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ABSTRACT. In this paper, the Hyers-Ulam stability and generalized Hyers-Ulam stability of

sequential fractional order h-difference equations are investigated using the open mapping theorem

and the direct method, respectively. Finally, we give an example to illustrate one of our main results.
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1. INTRODUCTION

In 1940, S. M. Ulam [32] raised a problem: “when can we assert that the solution

of the inequality is close to some solution of the strict equation”. In 1940, D. H.

Hyers [13] first solved this question. Thereafter, T. Aoki [2], D. G. Bourgin [6] and

Th. M. Rassias [30] improved the result of D. H. Hyers. For more details and further

discussion about Hyers-Ulam stability of differential equations, we could refer to the

book [18]; for ordinary differential equations [19, 20, 21, 24]; for fractional differential

equations [14, 33]; for fractional difference equations [17]; for others [22, 12, 8, 26]

and references cited therein.

In recent years, the discrete fractional calculus has attracted many researchers

since Miller and Ross [25] introduced fractional difference operators in 1988. The

basic theory of the discrete fractional calculus can be found in [11, 7, 4, 3, 9, 10, 1,

23, 5, 27, 28, 29, 34, 15, 16, 31] and other sources. The special case of fractional

h-difference operators is the main concern of this paper. The basic theory about

calculus of fractional h-differences can be found in [5, 27, 28, 29, 34, 15, 16, 31].

This paper is strongly motivated by [14], which uses the Riemann-Liouville frac-

tional derivative. Here, we will show the Hyers-Ulam stability and generalized Hyers-

Ulam stability of sequential fractional order h-difference equations using the open
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mapping method and the direct method, respectively. Finally, an example is given to

illustrate one of our main results.

2. PRELIMINARY DEFINITIONS

Let FD denote the set of real valued functions defined on a domain D. We use

the notation (hN)a := {a, a + h, a + 2h, · · · }, where h > 0, a ∈ R. Let ρ(t) := t − h

for t ∈ (hN)a+h. For the convenience of the readers, we recall some notation here.

For a function f ∈ F(hN)a
, the backward h-difference operator is defined as

(∇hf)(t) :=
f(t) − f(t − h)

h
, t ∈ (hN)a+h.

For arbitrary t, ν ∈ R, the h-factorial function is defined by

tνh := hν
Γ( t

h
+ ν)

Γ( t
h
)

,

where Γ is the Euler gamma function with t
h

/∈ Z− ∪ {0}, and we use the convention

that tνh = 0, when t
h

+ ν is a nonpositive integer and t
h

is not a nonpositive integer.

For any function f : (hN)a+h → R, its nabla h-Laplace transform has the form

La{x}(z) =

∫ ∞

a

E⊟z(ρ(t), a)x(t)∇ht

=

∫ ∞

a

(1 − zh)
t−h−a

h x(t)∇ht

= h

∞
∑

k=1

(1 − zh)k−1x(a + kh).

Definition 2.1. (See [16, Definition 2.4]). Let f ∈ F(hN)a+h
, and ν > 0 be given. The

fractional h-sum a∇
−ν
h f is defined by

(2.1) (a∇
−ν
h f)(t) :=

h

Γ(ν)

t

h
∑

s= a

h
+1

(t − ρ(sh))ν−1
h f(sh), t ∈ (hN)a+h,

and (a∇
0
hf)(t) = f(t), ρ(sh) = (s − 1)h.

Definition 2.2. (See [16, Definition 2.5]). Let f ∈ F(hN)a
, ν ∈ (n−1, n) and µ = n−ν,

where n ∈ N1. The Riemann-Liouville like fractional h-difference a∇
ν
hf is defined by

(2.2)

(a∇
ν
hf)(t) := (∇n

h(a∇
−µ
h f))(t) =

h

Γ(µ)
∇n

h

(

t

h
∑

s= a

h
+1

(t− ρ(sh))µ−1
h f(sh)

)

, t ∈ (hN)a+nh.

