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ABSTRACT. We study the existence and uniqueness of solutions for neutral fractional order
coupled systems containing mixed Caputo and Riemann-Liouville sequential fractional derivatives,
complemented with nonlocal multi-point and Riemann-Stieltjes integral multi-strip conditions. Ba-
nach fixed point theorem and nonlinear alternative are used to establish the desired results. An

example illustrating the abstract results is also presented.
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1. INTRODUCTION

Fractional differential equations constitute an important and significant class of
mathematical analysis as these equations find extensive applications in viscoelasticity,
electroanalytical chemistry, and many physical problems [1]-[4]. The tools of the fixed
point theory played a pivotal role in obtaining the existence and uniqueness results

for nonlinear fractional differential equations; see, for example, [5]-[12].

On the other hand, the study of coupled systems of fractional differential equa-
tions is also important as such systems appear in various problems of applied nature;
for instance, see [13]-[17]. For theoretical development (existence theory) of the cou-
pled systems of fractional differential equations, we refer the reader to the articles
[18]-[21].
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Recently, in [22], the authors introduced and studied a new boundary value prob-
lem of neutral fractional differential equations involving mixed nonlinearities, and
nonlocal multi-point and Riemann-Stieltjes integral-multi-strip boundary conditions

of the form:

(1.1) DPIDiz(t) + f(t,x(t))] = g(t,x(t)), 0 <t <1, 0<p,g<1,

(1.2) z(0) = Zﬁjz(aj), bx(1l) = a/o x(s)dH (s) + Zai /: x(s)ds

where °D" denotes the Caputo fractional derivative of order r (r = p,q), f and g
are given continuous functions, 0 < 0; < & < < 1,0, € R, 5, € R,i =
1,2,...,n, j=1,2,...,mand H(-) is a function of bounded variation. Based on the

standard tools of the fixed point theory, existence and uniqueness results are obtained.
In [23], the authors studied the existence and uniqueness of solutions for the fol-
lowing fractional order nonlinear coupled system containing mixed Riemann-Liouville
and Caputo fractional derivatives, subject to integro-differential boundary conditions:
((BLDI(CDr(t)) = f(t,2(t),y(t), 0 <t <T,
“Dr("Diy(t)) = g(t, x(t),y(t), 0 <t <T,

2'(§) = A DVy(n), x(T) = p I"y(), &, ¢ € (0,T),
y(0) =0, y(T) = mI"z(¢1), G €(0,T),
where 7F D4 is the standard Riemann-Liouville fractional derivative of order ¢ € (0,1),

“Dr,CD" are the Caputo fractional derivatives of order » € (0,1) and v € (0,1)

respectively with ¢ +r > 1, IP, IP'* are the Riemann-Liouville fractional integrals of

(1.3)

\

order p > 0,p; >0, f,g: [0, T|xRxR — R are continuous functions and A, i, p1; € R.

In the present paper we study existence and uniqueness of solution for neutral
fractional order coupled systems containing mixed Caputo and Riemann-Liouville se-
quential fractional derivatives, complemented with nonlocal multi-point and Riemann-
Stieltjes integral multi-strip conditions. More precisely, we study the following cou-

pled system

DD () + f(t,2(t) = g(t,2(t),y(t)), t € (0,1),
DB (LD Y(1) + it y(1)) = g (. x<t>,7g< ). € 0.

(1.4) 2(0) =0, ba(1) = / y(s)dH (s) + 1%/

=

W0 =0, b =a [ o)+ /x .

J=1

\
where fF DP RL DP1 and ¢D?.¢ D% denotes the Riemann-Liouville and Caputo frac-
tional derivatives of order p,p; and q,q; respectively, 0 < p,p1,q, 1 < 1, with
l<p+q<2,1<pi+q <2, f fi and g, g; are given continuous functions, 0 < ; <



FRACTIONAL ORDER COUPLED SYSTEMS FOR MIXED FRACTIONAL DERIVATIVES 73

<1, 0<0; <G <1l,o,68,€Re=1,2,....,n, j=1,2,....,m,a,a1,b,b; € R,
and H(-) is a function of bounded variation.

