t to get

$$Lu_t = af'(u(x_0, t)) u_t(x_0, t)$$
 in $B_1(x_0) \times (0, T)$.

For any $(x,t) \in B_1(x_0) \times [0,T)$, the integral representation form of u_t is given by

(2.1)
$$\begin{cases} u_t(x,t) = \int_{\overline{B_1(x_0)}} G(x,\xi,t) \, u_t(\xi,0) \, d\xi \\ +a \int_0^t \int_{\overline{B_1(x_0)}} G(x,\xi,t-\tau) \, f'(u(x_0,\tau)) \, u_t(x_0,\tau) \, d\xi d\tau, \end{cases}$$

where $G(x, \xi, t - \tau)$ is Green's function of the problem (1.1) subject to the homogeneous boundary condition. Since f' > 0, and $G(x, \xi, t - \tau) > 0$ in the set $\{(x, \xi, t) : x$ and ξ are in $B_1(x_0)$, and $t > \tau \ge 0\}$, it follows from equation (2.1) that $u_t > 0$ in the domain $B_1(x_0) \times (0, T)$.

Without loss of generality, let us assume that x_0 is the origin 0. By the symmetry of $B_1(0)$, the polar form of the problem (1.1)-(1.2) is given by

(2.2)
$$\begin{cases} u_t(r,t) - u_{rr}(r,t) - \frac{n-1}{r} u_r(r,t) = af(u(0,t)) \text{ in } (0,1) \times (0,T), \\ u(r,0) = 0 \text{ for } r \in [0,1], u_r(0,t) = 0 \text{ and } u(1,t) = 0 \text{ for } t \in (0,T). \end{cases}$$

Lemma 2.3. The solution u(r,t) of the problem (2.2) attains its maximum at r = 0 for $t \in (0,T)$.

Proof. The solution of the problem (2.2) is radial symmetric with respect to r = 0. To show that $u_r < 0$ for $r \in (0, 1]$, let $H(r, t) = u_r(r, t)$. Differentiating the first equation of the problem (2.2) with respect to r, we have

$$H_t - H_{rr} - \frac{n-1}{r}H_r + \frac{n-1}{r^2}H = 0 \text{ for } (r,t) \in (0,1) \times (0,T).$$

At t = 0, H(r, 0) = 0 for $r \in [0, 1]$. By Lemma 2.2, $u_t > 0$ in $B_1(0) \times (0, T)$. By Hopf's Lemma, H(1, t) < 0 for $t \in (0, T)$. Also, $H(0, t) = u_r(0, t) = 0$ for $t \in [0, T)$. By the maximum principle [9, p. 54], H < 0 for $(r, t) \in (0, 1] \times (0, T)$. Therefore, $u(0, t) \ge u(r, t)$ for $(r, t) \in [0, 1] \times (0, T)$.

3. SINGLE POINT QUENCHING OF u AND BLOW-UP OF u_t IN THE WHOLE DOMAIN

Let $\phi(x)$ be the eigenfunction corresponding to the first eigenvalue λ_1 (> 0) of the Sturm-Liouville problem:

$$\Delta Z + \lambda Z = 0 \text{ in } B_1(0),$$

$$Z(x) = 0 \text{ for } x \in \partial B_1(0)$$

By Theorem 3.1.2 of Pao [9, p. 97], $\phi(x) > 0$ in $B_1(0)$. The following lemma shows that u quenches in a finite time when a is sufficiently large, and give an upper bound of the quenching time.