Remark 2.3. Clearly, the above definition is also true for ν = n.
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Lemma 2.4. Let ν ∈ (n− 1, n] and µ = n− ν, where n ∈ N1. The following formula

is equivalent to (2.2):

(2.3)

(a∇
ν
hf)(t) =



















h

Γ(−ν)

t

h
∑

s= a

h
+1

(t − ρ(sh))−ν−1
h f(sh), ν ∈ (n − 1, n), t ∈ (hN)a+nh,

(∇n
hf)(t), ν = n, t ∈ (hN)a+nh.

Proof. If ν = n, we have

(a∇
ν
hf)(t) = (∇n

h(a∇
−(n−ν)
h f))(t) = (∇n

h(a∇
−0
h f))(t) = (∇n

hf)(t).

If ν ∈ (n − 1, n), we have

(a∇
ν
hf)(t)= (∇n

h(a∇
−(n−ν)
h f))(t)

= ∇n−1
h

(

∇h

( h

Γ(n − ν)

t

h
∑

s= a

h
+1

(t − ρ(sh))n−ν−1
h f(sh)

))

= ∇n−1
h

( h

Γ(n − ν − 1)

t

h
∑

s= a

h
+1

(t − ρ(sh))n−ν−2
h f(sh)

)

.

Repeating the similar procedure n − 1 times, we obtain

(a∇
ν
hf)(t)= (∇n

h(a∇
−(n−ν)
h f))(t)

=
h

Γ(−ν)

t

h
∑

s= a

h
+1

(t − ρ(sh))−ν−1
h f(sh).

The proof is complete.

Definition 2.5. (See [16, Definition 2.3]). Let ν 6= −1,−2, · · · . Then we define the

ν-th order nabla fractional h-Taylor monomial Ĥν(t, a) by

Ĥν(t, a) :=
(t − a)ν

h

Γ(ν + 1)
= hν

Γ( t−a
h

+ ν)

Γ(ν + 1)Γ( t−a
h

)
,

where t ∈ (hN)a.

Definition 2.6. For |p| < h−α, α > 0, and β ∈ R, we define the discrete Mittag-

Leffler function by

(2.4) Eh
p,α,β(t, a) :=

∞
∑

k=0

pkĤαk+β(t, a), t ∈ (hN)a.

Remark 2.7. It is easy to see that the above series is convergent for |p| < h−α.

Lemma 2.8. (See [16, Lemma 2.1]). Assume f : (hN)a+h → R. Then

(2.5) La{f}(z) = h
∞

∑

k=1

(1 − zh)k−1f(a + kh)
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for those values of z such that this infinite series converges.

Definition 2.9. A function f : (hN)a+h → R is said to be of exponential order r > 0

if there exists a constant M and a number T ∈ (hN)a+h such that

|f(t)| ≤ Mrt, t ∈ (hN)T .

Lemma 2.10. If f : (hN)a+h → R is a function of exponential order r > 0, then its

Laplace transform exists for |1 − zh| < 1
rh .

Proof. If f is a function of exponential order r, then there is a constant M > 0 and

a number T ∈ (hN)a+h such that |f(t)| ≤ Mrt for all t ∈ (hN)T . If we pick K ∈ N so

that T = a + Kh, then we have

|f(a + kh)| ≤ Mra+kh, k ∈ NK .

Now, we show (2.13) converges for |1 − zh| < 1
rh . Consider

h

∞
∑

k=1

∣

∣(1 − zh)k−1f(a + kh)
∣

∣ = h

∞
∑

k=1

∣

∣(1 − zh)k−1
∣

∣

∣

∣f(a + kh)
∣

∣

≤ h

∞
∑

k=1

∣

∣(1 − zh)k−1
∣

∣Mra+kh

= hMra+h

∞
∑

k=1

(
∣

∣1 − zh
∣

∣rh
)k−1

,

which converges when |1 − zh
∣

∣rh < 1. The proof is complete.

Lemma 2.11. Assume that f : (hN)a+h → R is of exponential order r > 0, and let

ν > 0, N − 1 < ν ≤ N be given. Then for each fixed ǫ > 0, a∇
−ν
h f : (hN)a+h → R

and a∇
ν
hf : (hN)a+Nh → R are of exponential order r + ǫ.

Proof. Similar to the proof of [11, Theorem 2.65], we omit the details.

