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ABSTRACT. By this research paper, we construct Lyapunov–Krasovskii functional and Lyapunov

function, respectively, for non-linear functional differential equations (FDEs) of second order, in

other words, for delay differential equations (DDEs) of second order, with constant retardations.

By that auxliary functional and function we are able to establish five new results on the global

stability and eventually uniform boundedness of solutions, square integrability of the first derivative

of solutions, the existence of the periodic solutions and the existence and the uniqueness of the

stationary oscillation. Here, the arguments of discussion are based only upon the second method of

Lyapunov–Krasovskii functional and Lyapunov function approaches by applying some well-known

theorems for the qualitative analysis of solutions of FDEs. The results introduced improve and

extend the main results of the papers ([18, 53]) obtained for FDEs before. In particular case of

FDEs, illustrative examples and their graphs are given to highlight the applicability of the results

introduced.
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1. INTRODUCTION

Before and during recent years, DDEs of second order have become very impor-

tant tools in mathematical modeling to real life problems and real world phenomena

(Burton [3], Hale and Verduyn Lunel [5], Krasovskii [9], Smith [20] and Yoshizawa

([47, 48]). Then, the study of the qualitative properties of that kind of FDEs has

gained importance during last years. Therefore, the problems of the qualitative anal-

ysis of solutions of retarded FDEs are not only as very important and interesting

background in applications, but also of considerable significance in theory of ODEs
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and FDEs. Furthermore, the scope of retarded FDEs is very general, for example,

the scope of retarded FDEs contains ODEs, differential-difference equations, integro-

differential equations and some others. In consequence, the qualitative theory of

retarded FDEs creates an important branch of nonlinear analysis for real life prob-

lems and real world phenomena. This is why so many authors focus highly of the

problems on the various qualitative analysis of solutions and a series of excellent

results has been achieved on the mentioned topics for various ODEs and FDEs of

second order ([1]-[58]). As a specific information, retarded FDEs of second order

arise in several engineering and scientific disciplines as the mathematical modelling

of systems and process such as physics, biophysics, mechanics, biology, economics,

engineering, atomic energy, chemistry, control theory, information theory, medicine,

population dynamics and so on (Burton [3], Hale and Verduyn Lunel [5], Krasovskii

[9], Smith [20] and Yoshizawa ([47, 48]). In fact, over the last forty years, there have

been obtained many interesting and important results on the various and different

qualitative analysis of solutions of retarded FDEs of second order. Giving the details

of so more works done on the qualitative analysis of solutions of retarded FDEs of

second order is a very difficult task. However, here, we would only like to present

some works that can be found in the literature, and these are related to the some

problems considered in this paper.

By auxiliary functions, the existence of periodic solutions of the following non-

linear DDEs

(1.1)
d2x

dt2
+ φ(t,

dx

dt
) + f(x(t− τ)) = p(t)

and

(1.2)
d2x

dt2
+ a

dx

dt
+ g(x(t− τ)) = p(t)

are investigated by Yoshizawa [47] and Zhao at al. [53], respectively. Yoshizawa [47]

and Zhao at al. [53] obtained very interesting results on the existence of the period

solutions of these equations.

Tunç and Yazgan [44] discussed the same topic for the below FDE of second order

d2x

dt2
+ [f(x,

dx

dt
) + g(x,

dx

dt
)
dx

dt
]
dx

dt
+ h(x) +

n
∑

i=1

gi(x(t− τi)) = p(t).

By an auxiliary functional, the authors derived a new result on the existence of

periodic solutions of this DDE. By this work, they extended and improved some

former results in the literature.

By the same way, the following non-linear DDE of second order

d

dt
[a(t)

dx

dt
] + φ(t,

dx

dt
) + h(t,

d

dt
x(t− τ)) + g(x) + f(x(t− τ)) = e(t, x,

dx

dt
)
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has been considered by Tunç and Erdur [38]. In [38], the authors obtained some new

qualitative results by the direct method of Lyapunov–Krasovskii functional approach.

Finally, Peng [18] considered the following DDE of second order

(1.3)
d2x

dt2
+ f(x,

dx

dt
) + g(x,

dx

dt
)ψ(x(t− τ)) = p(t).