Lemma 3.1. If $af'(0) > \lambda_1$, then there exists some finite time \hat{T} such that u quenches as $t \to \hat{T}^-$ and

(3.1)
$$\frac{1}{af'(0) - \lambda_1} \ln\left[\frac{c\left(af'(0) - \lambda_1\right) + af(0)}{af(0)}\right] \ge \hat{T}.$$

Proof. From Lemma 2.3, $u(0,t) \ge u(x,t)$ for $(x,t) \in \overline{B_1(0)} \times [0,T)$. Let v(x,t) be the solution to the following initial-boundary value problem:

(3.2)
$$\begin{cases} Lv(x,t) = af(v(x,t)) \text{ for } (x,t) \in B_1(0) \times (0,T), \\ v(x,0) = 0 \text{ for } x \in \overline{B_1(0)}, v(x,t) = 0 \text{ for } x \in \partial B_1(0) \text{ and } t > 0. \end{cases}$$

By the maximum principle, v(x,t) > 0 in $B_1(0) \times (0,T)$. Since f' > 0, we have $u \ge v$ on $\overline{B_1(0)} \times [0,T)$. We would like to prove that v quenches in some finite time when a is sufficiently large. By the hypothesis (H) and Taylor's Theorem, $f(v) = f(0) + f'(0)v + f''(\zeta_2)v^2/2$ for some ζ_2 between 0 and v. Since f'' > 0, we have $f(v) \ge f(0) + f'(0)v$. From the first equation of (3.2),

$$Lv \ge af(0) + af'(0)v.$$

Multiplying both sides by $\phi(x)$, integrating this inequality over $\overline{B_1(0)}$, and using the boundary conditions of v and ϕ , we obtain

$$\left(\int_{\overline{B_1(0)}} v\phi dx\right)_t \ge af(0)\int_{\overline{B_1(0)}} \phi dx + (af'(0) - \lambda_1)\int_{\overline{B_1(0)}} v\phi dx$$

Solving the above inequality on [0, t], we have

$$\int_{\overline{B_1(0)}} v\phi dx \ge \frac{af(0)\int_{\overline{B_1(0)}} \phi dx \left[e^{(af'(0)-\lambda_1)t} - 1\right]}{af'(0) - \lambda_1}.$$

Since $af'(0) > \lambda_1$, the right side is an increasing function of t. Hence, v(x,t) reaches c in some finite time \tilde{T} for some x in $B_1(0)$. We note that \tilde{T} satisfies

$$c \int_{\overline{B_1(0)}} \phi dx \ge \frac{af(0) \int_{\overline{B_1(0)}} \phi dx \left\lfloor e^{(af'(0) - \lambda_1)\tilde{T}} - 1 \right\rfloor}{af'(0) - \lambda_1}$$

Solving the above inequality for \tilde{T} , we obtain an upper bound of the quenching time for v(x,t) stated in the inequality (3.1). Since $u \ge v$, the quenching time for u is $\hat{T} \le \tilde{T}$. The lemma is proved.

From the result of Lemma 2.3, $u_r < 0$ for $(r,t) \in (0,1] \times (0,T)$. This implies if u quenches, then x = 0 is the quenching point. Let T be the supremum of the time for which the problem (1.1)-(1.2) has a unique solution $u \in C\left(\overline{B_1(0)} \times [0,T)\right) \cap C^{2+\alpha,1+\alpha/2}(B_1(0) \times [0,T))$. The following result shows that u(0,t) quenches at T if T is finite.

Theorem 3.2. If $T < \infty$, then u(0,t) quenches at T.

Proof. Suppose that u does not quench at x = 0 when t = T. There exists a positive constant k_2 such that $u(0,t) \le k_2 < c$ for $t \in [0,T]$. This shows that f(u(0,t)) < Qfor some positive constant Q and $t \in [0,T]$. Then, by Theorem 4.2.1 of Ladde et al. $[7, p. 139], u \in C\left(\overline{B_1(0)} \times [0,T]\right) \cap C^{2+\alpha,1+\alpha/2}(B_1(0) \times [0,T])$. This implies that there exists a positive constant k_3 such that $u(x,t) \le k_3 < c$ for $(x,t) \in \overline{B_1(0)} \times [0,T]$. To arrive at a contradiction, we need to show that u can be continued into a larger time interval $[0, T + t_1)$ for some positive t_1 . This can be achieved by extending the upper bound. Let us construct an upper solution $\psi(x,t) = k_3 m(t)$, where m(t) is a positive function and satisfies

