Dynamic Systems and Applications 29 (2020) 53-70

QUALITATIVE ANALYSIS OF NONLINEAR RETARDED
DIFFERENTIAL EQUATIONS OF SECOND ORDER

SIZAR ABID MOHAMMED! AND CEMIL TUNC?

IDepartment of Mathematics, College of Basic Education, University of Duhok,
Zakho Street 38, 1006, AJ, Duhok-Iraq
E-mail: sizar@Quod.ac
2Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University,
65080, Van-Turkey

E-mail: cemtunc@yahoo.com

ABSTRACT. By this research paper, we construct Lyapunov—Krasovskii functional and Lyapunov
function, respectively, for non-linear functional differential equations (FDEs) of second order, in
other words, for delay differential equations (DDEs) of second order, with constant retardations.
By that auxliary functional and function we are able to establish five new results on the global
stability and eventually uniform boundedness of solutions, square integrability of the first derivative
of solutions, the existence of the periodic solutions and the existence and the uniqueness of the
stationary oscillation. Here, the arguments of discussion are based only upon the second method of
Lyapunov—Krasovskii functional and Lyapunov function approaches by applying some well-known
theorems for the qualitative analysis of solutions of FDEs. The results introduced improve and
extend the main results of the papers ([18, 53]) obtained for FDEs before. In particular case of
FDEs, illustrative examples and their graphs are given to highlight the applicability of the results

introduced.
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1. INTRODUCTION

Before and during recent years, DDEs of second order have become very impor-
tant tools in mathematical modeling to real life problems and real world phenomena
(Burton [3], Hale and Verduyn Lunel [5], Krasovskii [9], Smith [20] and Yoshizawa
([47, 48]). Then, the study of the qualitative properties of that kind of FDEs has
gained importance during last years. Therefore, the problems of the qualitative anal-
ysis of solutions of retarded FDEs are not only as very important and interesting

background in applications, but also of considerable significance in theory of ODEs
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and FDEs. Furthermore, the scope of retarded FDEs is very general, for example,
the scope of retarded FDEs contains ODEs, differential-difference equations, integro-
differential equations and some others. In consequence, the qualitative theory of
retarded FDEs creates an important branch of nonlinear analysis for real life prob-
lems and real world phenomena. This is why so many authors focus highly of the
problems on the various qualitative analysis of solutions and a series of excellent
results has been achieved on the mentioned topics for various ODEs and FDEs of
second order ([1]-[58]). As a specific information, retarded FDEs of second order
arise in several engineering and scientific disciplines as the mathematical modelling
of systems and process such as physics, biophysics, mechanics, biology, economics,
engineering, atomic energy, chemistry, control theory, information theory, medicine,
population dynamics and so on (Burton [3], Hale and Verduyn Lunel [5], Krasovskii
[9], Smith [20] and Yoshizawa ([47, 48]). In fact, over the last forty years, there have
been obtained many interesting and important results on the various and different
qualitative analysis of solutions of retarded FDEs of second order. Giving the details
of so more works done on the qualitative analysis of solutions of retarded FDEs of
second order is a very difficult task. However, here, we would only like to present
some works that can be found in the literature, and these are related to the some

problems considered in this paper.

By auxiliary functions, the existence of periodic solutions of the following non-
linear DDEs

(1) e (1, 50) + F(alt — 7)) = pl1)
and
(12) e a4 g(alt — 7)) = (1)

are investigated by Yoshizawa [47] and Zhao at al. [53], respectively. Yoshizawa [47]
and Zhao at al. [53] obtained very interesting results on the existence of the period

solutions of these equations.

Tung and Yazgan [44] discussed the same topic for the below FDE of second order

d*x dx dx da: dm
i(x(t — 7 t).

dt2+[f( ) ol )+ +Zg 7)) = p(t)

By an auxiliary functional, the authors derived a new result on the existence of

periodic solutions of this DDE. By this work, they extended and improved some

former results in the literature.

