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QUENCHING FOR MULTI-DIMENSIONAL SEMILINEAR
PARABOLIC PROBLEMS ON A BALL WITH A LOCALIZED
SOURCE
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ABSTRACT. We study the quenching set of a multi-dimensional semilinear parabolic problem on
a ball subject to the first initial-boundary condition. The source term of this problem is a nonlinear
localized function. This function tends to infinity when the solution w approaches a finite number.
This mathematical model illustrates a nonlinear reaction of a dynamical system occurring at a single
location. The main result of this paper is that u quenches at a single point only and the blow-up

set of u; is the whole domain.
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1. INTRODUCTION

Let T" € (0,00], a be a positive real number, ¢ be a positive constant, zy be
a fixed point in R™ where n = 1,2,..., and By (xy) be an n-dimensional open ball
such that Bj (zg) = {x € R" : ||z — xo|| < 1} centered at xy with radius 1, where
||z — x| represents Euclidean distance between the points = and z,. We denote the
closure and boundary of By (x¢) by By (o) and 9B (x), respectively. We would like
to study the first initial-boundary value problem for the following multi-dimensional

semilinear parabolic differential equation with a localized source at xg:
(1.1) up — Au = af (u(zo,t)) in By (zo) x (0,7T),

(1.2) u(z,0) =0 for x € By (z9),u(x,t) =0 for x € 9B (xy) and t > 0.

A solution w is said to quench at (z*,T') if there exists a sequence (x,,t,) such that
x, — 2% t, — T, and u (x,,t,) — ¢~ as n — oo. Here, 2* is the quenching point,
and T is the quenching time.

Physically, equation (1.1) describes instabilities in a system with a localized re-

action (cf. [1, 8]). Without the localized source, the forcing function with a = 1 is
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f(u(x,t)). When f(u) =1/(1 —u), the concept of quenching in one spatial dimen-
sion was introduced by Kawarada [6] in 1975.

Throughout this paper, we assume that f (u) satisfies the hypothesis below:
(H) f(u) € C%([0,¢)), f >0, f/ >0, f>0,and f(u) — coasu— c".

The purpose of this paper is to prove that u; blows up for all x € By (zg) and
u quenches only at the single point z( in some finite time T'. In Section 2, we prove
some properties of u. In Section 3, we prove that u quenches in some finite time when
a is sufficiently large. Based on this result, we prove that u; tends to infinity in the

whole domain and u quenches at zy only.

2. PROPERTIES OF THE SOLUTION

Let L be the parabolic operator given by Lu = u; — Au, and b (x,t) be a nontriv-
ial and nonnegative bounded function on Bj (zg) x [0,00). We prove the following

comparison theorem.

Lemma 2.1. Assume that U is a classical solution of the following problem

LU > b(z,t) U (x,t) in By (xg) x (0,7)
U(z,0) >0 for x € By (xg), U(x,t) >0 for x € 0By (x9) and t > 0,

then U (x,t) > 0 on By (zg) x [0,T).
Proof. Let € and 3 be positive real numbers and W (x,t) = U (x,t) + ce. Then,

W (z,0) > 0 for x € By (zg), W (z,t) > 0 for x € By (xy) and t > 0. We have
LW = LU +¢eBe”

> b(x,t)U (20,t) + e’

= b(x,t) [W (20, t) — ee’] + eBe™.
This gives

LW —b(z,t) W (zg,t) > —eb (x,t) e’ +eBe” = ce’ (B — b (x,1)).
By choosing 3 > b (z,t) for (z,t) € By () x [0,00), we have
LW —b(x,t) W (zo,t) > 0in By (zg) x (0,7).

