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ABSTRACT. This paper focuses on damage identification in transmission tower structure during
operation. Using the dynamic principle of fingerprint identification, studied that the structural
damage identification effect of two characteristic factors, curvature modal loss and average numerical
modal strain energy of transmission tower structure. Then, Bayes data fusion is carried out with
these two kinds of data, and the probability model of transmission tower structure damage calculation
based on Bayes network classifier is established. Then, the study analyzes the impact of noise on the
accuracy of damage identification. The results show that Bayes data fusion based on curvature modal
loss and average numerical modal strain energy is beneficial to the identification of transmission
tower structure damage location and degree, and improves the identification calculation efficiency
and accuracy.
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1. Introduction

Transmission tower structure (TTS) is complex as it encompasses features such as

high structure and long span (Fig. 1); entails use of a spatial lattice; is easily affected

by environmental loads such as wind, rain, and earthquakes; and experiences tower

line-coupled vibrations [1]. Given their long-term service periods, these structures are

bound to endure structural damage, which cumulates over time, making them prone

to collapse under extreme conditions. Thus, long-term monitoring of the health of

transmission tower structures in crucial to ensure the safety and continued operation

of the power grid.
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Figure 1. Seismic damage map of transmission tower

In recent decades, research on structural damage identification has been a popular

topic in the engineering field and remarkable progress has been made in this area.

The basic power fingerprints studied thus far can be generalized into four categories

[2]: direct modal parameter class (encompassing parameters such as frequency and

vibration mode) [3], modal parameter function class (including parameters such as

the square of frequency, modal strain energy, modal guarantee criteria, coordinate

modality assurance criteria, modal flexibility, and residual force vector) [4], curvature

class (including parameters such as modal curvature, and flexibility curvature) [5],

and vibration signal non-modal processing (encompassing Fourier transform, short-

time Fourier transform, wavelet/package analysis, blind source separation, and so on.

Generally, using strain parameters (strain, modal strain energy, curvature mode, etc.)

as the basis for identifying damage location is preferable to utilizing displacement

parameters (displacement, displacement mode, and flexibility matrix).

In recent years, the data fusion method has been applied to structural damage

identification. This method avoids the misjudgment in the degree of damage that

using a single index (modal curvature and modal strain energy) would entail, and

confers the advantage of strong noise immunity as it modifies and merges multi-sensor

data. Currently, popular data fusion methods include neural networks, Bayes theory

[6], D-S evidence theory [7], and Fuzzy set theory [8]. Bayes data fusion method,

which is effective when there is less data, can deal with multiple types of problems.

This study divides the discussion on damage identification into two parts. First,

it is imperative to locate the damage and estimate the extent of damage to the TTS

using the finite element model (FEM). Two damage identification methods, namely,

the mean curvature mode difference factor and the average modal strain energy change

rate, are used in this study. Second, fusing the dynamic fingerprint data through

Bayes reasoning allows accurate location identification of difficult to detect structural

damage in the presence of noise. Third, the Bayes network classification algorithm is
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applied to analyze different damage conditions. The proposed numerical simulation

method provides ideal test results, wherein even minor damage can be detected easily.

The validity of this method was thus verified.

2. Evaluation indexes for damage location in TTS

Curvature-based damage identification was proposed by Pandey and Biswas (1994)

[9]. This method has been shown to have good sensitivity to structural damage.

Stubbs et al. were the first to devise a formula for modal strain energy before and af-

ter damage occurred using the Euler-Bernoulli beam theory [10]. Thus, they deduced

the damage index related to the stiffness before and after damage. Thereafter, many

scholars have helped improve upon the identification of damage location in complex

structures. Sohn and Law(2015) extended Bayes model correction method to the case

of multiple damage of structures, and solved the multiple damage identification prob-

lems of multi-storey frame structures and concrete bridge piers respectively [11]. The

Bayes model correction method for on-line monitoring of the structure, use a series of

identified modal parameters are calculated by continuous correction model stiffness

parameters, in a specific ratio is less than the corresponding initial model of stiffness

parameters of probability, the maximum possible reduction of stiffness at a certain

position within the structure is taken as a pointer to damage at the corresponding

position.

2.1. Average curvature mode damage factor (CMDave). According to material

mechanics, the relationship between curvature and bending stiffness can be expressed

as

(1) k(x) =
1

ρ(x)
=

M(x)

E(x)I(x)

where k(x) is the curvature, ρ(x) is the radius of curvature after deformation of the

beam axis, M(x) is the bending moment, and E(x)I(x) is the bending stiffiness. x

refers to the beam’s axis coordinate.