By the same way, the following non-linear DDE of second order

d dx d dz

1))+ 601, 5 4 bt Sl — 7)) + (o) + Salt — 7)) = elt, 7, )
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has been considered by Tung and Erdur [38]. In [38], the authors obtained some new
qualitative results by the direct method of Lyapunov—Krasovskii functional approach.
Finally, Peng [18] considered the following DDE of second order

e+ 75, 50 + g, “Typ(a(t — ) = o).

In [18], some new qualitative results are derived on the mentioned properties of solu-

(1.3)

tions of DDE (1.3), except square integrability, by means of auxiliary functional and
function approaches. The results from the existing literature are generalized by Peng
[18]. However, to best of the information of the authors of this paper, the results
of Peng [18] are not correct for DDE (1.3), but the results of [18] are correct for
particular cases of DDE (1.3).

The aim of this paper is to discuss qualitative properties of solutions, which are
mentioned in the abstract of this paper, for the below nonlinear DDEs with two

retarded arguments,

1 5 gyl — ) + (et~ o)
(1.4 a0+ (@) = plt. 2, 5.

where z € R, R = (—o0,0),t € RT,RT = [0,00), 7 and o are positive constants such
that 7 # o, ¢,7 € C(R,R), ¥, € C* (R, RN), g,h € CR,N) and f,p € C(RT x K2, R)
are functions such that ¢(0) =0, r(0) =0, g(0)¥(0) = 0, h(0)¢(0) =0, f(¢,0,0) =0,
t—7>0and t— o > 0. In this case, the homogenous equation related to DDE
(1.4) includes the zero solution. It should be mentioned that the continuity of the
functions ¢, r, ¥, ¢, f, g, h and p guarantees the existence of the solution of DDE
(1.4). Besides, it is supposed as a basic hypothesis that the functions ¢, r, ¥, ¢, g,
f, h and p satisfy the Lipschitz condition with respect to the unknown functions x

and its derivative 2’. Hence, the uniqueness of solutions of DDE (1.4) is guaranteed.

Motivated by previous works, the aim of this paper is to extend and improve the
results in [18, 47, 53] by the direct methods of Lyapunov—Krasovskii functional and
Lyapunov function approaches applying to the equations of the form DDE (1.4).
It is obvious that DDE (1.4) is a more general equation than DDE (1.3) when
g(z, Z—f) = ¢g(z) in DDE (1.3). To the authors’ knowledge, the mentioned qualita-
tive analysis of solutions for the equations of the form DDE (1.4) is investigated in
the literature for the first time. In addition, there seems to be very little works avail-
able in the literature concerning the existence of periodic solutions of retarded FDEs
equations of second order by the direct method of Lyapunov or Lyapunov—Krasovskii
functional approach. The possible reason for this fact is the difficulty of the study of
the existence of the periodic solutions for that kind of equations by these methods

due to finding suitable auxiliary function(s) or functional(s). This fact is the next
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the main motivation for this paper. Moreover, the applicability of the hypotheses
will be derived on the qualitative analysis of the solutions here by possible auxiliary
function(s) or functional(s) could be very suitable rather than that established by
fixed point method, formula of the variations of parameters and so on. We would not
like to give any details of information here. In addition, to the best of our information
the results of Peng [18] are not true for the general cases considered in [18]. Because,
the derivatives of Lyapunov functional and Lyapunov function given in [18] are not
correct. The results of Peng [18] can only hold true when g(z, %) = g(z) for the
DDEs considered in [18]. Our results also revise and correct the results of [18]. Here,
we would not like to give a detailed discussion about these facts. Finally, the results
of [18] are proved without giving any example to show and illustrate the applicability
of the results of [18]. Here, we introduce two examples with their graphs. These are

the main contributions of this article to the relevant topics and literature.

Next, Let y(t) = 2/(t). Hence, DDE (1.4) can be transformed into the following
differential system

’
r =Y,

vy = —f(tzy) —g(@)d(x) — h(z)o(x) — qly) —r(z)

+g(x) i Y (x(t +n))y(t 4+ n)dn

(15) h(z) / 8. ((t +n))y(t + m)dn + p(t, 2, ).