Corollary 2.12. Assume that f : (hN)a+h → R is of exponential order r > 0, and let

ν > 0 be given with N −1 < ν ≤ N . Then La{a∇
−ν
h f}(z) and La{a∇

ν
hf}(z) converge

for |1 − zh| < 1
rh .

Proof. Similar to the proof of [11, Corollary 2.66], we omit the details.

Lemma 2.13. (Linearity) Assume f , g : (hN)a+h → R and the Laplace transforms

of f and g converge for |1 − zh| < 1
rh , where r > 0, and let c1, c2 ∈ C. Then the

Laplace transform of c1f + c2g converges for |1 − zh| < 1
rh and

La{c1f + c2g}(z) = c1La{f}(z) + c2La{g}(z)

for |1 − zh| < 1
rh .
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Proof. Since f , g : (hN)a+h → R and the Laplace transforms of f and g converge

for |1 − zh| < 1
rh , r > 0, we have the Laplace transform of c1f + c2g converges for

|1 − zh| < 1
rh . Further, using (2.5), we have

c1La{f}(z) + c2La{g}(z)

= c1h

∞
∑

k=1

(1 − zh)k−1f(a + kh) + c2h

∞
∑

k=1

(1 − zh)k−1g(a + kh)

= h
∞

∑

k=1

(1 − zh)k−1(c1f + c2g)(a + kh)

= La{c1f + c2g}(z)

for |1 − zh| < 1
rh . The proof is complete.

Lemma 2.14. (Uniqueness) Assume f , g : (hN)a+h → R. Then f(t) = g(t), t ∈

(hN)a+h, if and only if

La{f}(z) = La{g}(z)

for some |1 − zh| < 1
rh , r > 0.

Proof. Since we have shown that La is a linear operator in Lemma 2.13 it suffices to

show that f(t) = 0 for some |1 − zh| < 1
rh , r > 0. If f(t) = 0 for t ∈ (hN)a+h, then

La{f}(z) = 0. Conversely, assume that La{f}(z) = 0 for some |1 − zh| < 1
rh , r > 0.

In this case we have

h
∞

∑

k=1

(1 − zh)k−1f(a + kh) = 0, |1 − zh| <
1

rh
.

This implies that

f(t) = 0, t ∈ (hN)a+h.

The proof is complete.

Lemma 2.15. (See [16, Lemma 2.7]). Assume ν 6= −1,−2, · · · . Then

(2.6) La{Ĥν(·, a)}(z) =
1

zν+1

for |zh − 1| < 1.

Lemma 2.16. (See [16, Lemma 2.10]). Assume ν ∈ R \ {0,−1,−2, · · · } and f :

(hN)a+h → R. Then

(2.7) (a∇
−ν
h f)(t) = (Ĥν−1(·, a) ∗ f)(t)

for t ∈ (hN)a+h.

Lemma 2.17. Assume |p| < h−α, α > 0, and β ∈ R. Then

(2.8) La{E
h
p,α,β(·, a)}(z) =

zα−β−1

zα − p

for |zh − 1| < 1, |zα| > |p|.
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Proof. From (2.4), (2.6), we have

La{E
h
p,α,β(·, a)}(z)=

∞
∑

k=0

pkLa{Ĥαk+β(·, a)}(z)

=
1

zβ+1

∞
∑

k=0

( p

zα

)k

=
zα−β−1

zα − p
.

The proof is complete.

For α = ν, β = ν − 1, we get the following corollary.

Corollary 2.18. Assume |p| < h−ν and ν > 0. Then

(2.9) La{E
h
p,ν,ν−1(·, a)}(z) =

1

zν − p

for |zh − 1| < 1, |zν | > |p|.

Definition 2.19. (See [16, Definition 2.8]). For f , g : (hN)a+h → R, we define the

nabla convolution product of f and g by

(f ∗ g)(t) :=

∫ t

a

f(t − ρ(τ) + a)g(τ)∇hτ

= h

n
∑

k=1

f((n − k + 1)h + a)g(a + kh),

(2.10)

where t = a + nh, and n = 1, 2, · · · .