We apply Banach fixed point theorem and Leray-Schauder alternative to obtain
the existence and uniqueness results for the problem at hand. Our results are new

and significantly enhance the literature on the topic.

The rest of the paper is organized as follows. In Section 2, we recall some basic
definitions of fractional calculus and present an auxiliary lemma, which plays a key
role in obtaining the main results presented in Section 3. We also discuss an example
illustrating the existence and uniqueness result in Section 4. The paper closes with

Section 5 containing some discussions.

2. PRELIMINARIES

Before presenting some auxiliary results, let us recall some preliminary concepts

of fractional calculus [2].

Definition 2.1. Let ¢ be a locally integrable real-valued function on —oo < a <t <
b < +o00. The Riemann-Liouville fractional integral I of order & € R (o > 0) is
defined as

t

19C (1) = (C# Ka) (1) = ﬁ / (t— "7 ¢ (s)ds,

a

where K, (t) = %, I’ denotes the Euler gamma function.

Definition 2.2. Let ¢,¢(™ € L'[a,b] for —oo < a <t < b < 4+00. The Riemann-
Liouville fractional derivative D¢ of order « > 0 (m — 1 < a < m, m € N) is defined

as
t

[a=sm e csas

a

am 1 dm

DgC(t) = dt—mlgn_ag(t) = F(m—oz)dt—m

while the Caputo fractional derivative D¢ of order « € R (m — 1 < o« < m, m € N)
is defined as

t—a m—1

“DIC (1) = D7 [C(t)~Cla) ~ €' (a) o

(m—1!|"

(t —a)

T ¢ (a)

Remark 2.3. If ( € C™[a,b], then the Caputo fractional derivative D¢ of order
aceR (m—1<a<m,meN) is defined as
t

/ (t— 5)™ 170 ¢ (5)ds.

a

1
CDYC(t) = [ (m) 1) =
) = 17 (1) = s

In the present work, we denote the Riemann-Liouville fractional integral IS and
the Caputo fractional derivative “D¢ with a = 0 by I* and °D® respectively.
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Now we prove an auxiliary lemma dealing with the linear variant of the problem

(1.4), which plays a pivotal role in the forthcoming analysis.

Lemma 2.4. Let h,hy,k, ki € C([0,1],R). Then the unique solution of the linear
fractional differential system

(

cDUELDPx(t) + h(t)) = k(t), t € (0,1),
DU (REDPLy (1) + hy(t) = ki(t), t € (0,1),

(2.1) z(0) =0, bx(l) = 1

o\
<
=
IS
=
=
+
2

—

S
<
=
ISH
»

y(0)=0, buy(l) = a /

\ 7=t !
15 given by
IPh(t) + 9Pk " P (s) + 194 ey ()] ds
= — t 1 !
(1) 0+ I"7HO + o7 Za/ () 14 ()]
1
(2.2) +a / [— PRy (s) + Iq1+p1k1(s)} dH(s) + bIPh(1) — b1q+pk(1))
0

+hu TP hy (1) — b11q1+mk1(1))] ,

y(t) — —Iplhl(t)+1q1+p1k1(t)

(Zﬁj / { 7h( )+1q+%(s)}ds

+a1 /01 [_ IPh(s) + Iq—l—pk:(s)} dH(s) + biIPhy (1) — b1]q1+p1k71(1))

AF 1+p1

U
@23 +1( Z;oz/ I (s) + TP (5)] d
ta /0 1 [ 17 ha(s) + 1971y (3)] i s)

FbIPR(1) — blq+f”k(1))] ,

where

b 1 sP1 n nP1+1 51{714—1
2.4 A= — B:a/ ——dH(s) + ai%
24) I'(1+p) o I'(1+p1) (5) P I'2+p)

1 sP CP+1 8117—1-1 bl
2.5 I'= 7’ A=——
(2:5) “1/0 r(1+p) Zﬂj I'(2+p) I'(1+p)

and it 1s assumed that

(2.6) A= AA — BT #£0.
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Proof. Applying the integral operators I, [? on the fractional differential equations
n (2.1), and then I?, IP* on the resulting equations together with Lemma 2.22 in [2],

we get

p
2. t) = —IPh(t) + 17 Pk(t - P!
(2.7) z(t) (6)+ TPk(E) + o +eat”™
and

tPl
2.8 t) = —IP hy(t) + 11 P L (t) + dg—— + dytP 71,
(2.8) y(t) (1) 1P () oy d

where cg, ¢1,dp, dy are arbitrary constants. Using the boundary conditions of (2.1) in
(2.7) and (2.8), we get ¢; = 0,d; = 0, and