In [18], some new qualitative results are derived on the mentioned properties of solu-

tions of DDE (1.3), except square integrability, by means of auxiliary functional and

function approaches. The results from the existing literature are generalized by Peng

[18]. However, to best of the information of the authors of this paper, the results

of Peng [18] are not correct for DDE (1.3), but the results of [18] are correct for

particular cases of DDE (1.3).

The aim of this paper is to discuss qualitative properties of solutions, which are

mentioned in the abstract of this paper, for the below nonlinear DDEs with two

retarded arguments,

d2x

dt2
+ f(t, x,

dx

dt
) + g(x)ψ(x(t− τ)) + h(x)φ(x(t− σ))

+q(
dx

dt
) + r(x) = p(t, x,

dx

dt
),(1.4)

where x ∈ ℜ, ℜ = (−∞,∞), t ∈ ℜ+,ℜ+ = [0,∞), τ and σ are positive constants such

that τ 6= σ, q, r ∈ C(ℜ,ℜ), ψ, φ ∈ C1(ℜ,ℜ), g, h ∈ C(ℜ,ℜ) and f, p ∈ C(ℜ+×ℜ2,ℜ)

are functions such that q(0) = 0, r(0) = 0, g(0)ψ(0) = 0, h(0)φ(0) = 0, f(t, 0, 0) = 0,

t − τ ≥ 0 and t − σ ≥ 0. In this case, the homogenous equation related to DDE

(1.4) includes the zero solution. It should be mentioned that the continuity of the

functions q, r, ψ, φ, f , g, h and p guarantees the existence of the solution of DDE

(1.4). Besides, it is supposed as a basic hypothesis that the functions q, r, ψ, φ, g,

f , h and p satisfy the Lipschitz condition with respect to the unknown functions x

and its derivative x′. Hence, the uniqueness of solutions of DDE (1.4) is guaranteed.

Motivated by previous works, the aim of this paper is to extend and improve the

results in [18, 47, 53] by the direct methods of Lyapunov–Krasovskii functional and

Lyapunov function approaches applying to the equations of the form DDE (1.4).

It is obvious that DDE (1.4) is a more general equation than DDE (1.3) when

g(x, dx
dt

) = g(x) in DDE (1.3). To the authors’ knowledge, the mentioned qualita-

tive analysis of solutions for the equations of the form DDE (1.4) is investigated in

the literature for the first time. In addition, there seems to be very little works avail-

able in the literature concerning the existence of periodic solutions of retarded FDEs

equations of second order by the direct method of Lyapunov or Lyapunov–Krasovskii

functional approach. The possible reason for this fact is the difficulty of the study of

the existence of the periodic solutions for that kind of equations by these methods

due to finding suitable auxiliary function(s) or functional(s). This fact is the next
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the main motivation for this paper. Moreover, the applicability of the hypotheses

will be derived on the qualitative analysis of the solutions here by possible auxiliary

function(s) or functional(s) could be very suitable rather than that established by

fixed point method, formula of the variations of parameters and so on. We would not

like to give any details of information here. In addition, to the best of our information

the results of Peng [18] are not true for the general cases considered in [18]. Because,

the derivatives of Lyapunov functional and Lyapunov function given in [18] are not

correct. The results of Peng [18] can only hold true when g(x, dx
dt

) = g(x) for the

DDEs considered in [18]. Our results also revise and correct the results of [18]. Here,

we would not like to give a detailed discussion about these facts. Finally, the results

of [18] are proved without giving any example to show and illustrate the applicability

of the results of [18]. Here, we introduce two examples with their graphs. These are

the main contributions of this article to the relevant topics and literature.

Next, Let y(t) = x′(t). Hence, DDE (1.4) can be transformed into the following

differential system

x′ = y,

y′ = −f(t, x, y) − g(x)ψ(x) − h(x)φ(x) − q(y) − r(x)

+g(x)

∫

0

−τ

ψ′

x(x(t+ η))y(t+ η)dη

+h(x)

∫

0

−σ

φ′

x(x(t+ η))y(t+ η)dη + p(t, x, y).(1.5)

2. BASIC INFORMATION

Consider the DDE

(2.1)
dx

dt
= F (t, xt), xt = x(t+ θ), −h ≤ θ ≤ 0, t ≥ 0,

where F : ℜ× C → ℜn, C = C([−h, 0],ℜn), h is a positive constant, the function F

is continuous, ω-periodic such that initial value problem with respect to DDE (2.1)

has a unique solution, and h can be either larger than ω or equal to or smaller than

ω.