$$\frac{d}{dt}m(t) = \frac{a}{k_3}f(k_3m(t)) \text{ for } t \ge T, \ m(T) = 1.$$

Because $f(u) \in C^2([0,c))$, the solution m(t) exists. Since f > 0, m(t) is an increasing function of t. Let t_1 be a positive constant determined by $k_3m(T+t_1) = k_4 < c$ for some positive constant k_4 greater than k_3 . By construction, $\psi(x,t)$ is the solution to the following problem:

$$L\psi = af(\psi) \text{ in } B_1(0) \times [T, T + t_1),$$

$$\psi(x, T) = k_3 \ge u(x, T) \text{ on } \overline{B_1(0)},$$

$$\psi(x, t) = k_3 m(t) > 0 \text{ for } x \in \partial B_1(0) \text{ and } t \in (T, T + t_1).$$

By Lemma 2.1, $\psi(x,t) \ge u(x,t)$ on $\overline{B_1(0)} \times [T,T+t_1)$. Therefore, we find a solution u to the problem (1.1)-(1.2) on $\overline{B_1(0)} \times [T,T+t_1)$. This contradicts the definition of T. Hence, u(0,t) quenches at T.

Let $z = u_t$. Differentiating the differential equation in (2.2) with respect to t, we have

(3.3)
$$z_t(r,t) - z_{rr}(r,t) - \frac{(n-1)}{r} z_r(r,t) = af'(u(0,t)) z(0,t).$$

Using equation (3.3), we have

(3.4)
$$\begin{cases} z_t - z_{rr} - \frac{(n-1)}{r} z_r = af'(u(0,t)) z(0,t) \text{ for } (r,t) \in (0,1) \times (0,T), \\ z(r,0) \ge 0 \text{ for } r \in [0,1], z(0,t) > 0 \text{ and } z(1,t) = 0 \text{ for } t \in (0,T). \end{cases}$$

The following result shows that u_t attains its maximum at r = 0.

Lemma 3.3. $u_t(r,t) < u_t(0,t)$ for $(r,t) \in (0,1] \times (0,T)$.

Proof. Using a similar calculation as in the proof of Lemma 2.2, we obtain u_{ttr} , u_{rt} , u_{rrt} , and u_{rrrt} . By differentiating the first equation of the problem (3.4) with respect to r, we obtain

$$z_{tr} - z_{rrr} - \frac{(n-1)}{r} z_{rr} + \frac{(n-1)}{r^2} z_r = 0.$$

For $r \in [0, 1)$, $u_{rt}(r, 0)$ is given by

$$u_{rt}(r,0) = \lim_{h \to 0} \frac{u_r(r,h) - u_r(r,0)}{h}$$

Using $u_r(r,0) = 0$ and Lemma 2.3, we have $u_{rt}(r,0) \le 0$. Thus, $z_r(r,0) \le 0$ for $r \in [0,1)$. By Lemma 2.2,

$$\frac{\partial z\,(1,0)}{\partial r} = \lim_{h \to 0} \frac{z\,(1,0) - z\,(1-h,0)}{h} \le 0.$$

By Hopf's lemma, $\partial z(1,t) / \partial r < 0$ for t > 0. By the symmetry of $B_1(0)$ with respect to r = 0, $\partial z(0,t) / \partial r = 0$ for $t \ge 0$. Let $V = z_r$. Then, V satisfies the following initial-boundary value problem:

$$V_t - V_{rr} - \frac{(n-1)}{r} V_r + \frac{(n-1)}{r^2} V = 0 \text{ for } (r,t) \in (0,1) \times (0,T),$$

 $V(r,0) \le 0 \text{ for } r \in [0,1], \text{ and } V(0,t) = 0 \text{ and } V(1,t) < 0 \text{ for } t \in (0,T).$

By the maximum principle, V(r,t) < 0 for $(0,1] \times (0,T)$. Integrating V(r,t) < 0 over (0,r), we obtain z(r,t) < z(0,t), that is, $u_t(r,t) < u_t(0,t)$ for $(r,t) \in (0,1] \times (0,T)$.