2. BASIC INFORMATION

Consider the DDE

d
(2.1) d—f:F(t,xt), zo=a(t+0), ~h<0<0,t>0,

where F': R x C' — R", C = C(|—h,0],R"), h is a positive constant, the function F’
is continuous, w-periodic such that initial value problem with respect to DDE (2.1)
has a unique solution, and h can be either larger than w or equal to or smaller than

w.

Definition 2.1. (Burton [3]). Solutions of DDE (2.1) are uniform bounded at ¢ = 0
if for each positive constant B; there exists a positive constant B, such that [¢ €
C, ¢l < Bi,t = 0] imply that [z(¢,0, ¢)| < Bs.

Definition 2.2. (Burton [3]). Solutions of DDE (2.1) are uniform ultimate bounded
for constant bound B at t = 0 if for each constant Bs > 0 there exists a constant
K > 0 such that [¢p € C,||¢|| < Bs,t > K] imply that |z(¢,0,¢)| < B.
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Theorem 2.3. (Zhao et al. [53]). If the solutions of DDE (2.1) are ultimately
bounded by the bound B, then DDE (2.1) has an w-periodic solution and is bounded
by B. If equation (2.1) is autonomous, then DDE (2.1) has an equilibrium solution
and is bounded by B.

Let z; = z(t) in DDE (2.1).

Theorem 2.4. (Yoshizawa (|47, 48]). If there ezists a positive constant B such that
all solutions ¢(t,x) of DDE (2.1) satisfy ||¢(t, )| < B, all t > Ty, where Ty may
depend on x and B, then DDE (2.1) has an w-periodic solution.

Theorem 2.5. (Burton [3]). Let V(t,x;) be a differentiable scalar functional defined

when x : [, t] — R is continuous and bounded by some D < oco. If
V(t,0) =0, Wi(lz(t)]) < V(t,zy), (where Wi(r) is a wedge),

and

v(tv 'rt) S 0

then the zero solution of DDE (2.1) is stable.

3. QUALITATIVE ANALYSIS

We first prove a theorem on the global stability of the solutions by the Lyapunov—

Krasovskii functional approach (Krasovskii [9]).

A. Hypotheses

(H1) There are positive constants o and go such that

r(0) =0, @ >rg for all z # 0,

(y)

Y

L

q(0) =0, > qo for all y # 0.
g(x)Y(x)x >0 and h(x)p(x)r >0 for all z #0.
(H3) There are positive constants C' and D such that
l9(x)¢"(u)] < C, [h(x)¢'(u)] < D forall z,ueR
and

(CT+ Do)y? < f(t,z,y)y forall teRT,y#0as xR
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/0 G(EVP(E)dE — +00 as || — +oo,
| ol = +o0 s 1] =+,

/xr(f)dg — 400 as |z| — +oo and /y q(¢)d¢ — 400 as |y| — +oo.
0 0

Let p(t,xz,y) = 0 in DDE (1.4).

We can now state the first new result on the qualitative analysis of solutions for
DDE (1.4) is the following theorem, Theorem 3.1.

Theorem 3.1. Suppose that hypotheses (H1)-(Hj) hold. Then, the zero solution of
DDE (1.4) is globally stable.

Proof. To prove this theorem, we benefit from the direct method of Lyapunov. Hence,

we present a Lyapunov—Krasovskii functional V' = V(x,y) by

2

/ h(€)B(€)dE + C/_T/W7 0)dfds
(3.1) i D/_U/H 0)dods.

Benefit from the hypotheses of Theorem 3.1, we observe

Viey) = S+ / " r()de + / " dOde + / OB

V(z,y) >0, V(z,y) =0 if and only if z = y = 0.
Next, we have
V(z,y) — oo as z°+y* — oo.