Definition 2.1. (Burton [3]). Solutions of DDE (2.1) are uniform bounded at t = 0

if for each positive constant B1 there exists a positive constant B2 such that [φ ∈

C, ‖φ‖ < B1, t ≥ 0] imply that |x(t, 0, ϕ)| < B2.

Definition 2.2. (Burton [3]). Solutions of DDE (2.1) are uniform ultimate bounded

for constant bound B at t = 0 if for each constant B3 > 0 there exists a constant

K > 0 such that [φ ∈ C, ‖φ‖ < B3, t ≥ K] imply that |x(t, 0, ϕ)| < B.
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Theorem 2.3. (Zhao et al. [53]). If the solutions of DDE (2.1) are ultimately

bounded by the bound B, then DDE (2.1) has an ω-periodic solution and is bounded

by B. If equation (2.1) is autonomous, then DDE (2.1) has an equilibrium solution

and is bounded by B.

Let xt = x(t) in DDE (2.1).

Theorem 2.4. (Yoshizawa ([47, 48]). If there exists a positive constant B such that

all solutions φ(t, x) of DDE (2.1) satisfy ‖ϕ(t, x)‖ ≤ B, all t ≥ T0, where T0 may

depend on x and B, then DDE (2.1) has an ω-periodic solution.

Theorem 2.5. (Burton [3]). Let V (t, xt) be a differentiable scalar functional defined

when x : [α, t] → ℜn is continuous and bounded by some D ≤ ∞. If

V (t, 0) = 0, W1(|x(t)|) ≤ V (t, xt), (where W1(r) is a wedge),

and
.

V (t, xt) ≤ 0

then the zero solution of DDE (2.1) is stable.

3. QUALITATIVE ANALYSIS

We first prove a theorem on the global stability of the solutions by the Lyapunov–

Krasovskii functional approach (Krasovskii [9]).

A. Hypotheses

(H1) There are positive constants r0 and q0 such that

r(0) = 0,
r(x)

x
≥ r0 for all x 6= 0,

q(0) = 0,
q(y)

y
≥ q0 for all y 6= 0.

(H2) g(0)ψ(0) = 0, h(0)φ(0) = 0,

g(x)ψ(x)x > 0 and h(x)φ(x)x > 0 for all x 6= 0.

(H3) There are positive constants C and D such that

|g(x)ψ′(u)| ≤ C, |h(x)φ′(u)| ≤ D for all x, u ∈ ℜ

and

(Cτ +Dσ)y2 < f(t, x, y)y for all t ∈ ℜ+, y 6= 0 as x ∈ ℜ.
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(H4)
∫ x

0

g(ξ)ψ(ξ)dξ → +∞ as |x| → +∞,

∫ x

0

h(ξ)φ(ξ)dξ → +∞ as |x| → +∞,

∫ x

0

r(ξ)dξ → +∞ as |x| → +∞ and

∫ y

0

q(ζ)dζ → +∞ as |y| → +∞.

Let p(t, x, y) = 0 in DDE (1.4).

We can now state the first new result on the qualitative analysis of solutions for

DDE (1.4) is the following theorem, Theorem 3.1.

Theorem 3.1. Suppose that hypotheses (H1)–(H4) hold. Then, the zero solution of

DDE (1.4) is globally stable.

Proof. To prove this theorem, we benefit from the direct method of Lyapunov. Hence,

we present a Lyapunov–Krasovskii functional V = V (x, y) by

V (x, y) =
1

2
y2 +

∫ x

0

r(ξ)dξ +

∫ y

0

q(ζ)dζ +

∫ x

0

g(ξ)ψ(ξ)dξ

+

∫ x

0

h(ξ)φ(ξ)dξ +
1

2
C

∫

0

−τ

∫ t

τ+η

y2(θ)dθds

+
1

2
D

∫

0

−σ

∫ t

σ+η

y2(θ)dθds.(3.1)

Benefit from the hypotheses of Theorem 3.1, we observe

V (x, y) ≥ 0, V (x, y) = 0 if and only if x = y = 0.