(29) ACO — Bdo = P, —FC(] -+ Ado = Q,

where

P = Zal / — PRy (s +Iq1+p1k1(s)}ds+a /0 1 [—Iplhl(s)+Iq1+P1k1(s)]dH(s)
+b[ph( ) — bITHPE(1),

Q = Zﬁa / | = Ph(s) + T7°7k(s) | ds + o /O 1 [~ 17h(s) + 19%7k(s)| L s)
+b1[”1h1( ) — by NPy (1),

Solving the system (2.9) for ¢; = 0 and d; = 0, we find that

Substituting the values of ¢y, and dy in (2.7) and (2.8) yields the solution (2.2) and
(2.3). By direct computation, one can obtain the converse of the lemma. This
completes the proof. O

3. MAIN RESULTS

Let us introduce the space X = {z(t)|z(t) € C([0,1],R)} endowed with the
norm |lz|| = sup{|x(t)|,t € [0,1]}. Obviously (X,| - ||) is a Banach space. Then
the product space (X x X, ||(z,y)]|) is also a Banach space equipped with norm

(@)l = llzll + llyll-
In view of Lemma 2.4, we define an operator T: X x X — X x X by

T(e,)(1) = < P ) ,
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where
Ti(z,y)(t) = —fpf(t x(t)) + I77g(t, (1), y(t))

L N ey Zaz [ = )+ 1), s

wa [ [= P e) + I () () | ai ()
(31)  HbIf(s,2(s)(1) — b1 Pg(s, 2(s), y(5))(1))
“5(35 / [ 1775 2(s) + 1975, 2(5), ()| s
rar [ [ = (sl + 17l (s) ) | ()
07 fi(5,y(5)) (1) = b P s, x<s>,y<s>><1>)] ,
Lo, y)(t) = —fmfl@ y(t) + 17 gu (8, 2(8), y (1)

<Zﬂg/ [ IPf(s,x(s)) + I7Pg(s, z(s),y(s))|ds

AT+ ) 1+p1
ban [ [ 50060 + 17t 20w

32) DI (5, (1) — gy s, 2(5) (5)(1)
+r( Zaz / I (s, () TP (s, (). () ds
ta / [ s o)+ 105, (5), ) [ 9

+017 f(s,(s))(1) = bI"Pg(s, $($)>y($))(1)>] :

For the sake of computational convenience, we put

1
9= D |A|r<1+p>{' L) <p+1>
m p+1 ;n
33 B S [ s
=1
Q = [\
2 F(p+q+1) IAIF(1+ p) I'(p+qg+1)
<p+q+1 p+q+1 gh+a
(34) +|B‘(ZWJ +qi2 +|1|/ p+q+1 )}’
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1 1
& = mray BT
p1+1 p1+1
(35) +|A|(Z| sl [ )
1 1
o = W['B”“'m
n;n1+q1+1 . £p1+q1+1 gP1ta
+|A|<Z|a, P1+Q1+2 Tl |/ p1+Q1+1)dH(S)>]’
— 1
% = s (MM

(3.6) +\A|(f |@\<p+(l i / aH(s))|.

% = mrr PR T
Cp-i—q-i—l ;H—q—i—l $p+q
(3.7 +|A|(Zlﬁy e |1|/ )]

_ 1 1
% = oyt AT A e D

(35) +|r|(2| S [ )]

_ 1 1 1
- + [A bl
U= Torrarn ARG T e
n p1+q1+1 p1+q1+1 +
n; _g 81’1 q1
3.9 +F( ;| / st)].
(3.9) \|;\ \ NP + |al Ny (s)

Our first result is based on Leray-Schauder alternative ([24] p. 4.).

Lemma 3.1. (Leray-Schauder alternative) Let F' : E — E be a completely continuous

operator (i.e., a map that restricted to any bounded set in E is compact). Let
E(F)={z € E:x=\F(x) for some(0 <\ < 1}.
Then either the set E(F') is unbounded, or F' has at least one fized point.