Curvature modal analysis cannot provide direct estimates; it provides an approx-

imate calculation using the displacement mode provided by the formula on curvature

center difference. Considering order i and modal node j, curvature kij is given by

Yang et al. (2015) [12].

(2) kij =
∅i(j−1) − 2∅ij + ∅i(j+1)

(∆x)2

∅i(j−1), ∅ij, and ∅i(j+1) denote the displacement mode values for order i and modal

nodes j − 1, j and j + 1, respectively, and ∆x is the distance between two adjacent

points.
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Considering order i and modal node j, the curvature mode difference factor

CMDij is defined as

(3) CMDij =
∣∣kdij − kuij∣∣

where kuij and kdij respectively are the curvature of order i and modal node j before

and after the structural damage occurs.

For multiple orders i and node j, the following formula for average curvature

mode damage factor is applicable.

(4) CMDavej =
1

m

m∑
i=1

CMDij

Here, m is the total number of modes.

2.2. Average modal strain energy change rate (MSEave). The modal strain

energy MSEu
ij and MSEd

ij before and after structural damage for order i and modal

node j can be respectively defined as [13]:

(5) MSEu
ij =

1

2

{
∅ui,j
}T [

Ku
j

] {
∅ui,j
}

(6) MSEd
ij =

1

2

{
∅di,j
}T [

Kd
j

] {
∅di,j
}

where
{
∅ui,j
}

and
{
∅di,j
}

respectively denote the vibration mode vector before and

after structural damage, and
[
Ku
j

]
and

[
Kd
j

]
respectively refer to the element stiff-

ness matrix before and after structural damage. When element j is damaged and

its struffness is unknown, one can use element j′ stiffness matrix in the calculation

instead.

An elements modal strain energy variety (MSEC) before and after structural

damage can be expressed as below (note that higher orders are disregarded here).

(7) MSEi,j = MSEd
i,j −MSEu

i,j

Element MSEC is a factor sensitive to the location of the structural damage.

Thus, it can be used to judge the position of damage in a structure (Wei et al. 2016)

[14]. This indicator, also called the modal strain energy rate (MSE), can be expressed

as

(8) MSEi,j =

∣∣MSEd
i,j −MSEu

i,j

∣∣
MSEu

i,j

To reduce the influence of noise in the modal vibration mode, one uses the mul-

timodal mode vibration mode to judge the positions of damage in the structure. The



IDENTIFICATION OF STRUCTURAL DAMAGE TO TRANSMISSION TOWER STRUCTURE 91

average modal strain energy change rate AMSECRj for element j and modal vibration

mode m is defined as

(9) MSEavej =
1

m

m∑
i=1

MSEi,j

Before calculating the structures strain energy, the minimal error method can be

extended with the tested vibration mode to an untested degree of freedom [15].

Dividing the vibration mode into two parts is dependent on whether the test

has been completed. Thus, the ith order vibration mode equation can be written as

follows:

(10)

{[
[Kαα] [Kαβ]

[Kβα] [Kββ]

]
− τi

[
[Mαα] [Mαβ]

[Mβα] [Mββ]

]}{
{∅αi}
{φβi}

}
≈ {0}

where α and β respectively correspond to the measured and untested degrees of

freedom. In order to facilitate analysis, the matrix in the left-hand bracket of the

equation is denoted as [N ], such that

(11) [N ] =

[
[Kαα] [Kαβ]

[Kβα] [Kββ]

]
− τi

[
[Mαα] [Mαβ]

[Mβα] [Mββ]

]
=

[
[Nαα] [Nαβ]

[Nβα] [Nββ]

]

After extending the order, the ith order modal’s residual vector {δi} is expressed

as seen below and the formula’s right-hand side becomes {0}.

(12) {δi} =

[
[Nαα]

[Nβα]

][
[Nαβ]

[Nββ]

]{{
{∅αi}
{{φβi}

}

The square sum error of mode i is expressed as Si

Si = {δi}T {δi} =
[
{∅αi}T {∅βi}T

]

(13)

[
[Nαα]T [Nβα]T

[Nβα]T [Nββ]T

][
[Nαα] [Nαβ]

[Nβα] [Nββ]

]{
{∅αi}
{φβi}

}

If µSi
µ{ρβi} = {0}, Si attains its minimum value, such that

{∅βi} =− {[Nβα] [Nαα] + [Nββ] [Nβα]} {∅αi} {[Nβα] [Nαβ]

+ [Nββ] [Nββ]}−1
(14)

3. Damage identification based on Bayes theorem data fusion

3.1. Bayes theorem data fusion method. The application of Bayes theorem in

data fusion can be expressed such that A = A1, A2, . . . , An for n recognition targets,
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B = {B1, B2, . . . , Bm} for sensor m, and prior probability is P (Ai) . The following

conditional probability matrix can be obtained for sensor m:
P (B1|A1) · · · P (B1|An)

...
. . .