If W (x,t) <0 somewhere in By (zg) x (0,7"), then the set

{t: W (x,t) <0 for some x € By (z9)}

is nonempty. Let  be the infimum of the above set. Since W (z,0) > 0 for x € By (7o),
we have 0 < £ < T. At {, there exists some x; € B (z,) such that W (a:l, f) =0 and
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Wi (:Bl, ﬂ < 0. On the other hand, W attains its local minimum at (:171, ﬂ Therefore,
AW (xl,f) > 0. Then, at t =1,

0>w, (Sl?l,lg) > LW (LL’l,E) —b(l’l,i)W(l’o,a > 0.

This gives a contradiction. Hence, W (z,t) > 0 in Bj (x¢) x (0,7). As e — 0, we

have U (z,t) > 0 on By (x) x [0,7T). O

By Lemma 2.1, 0 is a lower solution of the problem (1.1)-(1.2). On the other
hand, v is bounded above by ¢. Thus, 0 < u < ¢ on By () x [0, 7). Since u ceases
to exist for u > ¢. It follows from Theorem 2.1 of [2] that the problem (1.1)-(1.2) has
a unique classical solution v € C' (m x [0, T)) NO2+el+e/2(B) (z4) x [0,T)) for
some a € (0,1) such that 0 < u < ¢ on By (xg) x [0,7). From the hypothesis (H), f
is differentiable. By the mean value theorem, there exists some positive constant k;

(depending on a and f’) such that

laf(ui (wo,t)) — af(uz (zo,t))] < ki |uy (2o, t) — ug (20,1)] -

It follows from Theorem 8.9.2 of Pao [9, p. 436] that u either exists globally or only

exists in a finite time.

To clarify the calculation in proving Lemma 3.3, we give the detail of the proof

of the following lemma.

Lemma 2.2. Let u be the solution of the problem (1.1)-(1.2). Then, u; > 0 on
B (o) x [0,T) and u; > 0 in By (z0) x (0,T).

Proof. For h > 0, let us consider the equation (1.1) at t +h. We have Lu (x,t + h) =
af (u(xg,t+ h)) in By (zo) x (0,7 — h). Subtract equation (1.1) from this equation,
and based on the mean value theorem, there exists some (; where (; is between
u (xg,t + h) and u (xo, t) such that

Lu(x,t 4+ h) — Lu (z,t) = af’ (¢1) [u(xo, t + h) — u(xo,t)] in By (x) x (0,7 —h).

Since u > 0 on By (z9)x[0,T"), we have u (z, h)—u (x,0) > 0 for x € By (x9). From the
boundary condition, u (x,t + h) —u (x,t) = 0 for ¢ > 0 and x € 0B; (x9). By Lemma

2.1, u(z,t+h) > u(z,t) on By (xy) x [0,T7 — h). Thus, (u(z,t+ h) —u(z,t)) /A >0

on By (xg) x [0,T —h). As h — 0", uy >0 on By (zo) x [0,T).
From the equation (2.2) of Friedman [5, p. 61], the Holder norm of f’ (u (x,t))

with an exponent « is given by

| (u (20, 1))].. = sup | f (u (o, 1))| + sup ‘f’ (u (xo,t)) — f: (zi (xo,f)) ‘
[0,T) te[0,T) [ V‘tu

t€[0,T)
By the mean value theorem, we obtain

| (u (0, 1))| < sup |f (u (2o,))] + ( sup )If”l) Jul g -

[O,T) Bl(IQ)X[O,T
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Thus, |f" (u(z,1))],
[5, p. 66], we obtain

is bounded when 0 < u < ¢. From equation (3.2) of Friedman

laf’ (u (zo, 1)) we (xo, 1), < alf ()], fuel, -

Since u € C (Bl (20) % [O,T)) N C2r a4l (B (z,) x [0,T)), we have
af' (u)u, € O (B, () x [0,T)) .

It follows from Theorem 3.6 of Friedman [5, p. 65] that u; and w,.,; exist for i,
j=1,2,...,n. To show that u, is positive, we differentiate equation (1.1) with respect

to t to get
Lus = af’ (u(xg,t)) us (29,t) in By (x9) x (0,7).