Theorem 3.2. Assume that:

(Hy): f,f1:]0,1] xR =R, g,91 : [0,1] x R x R — R are continuous functions
and there exist real constants A, p1, ki, v > 0, (i = 1,2) and Ao, ko, fto, Yo > 0
such that, Vx,y,z; € R, (i =1,2),

[t o)) <X+ Mzl gt @1, 22)| < Ko + Kifzi| + kalzal,

|y < po+mlyl, |1t @1, 22)] < v+ mlaa| + yalwsl.



78 B. AHMAD, R. AGARWAL, A. ALSAEDI, S. NTOUYAS, AND Y. ALRUWAILY
If
= [Q1 + QM + [Q2 + Qo)1 + [Qs + Qu)m < 1,

My = [Q2 + Qslka + [Qs + Qs)un + [Qu + Q)72 < 1,

where Q;,Q,, i =1,2,3,4 are given by (3.3)-(3.9), then the system (1.4) has at least

one solution on [0, 1].

Proof. First we show that the operator T': X x X — X x X is completely continuous.

By continuity of functions f, f, g and g1, the operator T' is continuous.

Let 2 C X x X be bounded. Then there exist positive constants L;, i = 1,2, 3,4

such that | f(¢,z(¢))| < Ly, [g(t, z(t),y(t))| < Lo, [/t x(O)(] < Ls, g1 (¢, x(2), y(8))] <
Ly, Y(z,y) € Q. Then, for any (x,y) € €2, we have

T3 (2, ) (1)
< ! L1+ L L
= T+ T Thot+e+D)
1 CP+1 p+1
+m{[mur R +\B!(Z\ﬂg Al [ )]
- 1 Cp+q+1 pptatl P+
4‘_|A||b|r(_|_7+1 <Z|ﬁg —|—q4j—2 + la 1|/ YT H(3)>]L2

n pi+l P1+1

DI — +|A|(Z| i o T H )] Ls

dH(s))

p1+q1+1 _ epitqitl P1+q1
+\Ar(21aw g H/ d
I(p1 +q1 +2) I(pr+q+1)

*'B”bl'm]h}
< Q1L1+Q2le + Q3L+ QaLy,
which implies that
1T (2, y)|| < Q1Ly + Q2Ly + Q3L3 + QuLy.
Similarly, it can be shown that
1 To(z, y)|| < @1[/1 + @2[/2 + @3[/3 + @4[/4-

Thus, it follows from the above inequalities that the operator T is uniformly bounded,

since

1T (z,y)]] < [Q1+ Qy]L1 + [Q2 + Qy] Lo + [Qs + Qs] L3 + [Qu + Q4] L4
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Next, we show that T is equicontinuous. Let t1,t € [0, 1] with ¢; < t5. Then we have

Ty (z(t2), y(t2)) — Th(z(t1), y(t1))]
2ta —t1)P + |th — ¢]| N L22(t2 — )P+ ’t127+q _ t€+q‘
Ilp+1) I'(p+q+1)

+ |th— t1f|{<Q1 - ﬁ)h + (Qz - M)I& + Q3L3 + Q4L4}-

IN

Ly

Analogously, we can obtain

| To(x(t2), y(t2)) — Ta(x(t1), y(t1))]
2ty — t1)Pr + |t — 1| 2ty — )P 4 ‘t1221+q1 . t1171+q1‘
(

< L
= I(pr+1) I(pr+aq¢+1)

+ Ly

+|th — t11)1|{@1L1 + Q,Ls + (@3 - m> Lz + (@4 - m)[%}

Therefore, the operator T'(x,y) is equicontinuous, and thus the operator T'(x,y) is

completely continuous.

