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ABSTRACT. In this paper, we study the chaos control for a variable-order fractional financial
system using the robust control approach. For this purpose, the numerical solution of a variable
order fractional financial system and the control law were calculated by using the Adams-Bashforth-
Moulton method. The derivative was defined in the Atangana-Baleanu-Caputo variable-order frac-
tional sense. To experiment the control stability efficiency, different statistical indicators were pre-
sented. Finally, simulation results established the effectiveness of the suggested robust control of
the current study.
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1. Introduction

Fractional calculus (FC) would enable the operators in integration and differenti-

ation to achieve fractional order. Investigating FC is regarded as a common research

subject and has been a serious research topic in the past few decades [3, 4, 6, 17, 20,

24, 25, 28, 36]. Samko presented a noticeable extension of the constant order FC [27].

Conducting studies on fractional differential equations has recently turned into

an active area of investigation, and many equations in interdisciplinary fields have

been proven to be capable of being extensively described through fractional deriva-

tives. References [2, 14, 22, 23] deal with stability analysis, dynamical properties,

and simulation of some fractional differential equations.

Chaos is a phenomenon explaining high nonlinear behaviors. A chaotic system

is sensitive to small alterations in initial conditions. Chaotic systems (for example

see [19, 13] and references therein) are considered significant in such areas as control,

finances, secure communication, and so forth.
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The definition of a financial system could be proposed at the global, regional, or

firm-specific levels and is a set of procedures applied in order to track financial activ-

ities. The financial system, on a regional scale, is the system making the lenders and

borrowers capable of exchanging funds. Financial systems involve complicated and

intricate models representing financial services, institutions, and markets establishing

a system of inter-connections between depositors and investors in [16, 18, 35].

The author, in the present research work, proposes fractional operators that re-

gard the order as a function of time, space, or a number of other variables. [5, 31]

present the major applications of such fractional variable-order operators. Due to the

fact that the exact solutions of variable-order fractional differential equations cannot

found, the development of a numerical scheme that is capable of solving such equa-

tions is a crucial area of investigation. Adams-Bashforth method has conventionally

been seen as a powerful, outstanding numerical method, capable of presenting the

numerical solution of fractional differential equations [8, 10, 11, 12]. As is seen in [9],

the authors have recently created a constant-order numerical scheme integrating the

fundamental theorem of fractional calculus with the two-step Lagrange polynomial.

In this approach, the numerical schemes presented in [9] are generalized in order for

simulating variable-order time fractional financial systems.

The paper mainly handles robust control. This issue is then briefly discussed

here. Manufacturing, mining, automobile and other hardware applications make ex-

tensive use of feedback control systems. In order to meet the ever-growing demands

for higher efficiency and reliability levels, such control systems are needed to en-

sure more effective and accurate overall performance in the face of demanding and

constantly changing operating conditions. Control engineers need new design tools

and more effective control theories in order for designing control systems to meet

the requirements of improved performance and robustness while controlling complex

processes. A standard technique of promoting the control system performance would

integrate extra sensors and actuators into the system. Such an approach would result

necessarily in a multi-input multi-output (MIMO) control system. Hence any modern

feedback control system design methodology must be capable of dealing with cases

in which multiple actuators and sensors are involved. Moreover, a control system

is robust when: (1) its sensitivity level is low, (2) it has stability over the range of

parameter variations, and (3) its performance constantly meets the specifications in

the presence of a set of system parameter variations [26, 30, 32, 33]. This paper is

aimed at applying the variable-order fractional derivative of Atangana-Baleanu type

in the chaos control for a variable-order time fractional financial system by means of

robust control mode for the first time.

This paper is outlined as follows. Some required preliminaries in the sequence are

presented in Section 2. Section 3 considers the numerical approach procedure. Robust
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control for variable-order time fractional financial system is discussed in Section 4.

Section 5 deals with simulation results. Finally a brief discussion about the method

and the generated results are briefly discussed in Section 6.

2. Preliminaries

In this section we give some basic tools which we need in the future. The

Atangana-Baleanu fractional derivative with variable-order q(t) in Liouville-Caputo

sense (ABC) is defined as follows [34]:

(2.1) ABC0D
q(t)
t f(t) =

B(q(t))

1− q(t)

∫ t

0

Eq(t)

[
− q(t)

(t− τ)q(t)

1− q(t)

]
f(τ)dτ,

where n− 1 < q(t) ≤ n and B(q(t)) = 1− q(t) +
q(t)

Γ(q(t))
is a normalization function.