Next, we have

V (x, y) → ∞ as x2 + y2 → ∞.

By the derivative of the auxiliary functional V in (3.1) along solutions of system (1.5),

we have

d

dt
V = −f(t, x, y)y + yg(x)

∫

0

−τ

ψ′

x(x(t+ η))y(t+ η)dη

+yh(x)

∫

0

−σ

φ′

x(x(t+ η))y(t+ η)dη

+
1

2
C

∫

0

−τ

[y2(t) − y2(t+ η)]dη +
1

2
D

∫

0

−σ

[y2(t) − y2(t+ η)]dη.
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By means of the hypotheses of Theorem 3.1 and the inequality 2 |ab| ≤ a2 + b2, it

follows that

d

dt
V ≤ −f(t, x, y)y +

∫

0

−τ

|g(x(t))ψ′

x(x(t+ η))| |y(t)| |y(t+ η)| dη

+

∫

0

−σ

|h(x(t))φ′

x(x(t+ η))| |y(t)| |y(t+ η)| dη

+
1

2
C

∫

0

−τ

[y2(t) − y2(t+ η)]dη +
1

2
D

∫

0

−σ

[y2(t) − y2(t+ η)]dη

≤ −f(t, x, y)y + C

∫

0

−τ

|y(t)| |y(t+ η)| dη +D

∫

0

−σ

|y(t)| |y(t+ η)| dη

+
1

2
C

∫

0

−τ

[y2(t) − y2(t+ η)]dη +
1

2
D

∫

0

−σ

[y2(t) − y2(t+ η)]dη

≤ −f(t, x, y)y +
1

2
C

∫

0

−τ

[y2(t) + y2(t+ η)]dη

+
1

2
D

∫

0

−σ

[y2(t) + y2(t+ η)]dη +
1

2
C

∫

0

−τ

[y2(t) − y2(t+ η)]dη

+
1

2
D

∫

0

−σ

[y2(t) − y2(t+ η)]dη

= −f(t, x, y)y + (Cτ +Dσ)y2 ≤ 0.(3.2)

That is, we have

d

dt
V (x, y) ≤ 0.

Next, in view of system (1.5) and the inequality (3.2), we can conclude that

d

dt
V (x, y) = 0 if and only if x = y = 0.

Hence, the zero solution of DDE (1.4) is globally stable. This estimate completes the

proof of Theorem 3.1.

Example 3.2. As a particular case of DDE (1.4), let us consider the following non-

linear retarded differential equation with constant retardation, τ = 1/2;

x′′ + exp(−x2)x′ + 24x′ +
x′

(x′)2 + 1

+[22 + exp(−x2)]x(t−
1

2
) + x′ + (x′)3 + x+ x3 = 0.(3.3)
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Let y = x′. Then DDE (3.3) can be written as the following differential system

x′ = y,

y′ = −[exp(−x2) + 24 +
1

y2 + 1
]y − [22 + exp(−x2)]x

+[22 + exp(−x2)]

∫

0

−1/2

y(t+ η)dη

−y − y3 − x− x3.(3.4)

When we compare system (3.4) with system (1.5), it can be seen the following rela-

tions, respectively:

f(t, x, y) = [24 + exp(−x2) +
1

y2 + 1
]y, f(0, 0) = 0,

f(t, x, y)

y
= 24 + exp(−x2) +

1

y2 + 1
≥ 24 > 24 ×

1

2
= 12, y 6= 0, C = 24, τ =

1

2
.

That is, we can have the following estimate:

Cτy2 < f(t, x, y)y for all t ∈ ℜ+, y 6= 0 as x ∈ ℜ.