By the derivative of the auxiliary functional V" in (3.1) along solutions of system (1.5),

we have

Ly =ty + e / UL alt )yt + )y

() / O (x(t + )y (t + n)dn

+3 [ WO~ mlan+ 5D [ 50 - e+ mlan

-7
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By means of the hypotheses of Theorem 3.1 and the inequality 2|ab] < a? + 0?, it
follows that

GV < = ftat [ IO )l O]l

/_0|h< ()Lt + ) [y Iyt + )| dn
w5 ] OT[.qf(t) — e+ i+ 5D [ ) — o+l

< f(txyy+0/ (e ||y<t+n>|dn+D/ Ol (e + )| d
- C/ W2t + n)]dy + D/ — P+ ))dn

< —fltz,y)y + C/ ) + 2t +n)ldy
=1 WO+ + c/_OT[ 2(t) = y2 (¢ + )l
+= D/ ) — 2 (t +n)]dn

(3.2) = —f(t,z,9)y+ (Ct+ Do)y*> < 0.

That is, we have

d

Next, in view of system (1.5) and the inequality (3.2), we can conclude that

d
%V(CE y)=0 ifand only if z=y=0.

Hence, the zero solution of DDE (1.4) is globally stable. This estimate completes the
proof of Theorem 3.1. O

Example 3.2. As a particular case of DDE (1.4), let us consider the following non-

linear retarded differential equation with constant retardation, 7 = 1/2;

/

T
1 24 -
2" + exp(—1?)2’ + :c+(>+1

(3.3) (22 + exp(—a?)]z(t — %) b (@) ot 2t 0.
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Let y = 2’. Then DDE (3.3) can be written as the following differential system

/

r =Y,
V= —lexp(=a) + 244 oy~ 22+ exp(—a)le
0
+[22 + exp(—2?)] / y(t +n)dn
~1/2
(3.4) —y —yd -z — 2>

When we compare system (3.4) with system (1.5), it can be seen the following rela-

tions, respectively:

ft,z,y) = [24 + exp(—2?) +

'3/2 T 1]y7 f(07 O) =0,

t
fhay) 24 + exp(—a?) +
) )
That is, we can have the following estimate:

1 1
>24>24x - =12,y #0,C =24,7 = .
2_'_1— X2 7?/% ? 77- 2

Cry* < f(t,x,y)y forallt € Rty #0 as z € R.
Next, we observe
g(x) = 22 4 exp(—2?),
P(z) =z, ¥'(x) =1,
9(0)¥(0) =0,
g(x)(z)r = [22 + exp(—2?)]z? > 0 for all x # 0,
|9()¢ ()| = 22 + exp(—2?) <23 = C,

/0 " g©ue)de

/0 1226 + € exp(—€2)]de

1
= 112* — iexp(—x2) — 400

as |x| — oo. This fact can be seen from the inequality such as

1 1 1 23
5+ 1z* < 112% — 5 exp(—z?) < 3 exp(—z?) + 7@2
for all x € R,
_ 3 - Q(y)_ 2 _
qW)=y+y°,q0)=0,—~=1+y">1=¢q foraly#0,
y
7“(:6)=x+x3,r(0)=0,@=1+x221:r0 for all z # 0.
T

Hence, the discussion made above shows that all the hypotheses of Theorem 3.1,
(H1)-(H4) can be verifiable. Then the zero solution of DDE (3.3) is globally stable.

This case, that is, the globally stability of solutions of DDE (3.3), hence the same
behavior for the equivalent system (3.4) , can be observed from Figure 1 and Figure
2.
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We now introduce the rest of our hypotheses.

B. Hypotheses
(H5) There are positive constants m, n, N and M such that
m<g(x) <M and n<h(x) <N forall xeR,
(H6) There are positive constants Cy and Dy such that
lg(2)Y'(u)] < Cy and  |h(z)¢' (u)| < Dy for all z,u e R,
(H7) There are positive constants C; and H such that

f(t,z,y)
y

f(t,0,0) =0, >(C, forallte R, z€eR as |y| > H,

| M | N
7'00 — + 0Dy —<Cl,
m n

(H8)

61
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where m, n, Cy, Dy, C;, N and M are some constants, which are given in
hypotheses (H5)—(H7).

(H9) There is a continuous and bounded function oy(¢) and there are positive con-
stants Cy, ('3 and K such that

Ip(t,z,y)| < |o1(t)]|y| forallt e R" and z,y € R

ftzy) 7CoCay/ M o—Dngy/E —[oi(¥)| = K
Y m "

forallt e R,z € R as |y| > H.

and

Let p(t,x,y) # 0 in DDE (1.4).