We modify Theorem 5 of Chan and Liu [3] to prove the following theorem. **Theorem 3.4**. u(r,t) quenches only at r = 0.

Proof. Let $I(r,t) = r^{n-1}u_r(r,t)$. From the result of Lemma 2.3, I(r,t) < 0 for $(r,t) \in (0,1] \times (0,T)$. From the first equation of the problem (2.2), I(r,t) satisfies the following differential equation,

$$u_t - \frac{1}{r^{n-1}}I_r = af(u(0,t)).$$

Differentiating the above equation with respect to r, we get

$$u_{rt} - \frac{1}{r^{n-1}}I_{rr} + \frac{(n-1)}{r^n}I_r = 0$$

By rewriting the above equation in terms of I, we have

$$\frac{I_t}{r^{n-1}} - \frac{1}{r^{n-1}}I_{rr} + \frac{(n-1)}{r^n}I_r = 0.$$

That is,

(3.5)
$$I_t - I_{rr} + \frac{(n-1)}{r}I_r = 0.$$

From Lemma 2.3, there exists a number $\delta \in (0,1)$ such that $u_r < 0$ for $(r,t) \in (1-\delta,1] \times (0,T)$. Thus, there exist positive real numbers $t_2 (< T)$ and μ such that $I(r,t_2) < -\mu$ for $r \in (1-\delta,1)$. Let r_1 be an arbitrary positive real number such that $1-\delta < r_1 < 1$, κ be a positive number, and $R(r,t) = I(r,t) + \kappa(1-r)$. At $t = t_2$, let us choose κ such that $R(r,t_2) < -\mu + \kappa(1-r) < 0$ for $r \in [r_1,1)$. By Lemma 3.3, $u_{rt}(r_1,t) < 0$ for $t \in [t_2,\omega)$ where $\omega \leq T$. That is, $u_r(r_1,t)$ is a decreasing function of t. Since $r_1^{n-1}u_r(r_1,t_2) < -\mu$, we then obtain $r_1^{n-1}\inf_{[t_2,T)}u_r(r_1,t) + \kappa(1-r_1) < -\mu + \kappa(1-r_1) < 0$. Clearly, R(1,t) < 0 for $t \in (0,T)$. Also, $R_r = I_r - \kappa$, $R_{rr} = I_{rr}$, and $R_t = I_t$. With these, we can rewrite equation (3.5) in terms of R as

$$R_t - R_{rr} + \frac{(n-1)}{r}R_r = \frac{-\kappa (n-1)}{r} < 0.$$

By the maximum principle, R < 0 for $(r,t) \in [r_1,1] \times [t_2,T)$. That is, $r^{n-1}u_r + \kappa (1-r) < 0$. Equivalently,

$$u_r < -\kappa \frac{(1-r)}{r^{n-1}}$$

Integrating both sides from r_2 to r_3 where $r_1 < r_2 < r_3 < 1$, we have

$$u(r_3,t) - u(r_2,t) < -\kappa \int_{r_2}^{r_3} \frac{(1-r)}{r^{n-1}} dr$$

Since $\int_{r_2}^{r_3} (1-r) / r^{n-1} dr > 0$,

$$u(r_{3},t) < u(r_{2},t) - \kappa \int_{r_{2}}^{r_{3}} \frac{(1-r)}{r^{n-1}} dr$$

$$< c - \kappa \int_{r_{2}}^{r_{3}} \frac{(1-r)}{r^{n-1}} dr,$$

which shows that $u(r_3, t) < c$ for $t_2 \leq t < T$. Thus, u does not quench at r_3 for any $r_3 \in (r_1, 1)$. Because $\delta \in (0, 1)$ and r_1 is an arbitrary real number such that $1 - \delta < r_1 < 1$, we have $r_1 \in (0, 1)$. Therefore, for any $r_3 \in (r_1, 1) \subseteq (0, 1)$, r_3 is not a quenching point. Hence, the solution u(r, t) quenches only at r = 0.