...

P (Bm|A1) · · · P (Bm|An)


The recognition probability of target Ai is

P (Ai|B) =
P (B|Ai)P (Ai)∑n
i=1 P (B|Ai)P (Ai)

=

∏m
j=1 P (Bj|Ai)P (Ai)∑n

i=1

[∏n
j=1 P (Bj|Ai)P (Ai)

](15)

3.2. Application of Bayes classifier. Bayes classifier uses the Bayes network clas-

sification algorithm to identify the degree of structural damage. This network includes

class node C, where the value of C is derived from the class collection (C1, C2, . . . , Cn) ,

and it also contains a set of nodes X = (x1, x2, . . . , xm) , which are features for the

classification. To enable TTS damage identification using the Bayes network classifi-

cation algorithm, a damage location is identified alongside the classification charac-

teristic value for X = (x1, x2, . . . , xm) . The probability of damage degree for category

Ci is denoted as:

(16) P (C = Ci|X = x) =
P (X = x|C = Ci)P (C = Ci)

P (X = x)

The Bayes network classifier can be categorized into two stages. The first stage is

Bayes network classifier learning, namely, constructing classifiers from sample data, as

well structure learning and conditional probability tables (CPTs). This stage analyzes

dynamic fingerprint data sets to arrive at a characteristic value, and calculates the

damage degree as a set of classes. In the second stage, the results of the structure

learning and CPTs aid the completion of Bayes classifier network reasoning; the

conditional probability of class nodes is calculated and the test sample is classified.

The process for TTS damage identification is shown in Fig. 2.

4. Numerical simulation of damage identification based on Bayes data

fusion

4.1. Damage model for TTS. This study referred to cup-type TTS and conducted

the numerical simulation using the lumped mass point method to attach the wires and

insulators to the suspension point. The height of the TTS was assumed to be 51 m.

ANSYS software was used to model the beam and truss elements, that structural steel

is used for all the truss members. The basic parameters of the FEM were as follows:

elastic modulus E = 2.06× 105MPa and density = 7800kg/m3. The rod elements
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Figure 2. Flow chart for structural damage identification

were modeled using LINK8 element and the unit node was articulated. The beams

were modeled using BEAM188. Fig. 3 shows the elevation layout of the TTS, where

the plain numbers are the node numbers, and the number in the circle expresses the

number of damaged bars. The method used to identify damage to the internal rods

was the same as that for the external support rods, and the degree of damage was

estimated in terms of the elastic modulus of the rod. The various damage conditions

pertaining to the TTS are shown in table 1.

(a) Working condition 1 (b) Working condition 2 (c) Working condition 3

Figure 3. Layout of TTS facade and sensor measurement points

Because the seismic damage of the cup-type TTS often occurs at the neck of the

tower and below, this is the basis for the arrangement of working conditions in this

paper. The main character of component failure is the buckling of the member, so

the damage degree is realized by reducing the elastic modulus of the member.
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Table 1. Working and damage conditions of TTS

Working con-

dition

Damage type Damage

unit

Damage de-

gree (%)

W1 (Fig. 3-a) Single location No.4 5

W2 (Fig. 3-b) Single location No.7 10

W3 (Fig. 3-c) Multiple locations
No.3 10

No.6 5

4.2. Noise addition and data preprocessing. In a realistic engineering environ-

ment, the frequency index of the structure is usually measured accurately, but the

mode index is easily influenced by environmental excitation of the test environment.

In this paper, the environmental noise measured by the device was assumed to be

white noise conforming to the Gaussian distribution. According to Kiviniemi and

Sauerwein (2016), noise may be added for the mass normalized mode as seen below

[16].

(17) ∅̃j,i = ∅j,i
(

1 +
δip∅max,i

100

)
where ∅ and ∅̃ respectively are the first component j of mode i before and after the

addition of noise, δi is the Gauss random number with a mean of 0 and a variance of

1, ∅max,i is the maximum component for the absolute value of mode i, and p represents

the noise level (which is the same as the level of Gauss white noise based on the

measured modal shape). Data preprocessing was used to reduce the influence of

noise. This study calculated the arithmetic mean value for 10 sets of noise.