We second prove four theorems on the qualitative analysis of the solutions by the

Lyapunov-function approach (Burton [3]).

The next new result on the qualitative analysis of solutions is the following the-

orern.

Theorem 3.3. If hypotheses (H1) and (H5)-(H9) hold, then every solution of DDE
(1.4) is eventually uniform bounded.

Proof. To prove this theorem, we benefit from the second method of Lyapunov. Hence,

define the Lyapunov function Vi = Vi(x,y) by

33) Viten) =30+ [ r@ds+ [ a0ric+ [ @+ [ oo

In view of the hypotheses of Theorem 3.3 and the function Vi(z,y), it is clear that
Vi(z,y) >0, Vi(z,y) =0 if and only if z = y = 0.
Further, we have
Vi(z,y) — oo as 2?4+ y* — oo.

The derivative of the auxiliary Lyapunov function V; in (3.5) through the solutions
of system (1.5) gives

d

G = Tyt g [ ety

Lyh(a) / 8 (x(t +0))y(t + m)dn + yp(t, 2, y).
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Now, by hypotheses (H5)—(H9) of Theorem 3.3 and the estimate 2 |ab| < a? + b, it
follows that

9y < tzyy+/ l9(a(®), (e +m)| ly(®) Jy(t + )] dn
; / WG 0)6k o + )] O ot + ] d -+ ol (e, 2.0)

< —f(t,way)y+Co/_i\y(t)|\y(t+n)\dn

#00 [ WNta+mlan + 015

By hypothesis (H8), that is, TC(M/% + O'DO\/g < (4, it follows that there exist
positive numbers C5 > 1 and C5 > 1 such that

|t+n|<02\/ ly(t)] and yt+n|<03\/ ly(t)| as |y| > H.

Hence, by hypothesis (H9), we can obtain

Ly < gy + ol L / (D
+D003\/7/ ()dn + |o1(1)] v
= —f(t,z,y)y —1-7'6'002\/gy2 +0D003\/§y2 + o ()] y?
S [W - TCW?\/% - UDocg\/g - |Ul(t)|] v

—Ky2 < 0.

IA

Then

d
— Vi < 0.
dt 1(I,y)_0

In view of this result, we can conclude that every solution of DDE (1.4) is eventually

uniformly bounded [18]. In fact, the integration of £V;(z,y) < 0 from ¢y to ¢ gives
Vi(z,y) < Vi(z(to),y(to)) for all t >ty
Since the function V] is positive definite, we can say that
Vi(z(to),y(to)) = K1 >0, K € R.

Then
m(zvy) S Kl> t Z tO.

Next, it is easy to obtain

1 1 v 1 r 1
§T0$2 + §y2 < /0 %Mf + §y2 = /0 7(§)d€ + §y2 < Vi(w,y) < K
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by hypothesis (H1). It is now clear to see that

lz| < 4/2rg'Ky and |y| < V2K,

for all t > ty. From this relations, we can conclude that every solution of DDE (1.4)

is eventually uniform bounded. O

Theorem 3.4. If hypotheses (H1) and (H5)-(H9) hold, then the first derivative of
every solution of DDE (1.4) is square integrable, that is, y € L*[0,00).

Proof. To prove this theorem, as before we benefit from the second method of Lya-
punov and hence the auxiliary Lyapunov function V; = Vi(x,y). By hypotheses
(H5)—(H9) of Theorem 3.4, we can obtain

d
— < <
dt‘/1<x y) < —Ky* <0.

Integrating this inequality from ¢, to ¢, we have

mmw—mummmms—K[y%Ms

Then, we arrange the last inequality as

K/ $)ds < Vi(w(to). y(to)) — V(. y) < Vi(a(to). y(to)) = K.
Thus,

t
/ y*(s)ds < K'K;.

to

/ y*(s)ds < oo.
to

This results finishes the proof of Theorem 3.4. O

Hence, we can conclude that

Theorem 3.5. If hypotheses (H1), (H5)-(H9) hold and in addition f(t,x,y)and
p(t,x,y) are periodic functions of T—periodicity, that is, f(t + T,z,y) = f(t,z,y)
and p(t + T,x,y) = p(t,z,y), then DDE (1.4) has some periodic solutions of T—
periodicity.