Let $\varphi_0(x) \in C\left(\overline{B_1(0)}\right) \cap C^2(B_1(0))$ such that $\Delta \varphi_0(x) < 0$, $\varphi_0(x) > 0$ in $B_1(0)$, and $\varphi_0(x) = 0$ for $x \in \partial B_1(0)$ and $\max_{x \in \overline{B_1(0)}} \varphi_0(x) \le 1$. Let $\varphi(x,t)$ be the solution to the following first initial-boundary value problem:

$$Lw = 0 \text{ in } B_1(0) \times (0, \infty)$$
$$w(x, 0) = \varphi_0(x) \text{ on } \overline{B_1(0)}$$
$$w(x, t) = 0 \text{ for } (x, t) \in \partial B_1(0) \times (0, \infty)$$

By the maximum principle, $\varphi(x,t) > 0$ in $B_1(0) \times (0,\infty)$ and is bounded above by $\varphi_0(x)$. Further,

$$\max_{(x,t)\in\overline{B_1(0)}\times[0,\infty)}\varphi(x,t)\leq 1.$$

By Lemma 2.2, $u_t(x,t) > 0$ in $B_1(0) \times (0,T)$. From equation (3.3), we have

$$z_t(r,t) - z_{rr}(r,t) - \frac{(n-1)}{r} z_r(r,t) = af'(u(0,t)) z(0,t)$$

By Hopf's lemma, $\partial z/\partial r < 0$ at r = 1 for t > 0. Then for any positive ν (< T), there exists a positive number σ depending on ν such that $\partial z/\partial r \leq -\sigma$ at $t = \nu$ for $r \in (1 - \gamma, 1)$, where γ is some positive number less than 1. Integrating $\partial z/\partial r \leq -\sigma$ over (r, 1) at $t = \nu$, we obtain

$$\int_{z(r,\nu)}^{z(1,\nu)} dz \le \int_r^1 -\sigma dr$$

which gives

$$z(1,\nu) - z(r,\nu) \le -\sigma(1-r)$$

From $z(1,\nu) = 0$, we obtain $\sigma(1-r) \leq z(r,\nu)$. Let $\rho = \min_{x \in \overline{B_{1-\gamma}(0)}} u_t(x,\nu)$. Then, ρ is a positive constant. Let us choose $\eta_1 \in (0,1)$ such that

$$\rho \ge \eta_1 \varphi \left(x, \nu \right) f \left(u \left(0, \nu \right) \right) \text{ for } x \in \overline{B_{1-\gamma} \left(0 \right)}.$$

For $x \in B_1(0) \setminus \overline{B_{1-\gamma}(0)}$, there exists $\eta_2 \in (0,1)$ such that

$$\sigma\left(1-r\right) \geq \eta_{2}\varphi\left(r,\nu\right)f\left(u\left(0,\nu\right)\right) \text{ for } r\in\left(1-\gamma,1\right),$$

where r = ||x||. From this, we get

$$z(x,\nu) = u_t(x,\nu) \ge \eta_2 \varphi(x,\nu) f(u(0,\nu)) \text{ for } x \in B_1(0) \setminus B_{1-\gamma}(0).$$

Let $\eta = \min \{\eta_1, \eta_2\}$. We obtain

$$u_t(x,\nu) \ge \eta \varphi(x,\nu) f(u(0,\nu))$$
 for $x \in B_1(0)$

For $x \in \partial B_1(0)$, the above inequality becomes an equality, and the left and right sides equal. Therefore,

(3.6)
$$u_t(x,\nu) \ge \eta \varphi(x,\nu) f(u(0,\nu)) \text{ for } x \in \overline{B_1(0)}.$$

Let $J(x,t) = u_t(x,t) - \eta \varphi(x,t) f(u(0,t))$. We modify the proof of Lemma 3.4 of [4] to obtain the following result.