Lemma 2.20. Assume f , g : (hN)a+h → R are of exponential order r > 0. Then

(2.11) La{f ∗ g}(z) = La{f}(z) · La{g}(z)

for |1 − zh| < 1
rh .

Proof. Since f , g : (hN)a+h → R are of exponential order r > 0, by Lemma 2.10, we

have the Laplace transform of f , g : (hN)a+h → R converge for |1 − zh| < 1
rh . It
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follows from (2.10) that

La{f ∗ g}(z)

= h

∞
∑

k=1

(1 − zh)k−1(f ∗ g)(a + kh)

= h
∞

∑

k=1

(1 − zh)k−1
(

h
k

∑

j=1

f(a + kh − jh + h)g(a + jh)
)

= h2
∞

∑

j=1

∞
∑

k=j

(1 − zh)k−1f(a + kh − jh + h)g(a + jh)

=
(

h
∞

∑

j=1

(1 − zh)j−1g(a + jh)
)(

h
∞

∑

k=1

(1 − zh)k−1f(a + kh)
)

= La{g}(z) · La{f}(z)

for |1 − zh| < 1
rh . The proof is complete.

Lemma 2.21. Assume f : (hN)a → R is of exponential order r > 0. Then

(2.12) La{∇
n
hf}(z) = znLa{f}(z) −

n
∑

k=1

zn−k(∇k−1
h f)(a)

for |1 − zh| < 1
rh and n ∈ N1.

Proof. Since f is of exponential order r > 0, it is easy to show that ∇nf is of

exponential order r > 0 for each n ∈ N1. Hence, by Lemma 2.10, we have La{∇
n
hf}(z)

converges for |1 − zh| < 1
rh and n ∈ N1. We will prove (2.12) holds by mathematical

induction on n. For the case n = 1, we could see [16, Lemma 2.11]. Now, we assume

(2.12) holds for |1 − zh| < r and n ≥ 1. Then, we have

La{∇
n+1
h f}(z)= La{∇h(∇

n
hf)}(z)

= zLa{∇
n
hf}(z) − (∇n

hf)(a)

= z
[

znLa{f}(z) −

n
∑

k=1

zn−k(∇k−1
h f)(a)

]

− (∇n
hf)(a)

= zn+1La{f}(z) −
n+1
∑

k=1

z(n+1)−k(∇k−1
h f)(a).

Hence, (2.12) holds for each n ∈ N1. The proof is complete.

Lemma 2.22. Assume f : (hN)a+h → R is of exponential order r for some r > 0,

and let ν > 0. Then

(2.13) La{a∇
−ν
h f}(z) =

1

zν
La{f}(z)

for |1 − zh| < min{1, 1
rh}.
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Proof. Note that since f : (hN)a+h → R is of exponential order r for some r > 0, by

Corollary 2.12 we obtain that La{a∇
−ν
h f}(z) converges for |1− zh| < 1

rh . Also, since

La{Ĥν−1(·, a)}(z) converges for |1 − zh| < 1, it follows from (2.6), (2.7), (2.11) that

La{a∇
−ν
h f}(z)= La{Ĥν−1(·, a) ∗ f}(z)

= La{Ĥν−1(·, a)}(z)La{f}(z)

=
1

zν
La{f}(z)

for |1 − zh| < min{1, 1
rh}. The proof is complete.

Lemma 2.23. Assume f : (hN)a+h → R is of exponential order r > 0 and ν ∈ (0, 1),

n ∈ N1, nν ∈ (m − 1, m), m ∈ N1. Then

(2.14) La{a∇
nν
h f}(z) = znνLa{f}(z)

for |1 − zh| < 1
rh .

Proof. Since f : (hN)a+h → R is of exponential order r > 0, by Corollary 2.12, we

have La{a∇
nν
h f}(z) converges for |1 − zh| < 1

rh . Then using (2.12) and (2.13), we

have

La{a∇
nν
h f}(z)= La{∇

m
h (a∇

−(m−nν)
h f)}(z)

= zmLa{a∇
−(m−nν)
h f}(z) −

m
∑

k=1

zm−k∇k−1
h

[

(a∇
−(m−nν)
h f)(a)

]

=
zm

zm−nν
La{f}(z)

= znνLa{f}(z),

where m − 1 < nν < m, m is a positive integer. Hence, (2.14) holds. The proof is

complete.