Proof. By the hypotheses of Theorem 3.5, clearly, we can reach that every solution
of DDE (1.4) is bounded for all t € (0,00). By Massera’s theorem ([19]), Theorem
2.3 and Theorem 2.4, we can conclude that DDE (1.4) has some periodic solutions of

T—periodicity. This results finishes the proof of Theorem 3.5. O
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Example 3.6. We now modify DDE (3.3) as following nonlinear DDE of second
order with constant delay, 7 = 1/2:

/

2 x
x’ + exp(—x )SL’/ + 242" + W
(3.6) +22 + exp(—a')%z(t — %) +2' + (2')* + x + 2° = sint.

Hence, it is obvious the existence of the following estimates:

m =22 < g(r) =22 +exp(—2?) <23=M forall z € R,

Y(z) = 2,9 (7) =1,
lg(2)Y)(u)] <23 =Cy forall z,u € R,

Y

f(t,2,y) = 24y + yexp(—a?) + T

t
ft2.y) =24 + exp(—2?) +
Yy Yy

p(t,z,y) =sint,

2+1224:Cl for all z € R as |y| > H,

p(t+ 2w, x,y) = sin(t 4+ 27) = sin't,
T =2rm, |p(t,x,y)| < |sint|, o1(t) =sint.

p(t, x,y) is a periodic function in t with the period T = 2.

/M 1 [24
TCo\/ — = = X 24 X —g12,54<24201,
m 2 22

foa M 1 24 .
TE20) _sienf - 1an0] 2 21— 5 x20x Coxy 35— find
> 23—12x (Cy x 1,05

> 23—-12,6 x Ch.

A%

\%

Let Cy = 1,1. Then 23 — 12,6 x Cy = 9,4 = K.
t M
oy o™ o) > 0.4 = K.
m

Y

Thus all hypotheses of Theorems 3.3, 3.4 and 3.5 hold. Hence, we can conclude that all
solutions of DDE (3.6) are eventually uniform bounded and the first derivative of every
solution of DDE (3.6) is square integrable. Moreover, DDE (3.6) has some periodic
solutions of 2m—periodicity. This case, that is, the eventually uniform boundedness
of solutions, square integrability of the first derivatives of solutions and the existence
of periodic solutions of 2r—periodicity of DDE (3.6) can be seen form Figure 3 and
Figure 4.
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Theorem 3.7. If hypotheses (H1), (H4)-(HS8) hold and p(t,z,y) are a periodic func-
tion of T—periodicity, that is, p(t + T, z,y) = p(t,z,y), and x1(t) and xs(t) are any
two solutions of DDE (1.4) such that z1(t) — xo(t) — 0 and 2} (t) — 25(t) — 0 as

t — 00, then there exists unique one stationary oscillation in DDE (1.4).

Proof. From Theorem 3.5, clearly, it is known that DDE (1.4) has some periodic
solutions of T—periodicity. Further, from Theorem 3.7, it is known that x;(¢) and x4(t)
are any two solutions of DDE (1.4) such that z(t) — z2(t) — 0 and 2 (t) — 25(t) — 0
as t — oo. Hence, we can predict that there exists unique one stationary oscillation
in DDE (1.4). Thus, consequently, we can conclude that there exists unique one
stationary oscillation in DDE (1.4) (see [[19], Lasalle’s theorem]). O
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4. Discussion

A class of non-linear DDEs of second with multiple constant retardations is con-
sidered. The global stability of solutions, eventually uniform boundedness of solu-
tions, square integrability of the first derivative of solutions, the existence of the
periodic solutions, the existence and uniqueness of the stationary are investigated.
The basic methods used in the qualitative analysis are the second method of Lya-
punov functional and function approaches. Our results complement, correct and
improve some conclusions can be found in the literature. We also give an additional
result on the square inegrability of the solutions. Finally, two illustrative examples

are given to verify the results introduced and their graphs are drawn by applying
MATLAB-Simulink.
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