For any (z,t) € By (z9) x [0,T), the integral representation form of u; is given by

(2.1) { e (2,) = [5,050 G (@6, 1) ur (€,0) d€
o f! [ G @, 6t —7) f (u(w0,7)) e (20, 7) dédr,

where G (x,&,t — 7) is Green’s function of the problem (1.1) subject to the homoge-
neous boundary condition. Since f’ > 0, and G (x,&,t — 7) > 0 in the set {(x,&,t) : x
and & are in B (z), and t > 7 > 0}, it follows from equation (2.1) that u; > 0 in the
domain By (x¢) x (0, 7). O

Without loss of generality, let us assume that xg is the origin 0. By the symmetry
of By (0), the polar form of the problem (1.1)-(1.2) is given by

g (1, 1) — e (1, 8) — X () = af (w(0,)) in (0,1) x (0,T),
u(r,0) =0 for r € [0,1], u, (0,t) =0 and u (1,t) =0 for t € (0, 7).

(2.2)

Lemma 2.3. The solution u (r,t) of the problem (2.2) attains its mazximum at r =0
fort € (0,7).

Proof. The solution of the problem (2.2) is radial symmetric with respect to r = 0.
To show that u, < 0 for r € (0,1], let H (r,t) = w, (r,t). Differentiating the first

equation of the problem (2.2) with respect to r, we have

-1 -1
n HT—I-TLQ
r

H,— H,, — H =0 for (r,t) € (0,1) x (0,T).

At t =0, H(r,0) = 0 for r € [0,1]. By Lemma 2.2, u; > 0 in By (0) x (0,7). By
Hopf’s Lemma, H (1,t) < 0 for t € (0,T). Also, H (0,t) = u, (0,t) =0 for t € [0,T).
By the maximum principle [9, p. 54|, H < 0 for (r,t) € (0,1] x (0,7"). Therefore,
u (0,t) > u(rt) for (r,t) € [0,1] x (0,7T). O
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3. SINGLE POINT QUENCHING OF v AND BLOW-UP OF u,; IN
THE WHOLE DOMAIN

Let ¢ (z) be the eigenfunction corresponding to the first eigenvalue A\; (> 0) of

the Sturm-Liouville problem:

AZ+)XZ = 0in B;(0),
Z(z) = 0forxzedB;(0).

By Theorem 3.1.2 of Pao [9, p. 97], ¢ () > 0 in By (0). The following lemma shows
that v quenches in a finite time when a is sufficiently large, and give an upper bound

of the quenching time.

Lemma 3.1. If af (0) > A, then there exists some finite time T such that u

quenches as t — 7= and

(3.1) 1 W [e(@f (0) = M) + af (0)

af (0) =\ af (0)
Proof. From Lemma 2.3, u (0,t) > u (x,t) for (z,t) € By (0) x [0,T). Let v (z,t) be

the solution to the following initial-boundary value problem:

>T.

52) { Lo (z,t) = af (v (z,t)) for (z,t) € By (0) x (0,T),
' v(x,0) =0 for z € By (0), v(x,t) =0 for x € 9B, (0) and t > 0.

By the maximum principle, v (x,t) > 0 in By (0) x (0,7"). Since f’ > 0, we have
u > v on By (0) x [0,7). We would like to prove that v quenches in some finite
time when a is sufficiently large. By the hypothesis (H) and Taylor’s Theorem,
f ()= f0)+ f(0)v+ f"({)v?/2 for some ¢, between 0 and v. Since f” > 0, we

have f (v) > f(0) 4+ f'(0) v. From the first equation of (3.2),

Lv>af(0)+af (0)v.