Next, we observe

g(x) = 22 + exp(−x2),

ψ(x) = x, ψ′(x) = 1,

g(0)ψ(0) = 0,

g(x)ψ(x)x = [22 + exp(−x2)]x2 > 0 for all x 6= 0,

|g(x)ψ′(x)| = 22 + exp(−x2) ≤ 23 = C,
∫ x

0

g(ξ)ψ(ξ)dξ =

∫ x

0

[22ξ + ξ exp(−ξ2)]dξ

= 11x2 −
1

2
exp(−x2) → +∞

as |x| → ∞. This fact can be seen from the inequality such as

−
1

2
+ 11x2 ≤ 11x2 −

1

2
exp(−x2) ≤

1

2
exp(−x2) +

23

2
x2

for all x ∈ ℜ,

q(y) = y + y3, q(0) = 0,
q(y)

y
= 1 + y2 ≥ 1 = q0 for all y 6= 0,

r(x) = x+ x3, r(0) = 0,
r(x)

x
= 1 + x2 ≥ 1 = r0 for all x 6= 0.

Hence, the discussion made above shows that all the hypotheses of Theorem 3.1,

(H1)–(H4) can be verifiable. Then the zero solution of DDE (3.3) is globally stable.

This case, that is, the globally stability of solutions of DDE (3.3), hence the same

behavior for the equivalent system (3.4) , can be observed from Figure 1 and Figure

2.
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Figure 1

Figure 2

We now introduce the rest of our hypotheses.

B. Hypotheses

(H5) There are positive constants m, n, N and M such that

m ≤ g(x) ≤M and n ≤ h(x) ≤ N for all x ∈ ℜ,

(H6) There are positive constants C0 and D0 such that

|g(x)ψ′(u)| ≤ C0 and |h(x)φ′(u)| ≤ D0 for all x, u ∈ ℜ,

(H7) There are positive constants C1 and H such that

f(t, 0, 0) = 0,
f(t, x, y)

y
≥ C1 for all t ∈ ℜ+, x ∈ ℜ as |y| ≥ H,

(H8)

τC0

√

M

m
+ σD0

√

N

n
< C1,
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where m, n, C0, D0, C1, N and M are some constants, which are given in

hypotheses (H5)–(H7).

(H9) There is a continuous and bounded function σ1(t) and there are positive con-

stants C2, C3 and K such that

|p(t, x, y)| ≤ |σ1(t)| |y| for all t ∈ ℜ+ and x, y ∈ ℜ

and

f(t, x, y)

y
− τC0C2

√

M

m
− σD0C3

√

N

n
− |σ1(t)| ≥ K

for all t ∈ ℜ+, x ∈ ℜ as |y| ≥ H.

Let p(t, x, y) 6= 0 in DDE (1.4).

We second prove four theorems on the qualitative analysis of the solutions by the

Lyapunov-function approach (Burton [3]).

The next new result on the qualitative analysis of solutions is the following the-

orem.

Theorem 3.3. If hypotheses (H1) and (H5)–(H9) hold, then every solution of DDE

(1.4) is eventually uniform bounded.

Proof. To prove this theorem, we benefit from the second method of Lyapunov. Hence,

define the Lyapunov function V1 = V1(x, y) by

(3.5) V1(x, y) =
1

2
y2 +

∫ x

0

r(ξ)dξ +

∫ y

0

q(ζ)dζ +

∫ x

0

g(ξ)ψ(ξ)dξ +

∫ x

0

h(ξ)φ(ξ)dξ.

In view of the hypotheses of Theorem 3.3 and the function V1(x, y), it is clear that

V1(x, y) ≥ 0, V1(x, y) = 0 if and only if x = y = 0.

Further, we have

V1(x, y) → ∞ as x2 + y2 → ∞.

The derivative of the auxiliary Lyapunov function V1 in (3.5) through the solutions

of system (1.5) gives

d

dt
V1 = −f(t, x, y)y + yg(x)

∫

0

−τ

ψ′

x(x(t+ η))y(t+ η)dη

+yh(x)

∫

0

−τ

φ′

x(x(t+ η))y(t+ η)dη + yp(t, x, y).
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Now, by hypotheses (H5)–(H9) of Theorem 3.3 and the estimate 2 |ab| ≤ a2 + b2, it

follows that

d

dt
V1 ≤ −f(t, x, y)y +

∫

0

−τ

|g(x(t))ψ′

x(x(t+ η))| |y(t)| |y(t+ η)| dη

+

∫

0

−σ

|h(x(t))φ′

x(x(t+ η))| |y(t)| |y(t+ η)| dη + |y| |p(t, x, y)|

≤ −f(t, x, y)y + C0

∫

0

−τ

|y(t)| |y(t+ η)| dη

+D0

∫

0

−σ

|y(t)| |y(t+ η)| dη + |σ1(t)| y
2.