The related integral Atangana- Baleanu can be formulated as

(2.2) ABC0I
q(t)
t f(t) =

1− q(t)

B(q(t))
q(t) +

q(t)

B(q(t))Γ(q(t))

∫ t

0

f(τ)(t− τ)q(t)−1dτ,

in which n − 1 < q(t) ≤ n. Consider an th nth-order fractional differential equation

of the form

(2.3) ABC0D
q(t)
t f(t) = F (t, f(t)), f

(k)
0 = fk

0 , k = 0, 1, ..., n− 1.

This equation can be rewritten as

(2.4) f(t) = f0 +
1− q(t)

B(q(t))
F (t, f(t)) +

q(t)

B(q(t))Γ(q(t))

∫ t

0

F (τ, f(τ))(t− τ)q(t)−1dτ.

It is possible to extend the Adams method for this equation as follows:

fp
i+1 = f0 +

1− q(ti)

B(q(ti))
F (ti, fi) +

q(ti)

B(q(ti))Γ(q(ti))

i∑
j=0

bj,i+1F (tj, fj),

fi+1 = f0 +
1− q(ti+1)

B(q(ti+1))
F (ti+1, f

p
i+1) +

q(ti+1)h
q(ti+1)

B(q(ti+1))Γ(q(ti+1) + 2)
×

[
F (ti+1, f

p
i+1)

i∑
j=0

aj,i+1F (tj, fj)
]
,(2.5)

where

bj,i+1 =
hq(ti+1)

q(ti+1)

(
(i− j + 1)q(ti+1) − (i− j)q(ti+1)

)
, j = 0, 1, ..., i

and

aj,i+1 =

iq(ti+1)+1 − (i− q(ti+1))(i+ 1)q(ti+1), j = 0,

(i− j + 2)q(ti+1)+1 + (i− j)q(ti+1)+1 − 2(i− j + 1)q(ti+1)+1, 1 ≤ j ≤ i.
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3. Numerical approach

In this section, we develop the Adams method for the financial system

(3.1)


ABC0D

q(t)
t x(t) = F1(ti, xi, yi, zi) = z(t) + (y(t)− a)x(t),

ABC0D
q(t)
t y(t) = F2(ti, xi, yi, zi) = 1− by(t)− x(t)2,

ABC0D
q(t)
t z(t) = F3(ti, xi, yi, zi) = −x(t)− cz(t).

Similar to the previous section, we can write

xp
i+1 = x0 +

1− q(ti)

B(q(ti))
F1(ti, xi, yi, zi) +

q(ti)

B(q(ti))Γ(q(ti))

∑i
j=0 bj,i+1F1(tj, xj, yj, zj),

yp
i+1 = y0 +

1− q(ti)

B(q(ti))
F2(ti, xi, yi, zi) +

q(ti)

B(q(ti))Γ(q(ti))

∑i
j=0 bj,i+1F2(tj, xj, yj, zj),

zp
i+1 = z0 +

1− q(ti)

B(q(ti))
F3(ti, xi, yi, zi) +

q(ti)

B(q(ti))Γ(q(ti))

∑i
j=0 bj,i+1F3(tj, xj, yj, zj).

Also

xi+1 = x0 +
1− q(ti+1)

B(q(ti+1))
F1(ti+1, x

p
i+1, y

p
i+1, z

p
i+1) +

q(ti+1)h
q(ti+1)

B(q(ti+1))Γ(q(ti+1) + 2)
×[

F1(ti+1, x
p
i+1, y

p
i+1, z

p
i+1) +

∑i
j=0 aj,i+1F1(tj, xj, yj, zj)

]
,

yi+1 = y0 +
1− q(ti+1)

B(q(ti+1))
F2(ti+1, x

p
i+1, y

p
i+1, z

p
i+1) +

q(ti+1)h
q(ti+1)

B(q(ti+1))Γ(q(ti+1) + 2)
×[

F2(ti+1, x
p
i+1, y

p
i+1, z

p
i+1) +

∑i
j=0 aj,i+1F2(tj, xj, yj, zj)

]
,

zi+1 = z0 +
1− q(ti+1)

B(q(ti+1))
F3(ti+1, x

p
i+1, y

p
i+1, z

p
i+1) +

q(ti+1)h
q(ti+1)

B(q(ti+1))Γ(q(ti+1) + 2)
×[

F3(ti+1, x
p
i+1, y

p
i+1, z

p
i+1) +

∑i
j=0 aj,i+1F3(tj, xj, yj, zj)

]
,

which is an iterative technique to solve this fractional problem.