Multiplying both sides by ¢ (x), integrating this inequality over B; (0), and using the

boundary conditions of v and ¢, we obtain

(/ vgbdx) > af (0) /_¢dx + (af'(0) — )\1)/ vodx.
B1(0) t B1(0) B1(0)

Solving the above inequality on [0, t], we have

/ vpdr > af (0) [y dde [e@/ O —1]
o af ()~ h -

Since af’ (0) > Ay, the right side is an increasing function of . Hence, v (x,t) reaches

¢ in some finite time 7" for some x in By (0). We note that 7" satisfies

[ s Ol
c T .
Bi0) - af' (0) =\
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Solving the above inequality for T', we obtain an upper bound of the quenching time
for v (z,t) stated in the inequality (3.1). Since u > v, the quenching time for wu is
T < T. The lemma is proved. O

From the result of Lemma 2.3, u, < 0 for (r,t) € (0,1] x (0,7"). This implies if
u quenches, then x = 0 is the quenching point. Let T" be the supremum of the time
for which the problem (1.1)-(1.2) has a unique solution v € C (f(()) X [0,T)> N
C*rel+e/2 (B (0) x [0,T)). The following result shows that u (0,¢) quenches at T if
T is finite.

Theorem 3.2. If T' < oo, then u (0,t) quenches at T.

Proof. Suppose that u does not quench at x = 0 when ¢t = T'. There exists a positive
constant ks such that u (0,¢) < ke < ¢ for t € [0,7]. This shows that f (u(0,t)) < Q
for some positive constant ) and t € [0,7]. Then, by Theorem 4.2.1 of Ladde et al.
7, p. 139], w € € (By (0) x [0,7]) N C24+/2 (B, (0) x [0, T]). This implies that
there exists a positive constant ks such that u (z,t) < ks < cfor (x,t) € By (0) x[0,T].
To arrive at a contradiction, we need to show that u can be continued into a larger
time interval [0, 7 + ;) for some positive t;. This can be achieved by extending the
upper bound. Let us construct an upper solution ¢ (x,t) = ksm (t), where m (t) is a
positive function and satisfies

d a
%m (t) = k_gf (ksm (t)) for t > T, m(T) = 1.

Because f (u) € C%([0,¢)), the solution m (t) exists. Since f > 0, m (t) is an increas-
ing function of ¢. Let ¢; be a positive constant determined by ksm (T +t1) = ky < ¢
for some positive constant k4 greater than k3. By construction, v (z,t) is the solution

to the following problem:

Ly = af (¢) in By (0) x [T.T + 1),

Y (x,T) = ks>u(x,T) on By (0),
Y (x,t) = ksm(t)>0forz € 0By (0) andt € (T, T +1;).

By Lemma 2.1, ¢ (z,t) > u (z,t) on By (0) x [T, T + t;). Therefore, we find a solution

u to the problem (1.1)-(1.2) on By (0) x [T, T +t;). This contradicts the definition
of T. Hence, u (0,t) quenches at T. O

Let z = u;. Differentiating the differential equation in (2.2) with respect to t, we

have

(3.3) 2z (ryt) — 2 (1, 1) —

2 (rt) =af (u(0,t)) 2 (0,1).
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Using equation (3.3), we have

-1
2t — Zrr (n )

(3.4) A =af (u(0,t))2(0,t) for (r,t) € (0,1) x (0,7),
z(r,0) >0 forr €0,1], 2(0,t) > 0 and z (1,¢) =0 for t € (0, 7).

The following result shows that wu; attains its maximum at r = 0.
Lemma 3.3. w; (r,t) < u (0,t) for (r,t) € (0,1] x (0,7).
Proof. Using a similar calculation as in the proof of Lemma 2.2, we obtain ., ¢,

Uppt, and Uyq. By differentiating the first equation of the problem (3.4) with respect

to r, we obtain
(n—1) (n—1)

Ztr — Zrrr T Zrr )
T

zr = 0.
,

For r € [0, 1), u,¢ (1,0) is given by
o (ryh) —u, (r,0)