By hypothesis (H8), that is, τC0

√

M
m

+ σD0

√

N
n
< C1, it follows that there exist

positive numbers C2 > 1 and C3 > 1 such that

|y(t+ η)| ≤ C2

√

M

m
|y(t)| and |y(t+ η)| ≤ C3

√

N

n
|y(t)| as |y| ≥ H.

Hence, by hypothesis (H9), we can obtain

d

dt
V1 ≤ −f(t, x, y)y + C0C2

√

M

m

∫

0

−τ

y2(t)dη

+D0C3

√

N

n

∫

0

−σ

y2(t)dη + |σ1(t)| y
2

= −f(t, x, y)y + τC0C2

√

M

m
y2 + σD0C3

√

N

n
y2 + |σ1(t)| y

2

= −

[

f(t, x, y)

y
− τC0C2

√

M

m
− σD0C3

√

N

n
− |σ1(t)|

]

y2

≤ −Ky2 ≤ 0.

Then
d

dt
V1(x, y) ≤ 0.

In view of this result, we can conclude that every solution of DDE (1.4) is eventually

uniformly bounded [18]. In fact, the integration of d
dt
V1(x, y) ≤ 0 from t0 to t gives

V1(x, y) ≤ V1(x(t0), y(t0)) for all t ≥ t0.

Since the function V1 is positive definite, we can say that

V1(x(t0), y(t0)) = K1 > 0, K1 ∈ ℜ.

Then

V1(x, y) ≤ K1, t ≥ t0.

Next, it is easy to obtain

1

2
r0x

2 +
1

2
y2 ≤

∫ x

0

r(ξ)

ξ
ξdξ +

1

2
y2 =

∫ x

0

r(ξ)dξ +
1

2
y2 ≤ V1(x, y) ≤ K1
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by hypothesis (H1). It is now clear to see that

|x| ≤

√

2r−1

0 K1 and |y| ≤
√

2K1

for all t ≥ t0. From this relations, we can conclude that every solution of DDE (1.4)

is eventually uniform bounded.

Theorem 3.4. If hypotheses (H1) and (H5)–(H9) hold, then the first derivative of

every solution of DDE (1.4) is square integrable, that is, y ∈ L2[0,∞).

Proof. To prove this theorem, as before we benefit from the second method of Lya-

punov and hence the auxiliary Lyapunov function V1 = V1(x, y). By hypotheses

(H5)–(H9) of Theorem 3.4, we can obtain

d

dt
V1(x, y) ≤ −Ky2 ≤ 0.

Integrating this inequality from t0 to t, we have

V1(x, y) − V1(x(t0), y(t0)) ≤ −K

∫ t

t0

y2(s)ds.

Then, we arrange the last inequality as

K

∫ t

t0

y2(s)ds ≤ V1(x(t0), y(t0)) − V1(x, y) ≤ V1(x(t0), y(t0)) = K1.

Thus,
∫ t

t0

y2(s)ds ≤ K−1K1.

Hence, we can conclude that
∫

∞

t0

y2(s)ds <∞.

This results finishes the proof of Theorem 3.4.

Theorem 3.5. If hypotheses (H1), (H5)–(H9) hold and in addition f(t, x, y)and

p(t, x, y) are periodic functions of T–periodicity, that is, f(t + T, x, y) = f(t, x, y)

and p(t + T, x, y) = p(t, x, y), then DDE (1.4) has some periodic solutions of T–

periodicity.