4. Robust control for variable order time fractional financial system

A financial system can be defined from global, regional, or firm-specific points

of view. It is defined as a set of procedures that are implemented in order to track

financial activities. The financial system is, on a regional scale, the system enabling

lenders and borrowers to exchange funds. Such a system covers financial transactions

and money exchanged between investors, lenders, and borrowers. Financial systems

are composed of intricate and complicated models depicting financial services, insti-

tutions, and markets that connect depositors with investors.

A firm’s financial system is the set of procedures that are implemented for the

purpose of monitor the companys financial activities. The global financial system is,

in principle, a broader regional system involving all financial institutions, borrowers,

and lenders on a global economic scope.

The financial system of different levels is composed of multiple components:
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Within a firm, the financial system encompasses all aspects of finances. For ex-

ample, it would include accounting measures, revenue, and expense schedules, wages,

and balance sheet verification. Regional financial systems would include banks and

other financial institutions, financial markets, financial services in a global view. Fi-

nancial systems would include the international monetary fund, central banks, world

bank and major banks that practice overseas lending.

Let us to consider the system [1, 7]

(4.1)


ABC0D

q(t)
t x(t) = z(t) + (y(t)− a)x(t),

ABC0D
q(t)
t y(t) = 1− by(t)− x(t)2,

ABC0D
q(t)
t z(t) = −x(t)− cz(t),

where the variable x denotes the interest rate, y is the investment demand, and z

represents the price index. The parameters a, b, and c denotes the savings amount,

cost per investment, and the elasticity of demand of commercial markets, respectively:

(4.2)


ABC0D

q(t)
t x(t) = z(t) + (y(t)− a)x(t) + ux,

ABC0D
q(t)
t y(t) = 1− by(t)− x(t)2 + uy,

ABC0D
q(t)
t z(t) = −x(t)− cz(t) + uz.

The aim of robust control is to suppress the chaotic behavior in the systems. We

define x, y, and z as equilibrium points of the auxiliary systems.

(4.3)


ABC0D

q(t)
t x(t) = z(t) + (y(t)− a)x(t),

ABC0D
q(t)
t y(t) = 1− by(t)− x(t)2,

ABC0D
q(t)
t z(t) = −x(t)− cz(t).

Now, we define the control errors as

(4.4)


ex(t) = x(t)− x(t),

ey(t) = y(t)− y(t),

ez(t) = z(t)− z(t).

Then

(4.5)


ABC0D

q(t)
t ex(t) = ez(t) + ey(t)(ex(t) + x)− aex(t) + ux,

ABC0D
q(t)
t ey(t) = 1− bey(t) + ex(t)(ex(t) + x) + uy,

ABC0D
q(t)
t ez(t) = −ex(t)− cez(t) + uz.

As was previously mentioned, the chaos behavior will be suppressed in the systems.

Then equilibrium points are defined equal to zero i.e. x = y = z = 0. Equation (4.5)
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simplifies to

(4.6)


ABC0D

q(t)
t ex(t) = ez(t) + ex(t)ey(t)− aex(t) + ux,

ABC0D
q(t)
t ey(t) = 1− bey(t) + ex(t)2 + uy,

ABC0D
q(t)
t ez(t) = −ex(t)− cez(t) + uz.

From (4.6), the control law is defined as follows:

(4.7)


ux = −ez(t)− ex(t)ey(t) + aex(t)− kxex(t),

uy = −1 + bey(t)− ex(t)2 − kyey(t),

uz = ex(t) + cez(t)− kzez(t),

where kx, ky, kz > 0.

Theorem 4.1. The system (4.1) is asymptotically stable if the control is defined as

(4.7).

Proof. The stability of the controller (4.7) can be proved using the following Lyapanov

function

V (t) =
1

2

(
e2x(t) + e2y(t) + e2z(t)

)
.

Then, the derivative of the Lyapanov function is given by

ABC0D
q(t)
t V (t) = ex(t)ABC0D

q(t)
t ex(t) + ey(t)ABC0D

q(t)
t ey(t)

+ ez(t)ABC0D
q(t)
t ez(t).(4.8)

From (4.6) and (4.7) the dynamic of each control error can be defined as

(4.9)



ABC0D
q(t)
t ex(t) = ez(t) + ex(t)ey(t)− aex(t)− ez(t)− ex(t)ey(t)

+aex(t)− kxex(t),

ABC0D
q(t)
t ey(t) = 1− bey(t) + ex(t)2 +−1 + bey(t)− ex(t)2 − kyey(t),

ABC0D
q(t)
t ez(t) = −ex(t)− cez(t) + ex(t) + cez(t)− kzez(t).