Finally, it will be verified that the set &€ = {(z,y) € X x X|(z,y) = \T'(z,y),0 <
A <1} is bounded. Let (x,y) € € with (z,y) = AT'(z,y). For any t € [0, 1], we have

x(t) = ATi(z, y) (1), y(t) = ATa(z, y)(2).
Then
|z (t)|

< Q1(Mo + A1lz]) + Qa(ko + k1|z| + kaly|) + Q3(po + p1lyl) + Qa(vo + 1lz] + 2lyl)
= Q1o + Q2ko + Q3p0 + Quyo + [Q1 A1 + Q2k1 + Qami]|z] + [Q2ks + Q31 + Quy2]|yl,

and

(t

~—

<

(Ao + Alz]) + Qa(ko + k12| + kaly|) + Qz(p0 + palyl) + Qu(vo + 7lz] +22lyl)
o + Qako + Qspo + Quv0 + [Q1 M1 + Qok1 + Quml|x] + [Qoka + Qspa + Qu2]lyl-

<@Q
Q

Hence we have

|zl < QiAo + Q2ko + Qzpto + Quyo + [@1 A1 + Q2k1 + Qan]|| ]|
+[Q2k2 + Qspt1 + Qay2]||yl|,

and

[yl
< @1)\0 + @2]{50 + @3#0 + @470 + [@1)\1 + @zkl + @471]”1'”
+[Qok2 + Qsp11 + Q2] Iy,
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which imply that

[zl + Iyl < Q1+ Qilho + [Q2 + Qslko + [Qs + Qs]po + [Qu + Qulvo
H[Q1 + QM + [Q2 + Qulkr + [Qa + Qulyi } |2
H{[Q2 + Qolks + [Q3 + Q)i + [Qu + Qulr2}Hly-
Consequently,
@)l < [Q1 + Q1] + [Q2 + Qslko + [Qs + Qs]po + [Qs + Qulyo

min{l—Ml,l—Mg} ’
which proves that £ is bounded. Thus, by Lemma 3.1, the operator T" has at least

one fixed point. Hence the boundary value problem (1.4) has at least one solution.

The proof is complete. O

In the following result, we prove the uniqueness of solutions of the system (1.4)

via Banach’s contraction mapping principle.

Theorem 3.3. Assume that:

(H2): f,f1i 1 [0,1] xR = R, g,91 : [0,1] Xx R x R — R are continuous functions
and there exist positive constants {;, i = 1,2,3,4, such that for allt € [0,1] and
Y, 2,1 € R, 1 =1,2, we have

(3.10) |f(t,z) = f(ty)] < bz —yl,

(3.11) 9(t, 21, 22) — g(t,y1,92)| < o(|z1 — ] + |22 — 12]),
(3.12) it z) = fi(t,y)] < Lslz —yl,

(3.13) [91(t, 21, 2) — g1(E, 91, y2)| < la(lzr — ya| + |22 — w2l).

Then there ezists a unique solution for the system (1.4) on [0, 1] provided that

(3.14)  [Q1+ Q|6+ [Q2+ Q) lo + [Qs + Q3] b3 + [Qu + Qul s < 1,
where Q;, Q,,i = 1,2,3,4 are given by (3.3)-(3.9).

Proof. Define sup f(t,0) = Ny < oo, sup ¢(t,0,0) = Ny < oo, sup fi(t,0) = N3 <
te(0,1] te(0,1] te(0,1]
oo, sup ¢1(t,0,0) = Ny < oo and r > 0 such that
te[0,1]

[Q1 + Q1IN + [Q2 + Qo] N + [Qs + Q3] N3 + [Qu + Q] N.
—{[Q1 + Q)01 + [Q2 + Q)b + [Qs + Q305 + [Qu + Qulla}

In the first step, we show that T B, C B,, where B, = {(z,y) € X x X : ||(z,y)| < r}.
By the assumption (Hs), for (z,y) € B,, t € [0,1], we have

|f(t, (1)