3. MAIN RESULTS

In this section, we will demonstrate Hyers-Ulam stability of the sequential frac-

tional order h-difference equation using the open mapping theorem method and the

direct method, respectively.

Lemma 3.1. Assume x, f : (hN)a+h → R satisfy

(3.1) (a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t) = f(t)

for t ∈ (hN)a+h, where ai are constants for i ∈ Nn
1 , and nν ∈ (0, 1). Then the solution

x : (hN)a+h → R of equation (3.1) is given by

x(t) = f(t) ∗
n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a), t ∈ (hN)a+h,

where
∏n ∗

i=1E
h
αi,ν,ν−1(t, a) = Eh

α1,ν,ν−1(t, a) ∗ Eh
α2,ν,ν−1(t, a) ∗ · · · ∗ Eh

αn,ν,ν−1(t, a).
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Proof. Taking the h-Laplace transform on both sides of the first equality of equation

(3.1), we have

P (zν)La{x}(z) = La{f}(z),

where P (zν) = znν + a1z
(n−1)ν + · · · + an = (zν − α1)(z

ν − α2) · · · (z
ν − αn). So, we

obtain

La{x}(z) =
La{f}(z)

P (zν)
.

Finally, taking the inverse h-Laplace transform, and using (2.9) yields

x(t) = f(t) ∗

n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a).

The proof is complete.

Lemma 3.2. Assume the conditions of Lemma 3.1 hold. Then the equation (3.1) has

a unique solution on (hN)a+h.

Proof. According to Lemma 3.1, we could see the existence of solutions for the equa-

tion (3.1). Now, we show the uniqueness of solutions for equation (3.1). Suppose

there exist two solutions x1(t) and x2(t) of equation (3.1). If u(t) := x1(t) − x2(t),

then u(t) satisfies (a∇
(nν)
h u)(t) + a1(a∇

((n−1)ν)
h u)(t) + · · · + anu(t) = 0, t ∈ (hN)a+h.

Taking the h-Laplace transform of the above equation, we obtain La{u}(z) = 0. So,

by the uniqueness lemma for Laplace transforms, Lemma 2.14, we conclude u(t) = 0,

that is, the solution of equation (3.1) is unique on (hN)a+h. The proof is complete.

Definition 3.3. Equation (3.1) has Hyers-Ulam stability on (hN)a+n0h
a+h , n0 ∈ N1, if

for any ǫ > 0 and x : (hN)a+n0h
a+h → R satisfying

∣

∣(a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t) − f(t)

∣

∣ ≤ ǫ

for t ∈ (hN)a+n0h
a+h , then there exists a solution x0 : (hN)a+n0h

a+h → R of equation (3.1)

such that

|x − x0| ≤ K(ǫ),

for t ∈ (hN)a+n0h
a+h .

If the above definition is also true when we replace ǫ and K(ǫ) with φ(t) and

Φ(t), respectively, where φ : (hN)a+n0h
a+h → R and Φ : (hN)a+n0h

a+h → R are functions

not depending on x and x0 explicitly, then we say that the corresponding differential

equation has generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias stability).

Now, we give the following known results, which will be useful for proving the

Hyers-Ulam stability of equation (3.1).
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Definition 3.4. (See [12, Definition 2.1]). Let T : A → B be an operator from

a space A to another space B. We say that T has Hyers-Ulam stability if for any

g ∈ T (A), ǫ > 0 and f ∈ A satisfying ‖Tf − g‖ ≤ ǫ, there exists f0 ∈ A such that

Tf0 = g and ‖f − f0‖ ≤ Kǫ, where K is called a Hyers-Ulam stability constant of

operator T .

Definition 3.5. (See [12, Definition 2.2]). Let T : A → B be an operator from

a space A to another space B. We say that the equation Tf = g has Hyers-Ulam

stability if for any ǫ > 0 and f ∈ A satisfying ‖Tf − g‖ ≤ ǫ, there exists f0 ∈ A such

that Tf0 = g and ‖f − f0‖ ≤ Kǫ, where K is called a Hyers-Ulam stability constant

of equation Tf = g.