Therefore,

(4.10)


ABC0D

q(t)
t ex(t) = −kxex(t),

ABC0D
q(t)
t ey(t) = −kyey(t),

ABC0D
q(t)
t ez(t) = −kzez(t).

Substituting (4.10) into (4.8), we get

(4.11) ABC0D
q(t)
t V (t) = −kxe

2
x(t)− kye

2
y(t)− kze

2
z(t) ≤ 0.

The fact that kx, ky, kz > 0 assures that the derivative of the Lyapunov function will

always be negative or equal to zero causing asymptomatic stability.
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5. Simulation results

In this section, we propose a generalization of the numerical scheme for the frac-

tional financial chaotic system in Atangana-Baleanu-Caputo fractional derivatives

with variable order q(t). One of the initial motivations of our fractional control is to

enhance the flexibility of performance adjustment.

The system (4.1), due to the implementation of the robust controller proposed

with ky, changes to
ABC0D

q(t)
t x(t) = z(t) + (y(t)− a)x(t),

ABC0D
q(t)
t y(t) = 1− by(t)− x(t)2 − kyy(t),

ABC0D
q(t)
t z(t) = −x(t)− cz(t).

We obtain the numerical results with respect to x0 = 0.1, y0 = 0.2 and z0 = 0.3. In

Figure 1, the phase diagram is plotted for the fixed differential order q(t) = 1 and

robust controller with the same derivative order is plotted in Figure 2 (ky = 80). The

system simulation was performed over 100 seconds.

The phase diagram and robust controller with ky = 45 are plotted with respect

to q(t) = 0.99 − 0.01

100
t in Figures 3 and 4, respectively. From this Figure, it is clear

to see that the Adams-Bashforth-Moulton method can solve variable-order fractional

differential equation simply and effectively. Moreover, in comparison with Figure 1

and 2, the results of system can be found that the order of derivative effects strongly.

Finally, the phase diagram and robust controller with ky = 35 are plotted with

respect to q(t) = 0.97 + 0.03 cos
( t

10

)
in Figures 5 and 6, respectively. It is found

that the variable-order fractional financial system can exhibit the stable equilibrium

point, quasi-periodic trajectory, and chaotic motion with different order functions.

The phase portrait and largest Lyapunov exponent are used to identify the dynamics

of the financial system. The positive largest Lyapunov exponent implies that the

financial system will generate chaotic motion. The dynamics of the financial system

is somewhat different from classical financial system whose order functions remain

one.
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Figure 1. Phase diagram of the system for the order q(t) = 1

Figure 2. Proposed robust controller of the system for the order

q(t) = 1

The above analysis implies that designers could obtain the satisfied turbofan

dynamic behavior and economical cost by determining the appropriate fractional

control.

6. Conclusion

A numerical scheme based on Adams method was proposed to get a numerical

solution for variable-order fractional financial systems. The alternative numerical

method was introduced to enhance the limitations of the variable-order Adams Bash-

forth method. The method is accurate, efficient, and direct. Furthermore, unlike
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Figure 3. Phase diagram of the system for the order q(t) = 0.99(0.01/100)t

Figure 4. Proposed robust controller of the system for the order

q(t) = 0.99(0.01/100)t

the Adams Bashforth method, a small step of discretization is not needed; thus, re-

ducing the computational effort. Numerical examples with different variable-orders

have been presented to demonstrate the effectiveness of the method. The applica-

tion of the proposed algorithm to solve variable-order nonlinear fractional differential

equations will be considered in future works. The main contribution of this control

was: (A) the fractional decentralized robust control can guarantee the interconnection

dynamic system uniform boundedness and ultimate uniform boundedness regardless
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Figure 5. Phase diagram of the system for the order q(t) = 0.97 + 0.03 cos(t/10)

Figure 6. Proposed robust controller of the system for the order

q(t) = 0.97 + 0.03 cos(t/10)

of the nonlinear uncertainty. The calculation of control inputs only needs the sys-

tem states and avoids the requirement of nominal states; (B) the control has a more

flexible and general structure which was one of the motivations behind of our work.
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