< |f(&2@) = f(E0)]+[f(E0)] < blz(@)] + Ny
< Gzl + lyl) + N < b+ Ny,
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lg(t,x(t),y(@)] < |g(t,x(t),y(t)) — g(£,0,0)| + [g(¢,0,0)]
< O([x(E)] + y()]) + No
< O(llz]] + lyll) + No < bor + No,

and
|t z(t)] < lar + Na, |g1(t, 2(t), y(t)] < Lar + N

Using the above estimates, we obtain

T (,y)(t)]
1
< == N — (¢ N.
S et 1)JFF( +q+1)<2r+ 2)
1 <p+1 p+1
m C;DJqurl p+q+1 Sp+q
/ N-
+[1alp |7( S (Zl S TETES |1|/ T <>)}<2r+ 2
r P1+1_§p1+1
Bllbj| =— A N-
+ (1Bl s+ |(Z; [ e )]t + )
p1t+q1+1 p1+q1+1 +
7, —& ghita
+ 1A ;| dEH
| |(Z| | L(p1+q1 +2) ||/ T(pr+aq+1) (S))
+1B|[b |;W r+ Na)
T+ + 1) *
= [Qil1 + Qala + Q3l3 + Quls]r + Q1 N1 + Q2N2 + Q3N3 + Q4 Ny.
Hence

[T (z, )] < (@il + Qaly + Qsls + Qaly]r + QN1 + Q2 Ny + Q3N3 + Q4Ny.
In the same way, we can obtain that
|T2(z,y)]| < [@161 ‘|’@2€2 +@3€3 +@4€4]7°+@1N1 +@2N2 ‘l’@gNS +@4N4~

In consequence, it follows that

IT(z,y)|| < {[Q1+Qi)t +[Q2+ Qu)ls + [Qs + Qs)ls + [Qu + Qulla}r
+[Q1 + QN1 4 [Q2 4 Q] N + [Q3 + Q3] N3 + [Qs + Q] Ny < 7.

Now, for (zq,¥ys2), (z1,y1) € X x X, and for any ¢ € [0, 1], we get

T (w2, y2)(t) — T1(21,91)(t))
1 1

< — 4 — — oy _ B
< mprnhle — ol + v —nl) + g le — ol + e - ul)
1 m Cp-i-l p+1
4+ A bi
|A|T(1 —I—p){[‘ l ‘F(p (Z; )

Hal [ s ))]el<||w2—:c1||+||y2—y1u>
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Cp+q+1 p+g+1

1 .
Alb| =———— + J
+[| ] |F( +q+1) <Z|ﬁj Flp+q+2)
gPta
Hal [ 5ot ) alle — 2l + o~ 1)

1 n 77121114-1_51)1-‘:-1
(1Bl iy (e

Hal [ s ) sl =l + oz~ al)

p1+q1+1 p1+qi+1 +

7] 5 Spl q1

[|A|(§ o Pl [ et ()
L(p1 +q¢1 +2) Fp1+q¢+1)

| l(||ze — 21| + —
F(p1+Q1+1)] a(llwz = @1l + [ly2 ylH)}

< (@1l + Qs + Qslz + Qula](||z2 — z1 || + ly2 — val]),

+[Bl[b:]

and consequently we obtain

|1 (22, y2) — Th (21, 91) ||
(3.15) < [Q1ly + Q2ba + Q3ls + Quly](||x2 — 1| + ||y2 — w1 l])-

Similarly, one can find that

| T (22, y2)(t) — To(w1, y1)]|
(3.16) < (@101 + Qoly + Qsls + Qulu]([|z2 — 21|l + lly2 — wl])-

It follows from (3.15) and (3.16) that

1T (22, 92) — T(z1,y1)|| < {[@1+ Q)0+ [Q2+ Qu)la + [Qs + Qs)l5
Qs+ Qulla}(lz2 — 21|l + [ly2 — wl]),

By assumption (3.14), the foregoing inequality implies that the operator 7" is a con-
traction. So, by Banach’s fixed point theorem, the operator 7" has a unique fixed

point, which is the unique solution of problem (1.4). This completes the proof. [
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4. EXAMPLE
Example 4.1. Consider the following coupled system:
DYA(DY2a(t) + f(t,2(1) = g(t,z(t),y(1)), t € (0,1),
DYDY y(t) + filt,y(1)) = gi(t,2(1), y(2)), t € (0,1),

(4.1) z(0) =0, z(1) = /0 y(s)dH (s) + Zai /; y(s)ds,
1 3 G
y0) =0 (1) = [ e+ 300 [ als)as