Upg (1,0) = ;ILIE%) :
Using u, (r,0) = 0 and Lemma 2.3, we have wu,; (r,0) < 0. Thus, 2, (r,0) < 0 for
r €[0,1). By Lemma 2.2,

0z (1,0) ~ im 2(1,0) — 2z (1 — h,0) <o.

or h—0 h
By Hopf’s lemma, 0z (1,t) /Or < 0 for t > 0. By the symmetry of B; (0) with respect
tor =0, 0z(0,t) /or =0 fort > 0. Let V = z,.. Then, V satisfies the following

initial-boundary value problem:
(n—1)
r

(n —

1
V=V, — v, + 'V Z0for () € (0,1) x (0,T),

2
V(r,0) <0 for r € [0,1], and V (0,¢) =0 and V (1,¢) <0 for t € (0,T).
By the maximum principle, V' (r,t) < 0 for (0, 1] x (0, 7). Integrating V' (r,t) < 0 over
(0,7), we obtain z (r,t) < z(0,t), that is, u; (r,t) < u (0,¢t) for (r,t) € (0,1]x(0,7").0
We modify Theorem 5 of Chan and Liu [3] to prove the following theorem.
Theorem 3.4. u (r,t) quenches only at r = 0.
Proof. Let I (r,t) = r"lu, (r,t). From the result of Lemma 2.3, I (r,t) < 0 for
(r,t) € (0,1] x (0,7). From the first equation of the problem (2.2), I (r,t) satisfies

the following differential equation,

1
Up — m[r =af(u(0,7)).
Differentiating the above equation with respect to r, we get

1 -1
Upt — n_llrr (n n )
T T

I, =0.

By rewriting the above equation in terms of I, we have

7‘”_1 rn—
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That is,

(3.5) JA A Gt

I, =0.

From Lemma 2.3, there exists a number 6 € (0,1) such that uw, < 0 for (r,t) €
(1 —16,1] x (0,7). Thus, there exist positive real numbers to (< T') and p such that
I(r,ty) < —pforr e (1—4,1). Let r; be an arbitrary positive real number such that
1 -9 <7 <1, k be a positive number, and R (r,t) = I (r,t) + k(1 — 7). At t = t,,
let us choose « such that R (r,ts) < —u+k (1 —r) <0 forr € [r,1). By Lemma 3.3,
Ut (11,t) < 0 for t € [to,w) where w < T'. That is, u, (r1,t) is a decreasing function
of t. Since 77 ', (r1,t2) < —p, we then obtain r{" " infy, 7 u, (r1,t) + k(1 — 1) <
—pn+ k(1 —ry) <0. Clearly, R(1,t) <0 fort € (0,T). Also, R, = I, — k, Ry = I,
and R, = I;. With these, we can rewrite equation (3.5) in terms of R as

(n— I)RT _ —k(n—1)

T r

R, — R, + < 0.

By the maximum principle, R < 0 for (r,t) € [ry,1] X [t2,T). That is, r" 'u, +
k(1 —r) < 0. Equivalently,

(1—r)

yn—1 :

U, < —K
Integrating both sides from ry to r3 where ry < ry < r3 <1, we have

73 1 _
u(rs, t) —u(re,t) < —K/ (,rn—f)dr'

T2

Since [7* (1 —r) /r"~'dr >0,

u(rs,t) < U(’I“g,t)—/{/ra (1_T)d7“

r2

r3 1_
< c—m/ ( T)dr,

which shows that wu (r3,t) < ¢ for t < t < T. Thus, u does not quench at r3 for

any r3 € (r1,1). Because 6 € (0,1) and r; is an arbitrary real number such that
1—6§<r <1, we have r; € (0,1). Therefore, for any r3 € (r;,1) C (0,1), r3 is not

a quenching point. Hence, the solution u (r,t) quenches only at r = 0. O

Let o (x) € C <31 (0)) NC? (B, (0)) such that Apy (z) < 0, o (x) > 0 in By (0),
and g (z) = 0 for z € 0B, (0) and max, 5 G ¥o (z) < 1. Let ¢ (z,t) be the solution

to the following first initial-boundary value problem:

Lw = 0in B; (0) x (0,00)

w(z,0) = o (x) on By (0)
w(z,t) = 0for (x,t) € 0By (0) x (0,00).
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By the maximum principle, ¢ (x,t) > 0 in B; (0) x (0, 00) and is bounded above by
¢o (). Further,
max o (x,t) < 1.