Proof. By the hypotheses of Theorem 3.5, clearly, we can reach that every solution

of DDE (1.4) is bounded for all t ∈ (0,∞). By Massera’s theorem ([19]), Theorem

2.3 and Theorem 2.4, we can conclude that DDE (1.4) has some periodic solutions of

T–periodicity. This results finishes the proof of Theorem 3.5.
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Example 3.6. We now modify DDE (3.3) as following nonlinear DDE of second

order with constant delay, τ = 1/2:

x′′ + exp(−x2)x′ + 24x′ +
x′

(x′)2 + 1

+22 + exp(−x′)2x(t−
1

2
) + x′ + (x′)3 + x+ x3 = sin t.(3.6)

Hence, it is obvious the existence of the following estimates:

m = 22 ≤ g(x) = 22 + exp(−x2) ≤ 23 = M for all x ∈ ℜ,

ψ(x) = x, ψ′(x) = 1,

|g(x)ψ′

x(u)| ≤ 23 = C0 for all x, u ∈ ℜ,

f(t, x, y) = 24y + y exp(−x2) +
y

y2 + 1
,

f(t, x, y)

y
= 24 + exp(−x2) +

1

y2 + 1
≥ 24 = C1 for all x ∈ ℜ as |y| ≥ H,

p(t, x, y) = sin t,

p(t+ 2π, x, y) = sin(t+ 2π) = sin t,

T = 2π, |p(t, x, y)| ≤ |sin t| , σ1(t) = sin t.

p(t, x, y) is a periodic function in t with the period T = 2π.

τC0

√

M

m
=

1

2
× 24 ×

√

24

22
∼= 12, 54 < 24 = C1,

f(t, x, y)

y
− τC0C2

√

M

m
− |σ1(t)| ≥ 24 −

1

2
× 24 × C2 ×

√

24

22
− |sin t|

≥ 23 − 12 × C2 × 1, 05

≥ 23 − 12, 6 × C2.

Let C2 = 1, 1. Then 23 − 12, 6 × C3 = 9, 4 = K.

f(t, x, y)

y
− τC0C2

√

M

m
− |σ1(t)| ≥ 9, 4 = K.

Thus all hypotheses of Theorems 3.3, 3.4 and 3.5 hold. Hence, we can conclude that all

solutions of DDE (3.6) are eventually uniform bounded and the first derivative of every

solution of DDE (3.6) is square integrable. Moreover, DDE (3.6) has some periodic

solutions of 2π–periodicity. This case, that is, the eventually uniform boundedness

of solutions, square integrability of the first derivatives of solutions and the existence

of periodic solutions of 2π–periodicity of DDE (3.6) can be seen form Figure 3 and

Figure 4.
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Figure 3

Figure 4

Theorem 3.7. If hypotheses (H1), (H4)–(H8) hold and p(t, x, y) are a periodic func-

tion of T–periodicity, that is, p(t + T, x, y) = p(t, x, y), and x1(t) and x2(t) are any

two solutions of DDE (1.4) such that x1(t) − x2(t) → 0 and x′1(t) − x′2(t) → 0 as

t→ ∞, then there exists unique one stationary oscillation in DDE (1.4).

Proof. From Theorem 3.5, clearly, it is known that DDE (1.4) has some periodic

solutions of T–periodicity. Further, from Theorem 3.7, it is known that x1(t) and x2(t)

are any two solutions of DDE (1.4) such that x1(t)−x2(t) → 0 and x′1(t)−x′2(t) → 0

as t → ∞. Hence, we can predict that there exists unique one stationary oscillation

in DDE (1.4). Thus, consequently, we can conclude that there exists unique one

stationary oscillation in DDE (1.4) (see [[19], Lasalle’s theorem]).
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4. Discussion

A class of non-linear DDEs of second with multiple constant retardations is con-

sidered. The global stability of solutions, eventually uniform boundedness of solu-

tions, square integrability of the first derivative of solutions, the existence of the

periodic solutions, the existence and uniqueness of the stationary are investigated.

The basic methods used in the qualitative analysis are the second method of Lya-

punov functional and function approaches. Our results complement, correct and

improve some conclusions can be found in the literature. We also give an additional

result on the square inegrability of the solutions. Finally, two illustrative examples

are given to verify the results introduced and their graphs are drawn by applying

MATLAB-Simulink.
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[43] C. Tunç, O. Tunç, Qualitative analysis for a variable delay system of differential equations of

second order. Journal of Taibah University for Science. 13 (2019), no.1, 468–477.
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