Here p=q=1/2, 1 = 1/3,p1 = 1/4, a = 1,b=1,a1 = 1,0y = 1, H(s) = s5,&; =
/7,8 = 3/7,& = 5/T,m = 2/T,na = 4/T,m3 = 6/T, a1 = 1/12,00 = 1/6,03
1/4,50 = 1/5,8, = 1/10,85 = 1/5, 61 = 1/8,0, = 3/8,03 = 5/8, (1 = 1/4,(» =
1/2,¢3 = 3/4,

1 - Lyl
t,x) = — tecost, fi(t,y) = —( ) 6t.
f(t, x) 160 sinx +e " cost, fi(t,y) TS0\ [g] +

1 |z]
8(t+2)21+ |z]

|y
32(1 4+ [y|)

L. . 1
+1+a sin®y, gi(t,z,y) = 6in sin(27x)+ +§.

g(t,z,y) =
Using the given values, we find that A ~ 1.12838, B ~ 0.950675, " ~ 0.609051, A ~
1.10326, A ~ 0.665890, Q; ~ 4.21909, Q5 ~ 3.71906, Qs ~ 3.55464, Q, ~ 3.23905, O,
227727, Qy ~ 1.99498, Q5 ~ 4.12517, Q4 ~ 3.99109. Notice that ¢, = 1/160, (5
1/180as | f(t, 2) = f(t.y)| < g5z —yl, [filt, 2) = fi(t,y)] < 15le—yl, and & = €4y =
as [g(t,x1,22) — g(t,y1, v2)| < 55 (|w1 — 22| + [y1 — v2l), l91(t, 21, 22) — 91(t, Y1, 2)| <
3%(|x1 — Zo| + |y1 — y2|). Moreover, it is found that (Q1 + @1)61 + (Qz + @2)62 +
(Qg + @3)63 + (Q4 + @4)64 ~ 0.487774 < 1. Thus all the conditions of Theorem 3.3

are satisfied and consequently, its conclusion applies to the problem (4.1).

Q

A El=

5. DISCUSSION

In the previous sections we studied a coupled system (1.4) in which each equation
contains one Caputo and one Riemann-Liouville fractional derivative. Another kind
of problems is to consider different order of derivatives in each equation. Thus we can
study the following coupled system in which the first equation contains one Caputo

and one Riemann-Liouville fractional derivative and the second one Riemann-Liouville
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and one Caputo fractional derivative of the form

DI Da(E) + £(t.2(0) = gt x(2). y(2). £ € (0.1).
RLDp1(ch1 (t) + f1(t,y(t)) = g1 (¢, x(t),yg}( ), t€(0,1),
y(s)d

2(0) =0, bx(1) / +Za2/'

=1 &

VO =0, b= [ a6+ /Gx

\ j=1

p

Working as in Lemma 2.4 we can find that the solution of the system (5) is given by

() = —IPR(t) + I™Pk(t) + AF1+p A Za, / — Iha(s) + TP R () ds
1

+a /01 [ — IThy(s) + I‘ﬂ“’lkl(s)} dH(s) + bIPh(1) — blqﬂ’k(n)
+Bl<§:ﬁj /:J [— IPh(s) + Iq+pk(3)] ds

tay /1 [ _ IPh(s) + Iq+pk;(s)} dH(s) + b IRy (1) — b1141+p1k1(1))] :

and
y(t) = —]qlhl(t)+lq1+p1k‘1(t)+L (Zﬁ / [—Iph(s)uqﬂ%(s)}ds
AT(1 4 p1) ’
1
+ay / [ — IPh(s) + Iqﬂ’k;(s)} dH(s) + b I7hy (1) — b1141+p1k1(1))
0
11y Zozl / — Iy (s ]qlﬂ’lkl(s)}ds
=1
1
+a/ [ — IPhy(s) + Iwkl(s)} dH(s) + by Iy (1) — by [9F7 k1(1))] ,
0
where
b F(Q1) / 77101-‘:-(11 5p1+¢11
A= , Bl=——""—|a [ s"T"dH(s)+ o — L
FT(+p) T Tt | Jo Z [(gepr +1)
1 1 m Zp-i-l ep-i-l blF(Ch)
I = sPdH (s) + e R =L
' T(1+p) /0 Zﬁj F(2+p) I'(q1 +p1)

A1 - AlAl - 31F1 % 0

We can prove similar results to that of problem (1.4). We omit the details.
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