(2,£)€B1(0) x [0,00)
By Lemma 2.2, u; (z,t) > 0 in By (0) x (0,7). From equation (3.3), we have

P ) = af (0.8 2 (0.8).

By Hopf’s lemma, 0z/0r < 0 at r = 1 for t > 0. Then for any positive v (< 7)),

2 (ryt) — 20 (1, ) —

there exists a positive number ¢ depending on v such that 0z/0r < —o at t = v for

r € (1 —~,1), where v is some positive number less than 1. Integrating 0z/0r < —o

z(1,v) 1
/ dz < / —odr,
z(r,w) r

z(L,v)—z(r,v) < —o(l—r).

over (r,1) at t = v, we obtain

which gives

From z (1,v) = 0, we obtain o (1 —7) < z(r,v). Let p = min, ) Ut (z,v). Then,
p is a positive constant. Let us choose n; € (0,1) such that
p>me(z,v) f(u(,v)) for x € Bi_, (0).

For x € By (0) \B1_4 (0), there exists 7, € (0,1) such that

o(1—=7r)>mne(rv)f(u(,v)) forre(l—~,1),

where r = ||z||. From this, we get

z2(x,v) =w (x,v) >y (z,v) f(u(0,v)) for x € By (0) \Bi_, (0).
Let n = min {n,72}. We obtain
ug (z,v) > np (z,v) f(u(0,v)) for z € By (0).

For x € 0B; (0), the above inequality becomes an equality, and the left and right

sides equal. Therefore,

(3.6) ug (z,v) > np (z,v) f(u(0,v)) for z € By (0).

Let J (x,t) = w; (x,t) —ne (z,t) f (u(0,1)). We modify the proof of Lemma 3.4 of [4]
to obtain the following result.

Lemma 3.5. For a fized positive number v (< T), J (z,t) > 0 on By (0) x [v,T).
Proof. We have

Jo = uy —nocf (w(0,t)) —nof (u(0,1))u, (0,1),

AJ = Auy —nf (u(0,t)) Agp.
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Then,

= ' (u(0,8)) ug (0,8) (1 —ne) .
By f/ >0, p <landn < 1, and u, (0,t) > 0 for t € (0,7), we obtain LJ > 0

in B; (0) x (0,7). By equation (3.6), J(z,v) > 0 on By (0). By the boundary
conditions, J (z,t) = 0 on 0By (0) x [v,T). By the maximum principle, J (z,t) > 0

on By (0) x [v,T). O
Based on Lemma 3.5, we obtain the following corollary.

Corollary 3.6. If u(0,t) quenches at t =T, then u; (x,t) — oo as t — T~ for all

x € By (0).

Proof. From the result of Lemma 3.5, u; (z,t) > ne (x,t) f (u(0,t)) in By (0) x [, T).

If w(0,t) — ¢ ast — T, then f(u(0,t)) — oco. Because 0 < ¢(x,t) <

By (0) x (0,00), we have u; (z,t) — oo as t — T~ for all z € By (0). O

1 in

4. CONCLUSION

In this paper, we prove that wu; (z,t) blows up in the whole domain of an n-
dimensional ball if u (zg,t) quenches in some finite time. The technique used is
through determining a lower bound of u;. This lower bound tends to infinity when
u (zo,t) quenches. A necessary condition for quenching of u is also given. Also, we

show that u (x,t) quenches at xy only in some finite time.
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