Lemma 3.6. (See [12, Theorem 2.4]). Let A and B be Banach spaces and T be a

bounded operator from A into B. Then the following statements are equivalent:

(a) T has the Hyers-Ulam stability;

(b) the range of T is closed;

(c) T̃−1 is a bounded linear operator.

The following theorem will be proved using the open mapping method. Further,

a corollary is obtained using this theorem.

Theorem 3.7. The homogeneous sequential fractional h-difference equation

(3.2) (a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · · + anx(t) = 0

has Hyers-Ulam stability on (hN)a+n0h
a+h .

Proof. Letting Z be the space of real-valued functions defined on (hN)a+n0h
a+h , we define

a norm by ‖x‖ := max{|x(t)| : t ∈ (hN)a+n0h
a+h } so that (Z, ‖ · ‖) is a Banach space.

Now, we define an operator T : Z → Z by

Tx(t) := (a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t).
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Clearly, T is well defined and is a linear operator. Moreover,

‖T‖= max
‖x‖=1

‖Tx‖

= max
‖x‖=1

max
t∈(hN)

a+n0h

a

∣

∣(a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t)

∣

∣

≤ max
‖x‖=1

max
t∈(hN)

a+n0h

a

(

|(a∇
(nν)
h x)(t)| + |a1(a∇

((n−1)ν)
h x)(t)| + · · · + |anx(t)|

)

≤
∣

∣(a∇
(nν)
h 1)(t)

∣

∣ +
∣

∣a1(a∇
((n−1)ν)
h 1)(t)

∣

∣ + · · · +
∣

∣an

∣

∣

=
∣

∣

∣

h

Γ(−nν)

t

h
∑

s= a

h
+1

(t − ρ(sh))−nν−1
h

∣

∣

∣

+
∣

∣

∣
a1

h

Γ(−(n − 1)ν)

t

h
∑

s= a

h
+1

(t − ρ(sh))
−(n−1)ν−1
h

∣

∣

∣
+ · · · + |an|

=
∣

∣

∣
−

(t − a)−nν
h

Γ(−nν + 1)

∣

∣

∣
+

∣

∣

∣
− a1

(t − a)
−(n−1)ν
h

Γ(−(n − 1)ν + 1)

∣

∣

∣
+ · · ·+ |an|

< ∞

for t ∈ (hN)a+n0h
a+h . So, we obtain T is a bounded linear operator.

Next, we will show that the range of T is closed. Clearly, Tx ∈ Z for x ∈ Z.

Conversely, for y ∈ Z, there is some x ∈ Z such that Tx = y (see [35]). Moreover, Z

is a Banach space, it follows that the range of T is closed. By Lemma 3.6, we obtain

T has the Hyers-Ulam stability on (hN)a+n0h
a+h . Noting that 0 ∈ Z, we have that, for

any ǫ > 0, and x ∈ Z satisfying

∥

∥(a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · · + anx(t)

∥

∥ ≤ ǫ

for t ∈ (hN)a+n0h
a+h , then there exists a solution x0 : (hN)a+n0h

a+h → R of equation (3.2)

with the property

‖x − x0‖ ≤ Kǫ

for t ∈ (hN)a+n0h
a+h . By the definition of norm in (hN)a+n0h

a+h , we have max
t∈(hN)

a+n0h

a+h

|x(t)−

x0(t)| = ‖x − x0‖ ≤ Kǫ, which implies that the equation (3.2) has the Hyers-Ulam

stability on (hN)a+n0h
a+h . The proof is complete.

Corollary 3.8. The nonhomogeneous sequential fractional h-difference equation also

has Hyers-Ulam stability on (hN)a+n0h
a+h .

Proof. We define an operator F : Z → Z by

Fx(t) := (a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t) − f(t).