Lemma 3.5. For a fixed positive number $\nu \ (< T)$, $J(x,t) \ge 0$ on $\overline{B_1(0)} \times [\nu, T)$. *Proof.* We have

$$J_{t} = u_{tt} - \eta \varphi_{t} f(u(0,t)) - \eta \varphi f'(u(0,t)) u_{t}(0,t) ,$$
$$\Delta J = \Delta u_{t} - \eta f(u(0,t)) \Delta \varphi.$$

Then,

$$LJ = Lu_t - \eta f(u(0,t)) L\varphi - \eta \varphi f'(u(0,t)) u_t(0,t)$$

= f'(u(0,t)) u_t(0,t) (1 - \eta \varphi).

By f' > 0, $\varphi \leq 1$ and $\eta < 1$, and $u_t(0,t) > 0$ for $t \in (0,T)$, we obtain $LJ \geq 0$ in $B_1(0) \times (0,T)$. By equation (3.6), $J(x,\nu) \geq 0$ on $\overline{B_1(0)}$. By the boundary conditions, J(x,t) = 0 on $\partial B_1(0) \times [\nu,T)$. By the maximum principle, $J(x,t) \geq 0$ on $\overline{B_1(0)} \times [\nu,T)$.

Based on Lemma 3.5, we obtain the following corollary.

Corollary 3.6. If u(0,t) quenches at t = T, then $u_t(x,t) \to \infty$ as $t \to T^-$ for all $x \in B_1(0)$.

Proof. From the result of Lemma 3.5, $u_t(x,t) \ge \eta \varphi(x,t) f(u(0,t))$ in $B_1(0) \times [\nu,T)$. If $u(0,t) \to c^-$ as $t \to T^-$, then $f(u(0,t)) \to \infty$. Because $0 < \varphi(x,t) \le 1$ in $B_1(0) \times (0,\infty)$, we have $u_t(x,t) \to \infty$ as $t \to T^-$ for all $x \in B_1(0)$.

4. CONCLUSION

In this paper, we prove that $u_t(x,t)$ blows up in the whole domain of an *n*dimensional ball if $u(x_0,t)$ quenches in some finite time. The technique used is through determining a lower bound of u_t . This lower bound tends to infinity when $u(x_0,t)$ quenches. A necessary condition for quenching of u is also given. Also, we show that u(x,t) quenches at x_0 only in some finite time.

Acknowledgements: The author thanks the anonymous referees for their suggestions.

REFERENCES

- K. Bimpong-Bota, P. Ortoleva, and J. Ross, Far-from-equilibrium phenomena at local sites of reaction, J. Chem. Phys., 60:3124–3133, 1974.
- [2] J. M. Chadam, A. Peirce, and H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 169:313–328, 1992.
- [3] W. Y. Chan and H. T. Liu, Finding the critical domain of multi-dimensional quenching problems with Neumann boundary conditions, *Neural Parallel Sci. Comput.*, 25:19–28, 2017.
- [4] C. Chang, Y. Hsu, and H. T. Liu, Quenching behavior of parabolic problems with localized reaction term, *Mathematics and Statistics*, 2:48–53, 2014.
- [5] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 61, and 65–66.
- [6] H. Kawarada, On solutions of initial-boundary problem for $u_t = u_{xx} + 1/(1-u)$, Publ. Res. Inst. Math. Sci., Kyoto Univ., 10:729–736, 1975.
- [7] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, 1985, p. 139.
- [8] P. Ortoleva and J. Ross, Local structures in chemical reactions with heterogeneous catalysis, J. Chem. Phys., 56:4397–4400, 1972.
- [9] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, NY, 1992, pp. 54, 97, and 436.