4.3. Identification of structural damage locations. Assuming the noise level is

5%, this study calculated the position of each of the first three-order CMDaves for

all three working conditions listed in table 1 using formula (1). The first two-order

MSE aves were calculated using formula (2).

The corresponding results for TTS damage location identification are shown in

Fig. 4-5 (for W 1), Fig. 7-8 (for W 2), and Fig. 10-11 (for W 3). The study consid-

ered the above-mentioned five groups (first three-order CMDaves and first two-order

MSEaves ) under all working conditions for the dynamic fingerprint data fusion Bayes

ian network measurement. Suppose each unit Ei(i = 1, 2, . . . , 10) has equal prior

probability, P (Ei) = 1/10(i = 1, 2, . . . , 10). The results of structural damage identi-

fication after the fusion of the Bayes formula are shown in Fig. 6 (W 1), Fig. 9 (W

2), and Fig. 12 (W 3).
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Figure 4. Identification results by CMDave(W1)

Figure 5. Identification results by MSEave(W1)

Figure 6. Results by the Bayes fusion method (W1)
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Figure 7. Identification results by CMDave(W2)

Figure 8. Identification results by MSEave(W2)

Fig. 4 to 12 assumes that the level of noise is 5% in single as well as multiple

damage cases. The analysis of the single-damage dynamic fingerprinting identifica-

tion shows that the anti-interference ability in single dynamic fingerprinting is weak

and that the structural damage cannot be accurately located. The stability of the

third-order CMDave is obviously higher than that of its first- and second-order coun-

terparts. The first- and second-order CMDave present a discrete micro-oscillation

trend and are characterized by low noise immunity. After fusing the five groups of

dynamic fingerprint data using Bayes formula, the identification accuracy of the dam-

age locations improves considerably. According to Fig. 6 and 9, significant mutations

occur in the lesion area, no mutation occurs in the damage area, and identification is

possible even with damage as low as 5% and 10%. Moreover, the damage locations

were accurately located. Thus, unlike the case of the single index, Bayes data fusion

method is very effective at avoiding misjudgments.
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Figure 9. Results by the Bayes fusion method (W2)

Figure 10. Identification results by CMDave(W3)

Figure 11. Identification results by MSEave(W3)
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Figure 12. Results by the Bayes fusion method (W3)

4.4. Degree of damage identification. In order to verify the effectiveness of Bayes

network classifier in the identification of damage degree, this study conducted an

analysis assuming noise levels of 5% and 10%, and working conditions 1 and 2 as the

damage conditions. Each type of damage condition produced 310 measurements, and

each noise level produced 310 data test samples for these two working conditions.

The methods for adding noise and processing were the same as those for damage

identification, the only difference being the manner of extracting the feature factor.

If the previous damage localization confirmed that unit 4 is damaged, the extraction

nodes 17 and 18 before. Thus, using the 3 order CMDave and the first two orders of

MSEave would provide a total of 10 data points. The Bayes network classifier was con-

structed and the k-means clustering algorithm was used to analyze the discretization

of the sample data [17].

The identification results pertaining to the damage degree are shown in table

2. When the ambient noise level is less than 5%, the degree of damage to the TTS

can be accurately identified. When ambient noise levels rise to 10%, the degree of

damage for the two conditions is misjudged slightly, but the accuracy rate still exceeds

96%. In the numerical example considered in this study, the degree of damage in the

design is low and the difference between the damage categories is small. Therefore,

the proposed method is promising for precise damage identification and classification

for even minor damage categories in a noisy environment.

5. Conclusion

When there is no noise or the noise level is low, structural dynamic fingerprinting

by CMDave or MSEave alone provides accurate damage identification. When the noise

level is more than 5%, the recognition accuracy is slightly lower. After conducting

Bayes data fusion, however, the recognition accuracy increases sharply, because the



IDENTIFICATION OF STRUCTURAL DAMAGE TO TRANSMISSION TOWER STRUCTURE 99

Table 2. Identification of damage degree

Working condition Noise level (%) Accuracy of recognition (%)

W1
5 100

10 99

W2
5 100

10 98

W3
5 100

10 97

identification of modal parameters can effectively eliminate the influence of testing

noise. First, structural damage should be accurately located to extract its dynamic

fingerprint, and then, the Bayes network classifier should be used to identify the degree

of damage. The resulting recognition accuracy shows a major improvement over the

results from a single index (over 96%), and the proposed method also reduces the

operation time. Thus, TTS damage identification based on dynamic fingerprinting

and Bayes data fusion has good fault tolerance, noise resistance, and stability.
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