Since f : (hN)a+h → R, and the operator T is Hyers-Ulam stable on (hN)a+n0h
a+h ,

we obtain that for any g0 : (hN)a+n0h
a+h → R, ǫ ≥ 0 and x : (hN)a+n0h

a+h → R with
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‖Tx(t) − g0(t) − f(t)‖ ≤ ǫ, there exists an x0 : (hN)a+n0h
a+h → R such that Tx0(t) −

g0(t) − f(t) = 0 with a Hyers-Ulam constant K.

The above statement is equivalent to the following:

For g0 : (hN)a+n0h
a+h → R, ǫ ≥ 0 and x : (hN)a+n0h

a+h → R with ‖Fx(t) − g0(t)‖ ≤ ǫ,

there exists an x0 : (hN)a+n0h
a+h → R such that Fx0(t) − g0(t) = 0 with a Hyers-Ulam

constant K. Namely, F has the Hyers-Ulam stability. Clearly, the nonhomogeneous

equation (3.1) has the Hyers-Ulam stability on (hN)a+n0h
a+h . The proof is complete.

In the following theorem, we will show the generalized Hyers-Ulam stability of

the nonhomogeneous sequential fractional order h-difference equation using the direct

method.

Theorem 3.9. Assume x : (hN)a+n0h
a+h → R satisfies the inequality

(3.3)
∣

∣(a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t) − f(t)

∣

∣ ≤ φ(t)

for t ∈ (hN)a+n0h
a+h . Then there exists a solution x0 : (hN)a+n0h

a+h → R of equation (3.1)

satisfying

|x(t) − x0(t)| ≤ φ(t) ∗
n ∗
∏

i=1

|Eh
αi,ν,ν−1(t, a)|

for t ∈ (hN)a+n0h
a+h .

Proof. Let x : (hN)a+n0h
a+h → R be such that (3.3) holds. Define a function r :

(hN)a+n0h
a+h → R by

(3.4) r(t) := (a∇
(nν)
h x)(t) + a1(a∇

((n−1)ν)
h x)(t) + · · ·+ anx(t).

It follows from (3.3) that

|r(t) − f(t)| ≤ φ(t)

for t ∈ (hN)a+n0h
a+h . By Lemma 3.1, the general solution of (3.4) is given by

x(t) = r(t) ∗

n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a), t ∈ (hN)a+n0h

a+h .

Now, we define x0 : (hN)a+n0h
a+h → R by

x0(t) = f(t) ∗

n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a).

It follows from Lemma 3.1 that x0 : (hN)a+n0h
a+h → R is a solution of equation (3.1).

Then, we have

|x(t) − x0(t)|=
∣

∣

∣
r(t) ∗

n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a) − f(t) ∗

n ∗
∏

i=1

Eh
αi,ν,ν−1(t, a)

∣

∣

∣

≤ φ(t) ∗
n ∗
∏

i=1

|Eh
αi,ν,ν−1(t, a)|.
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The proof is complete.

4. NUMERICAL RESULT

Now, we give a numerical example to illustrate one of the established results.

Example 4.1. Consider the following sequential fractional order h-difference equa-

tion

(4.1) (0∇
1

2

1 x)(t) +
1

2
x(t) = f(t), t ∈ N

4
1.

If x : N4
1 → R satisfies the inequality

|(0∇
1

2

1 x)(t) +
1

2
x(t) − f(t)| ≤ φ(t)

for t ∈ N4
1, it is easy to verify that the conditions of Theorem 3.9 hold, then according

to Theorem 3.9, there exists a solution x0 : N4
1 → R of equation (4.1) such that

|x(t) − x0(t)| ≤ φ(t) ∗ E1
− 1

2
, 1
2
,− 1

2

(t, 0)

for t ∈ N4
1, where x0(t) = f(t)∗E1

− 1

2
, 1
2
,− 1

2

(t, 0). Thus, the equation (4.1) is generalized

Hyers-Ulam stability on N4
1.

If we set φ(t) ≡ ǫ, then there exists a solution x0 : N4
1 → R of equation (4.1) such

that

|x(t) − x0(t)| ≤ ǫ ∗ E1
− 1

2
, 1
2
,− 1

2

(t, 0), t ∈ N
4
1.

Hence, the equation (4.1) is Hyers-Ulam stability on N
4
1.
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