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MULTI-GROUP SIR MODEL: STABILITY AND CONTROL

N. G. MEDHIN AND TIANHENG WANG

Department of Mathematics, North Carolina State University,

Raleigh, NC 27695-8205

ABSTRACT. A model to study the control of viral spreading in multi-population groups is con-

sidered. The goal is to work out transportation and vaccination/quarantine policies to minimize the

viral spreading while minimizing negative economic effect. We start by considering a multi-group SIR

epidemic model where stability of both disease free equilibrium and endemic equilibrium are investi-

gated. Then, we consider the problem of effectively implementing medical intervention/quarantine,

and transport restrictions at various times of a planning horizon under consideration.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

Formulation of strategies to control or avoid the spread of epidemics are key

components of the design of public health policy. Some of the strategies to control or

block the spread of epidemics consist of health education campaigns, contact tracing

and screening, and strategically timed mass vaccination, medical treatment and/or

quarantine for those that are already infected. All these strategies have cost associated

with them([20]). Timely effective strategies/control minimize cost and viral spread

([1], [5], [10], [12], [28]).

In this paper we consider control system where the objective is to reduce the

number of infected people and cost by scheduled vaccinations, quarantine, and trans-

portation restriction. The level of the application of resources depends on the size of

each population in the metapopulation as well as the state of the epidemic([2], [5],

[10], [12]).

Since we are considering multi-groups, population homogeneity and migration,

level of interactions between groups and within groups are important features of the

model. The level of resources also depends on the size of each population. The

epidemic model also significantly differs depending on the particular epidemic under

consideration. Influenza model is quite different from HIV model ([2], [5], [6], [9],

[13], [14]).
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Thus, control models should possibly consider multiple groups, the particular

epidemic, time horizon, and control objectives, population size, state of the epidemic

and available resources ([2], [5], [6], [9], [12], [28]). In this paper we consider a multi-

group SIR model where controls/interventions are applied at distinct intervention

times in the planning/epidemic horizon and between intervention times. We start

by considering the stability properties of the model followed by appropriate control

problem. We apply the results to a concrete model where numerical results are

presented.

2. STABILITY OF MULTI GROUP SIR MODEL

2.1. Statement of the Problem. We consider the following system of differential

equation:































Ṡk = Λk −
n

∑

j=1

βkjSkIj − dkSk,

İk =
n

∑

j=1

βkjSkIj − (dk + γk)Ik,

Ṙk = γkIk − dkRk,

k = 1, . . . , n,

where Sk, Ik, Rk denote the susceptible, infectious, recovered population in the kth

group, respectively. We denote by βkj the transmission rate from group j to group

k, and the infectious population in group k is increased by the rate of βkjSkIj . We

use Λk and dk to denote the birth and death rates in group k. We denote by γk the

natural recover rate in group k.

Since the recovered population does not affect the dynamics of the Sk and Ik, we

consider the system














Ṡk = Λk −
∑

j

βkjSkIj − dkSk,

İk =
∑

j

βkjSkIj − (dk + γk)Ik,
k = 1, . . . , n,

We define the reproductive number R0 to be the spectrum of the matrix B:

Bkj =
βkjΛk

dk(dk + γk)
.

R0 is the key parameter that completely characterize the stability of the system (2.1).

Theorem 2.1. 1. If R0 < 1, then the system (2.1) has a disease free equilibrium

E0 = [S0
1 , S

0
2 , . . . , S

0
n, 0, 0, . . . , 0], and E0 is globally stable.

2. If R0 > 1, then the system (2.1) has an endemic equilibrium E∗ = [S∗
1 , S

∗
2 , . . . , S

∗
n,

I∗1 , I
∗
2 , . . . , I

∗
n], and E∗ is globally stable.
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2.2. Stability of Disease Free Equilibrium for R0 < 1. Let us consider the

system

Ẋk = Λk − dkXk, k = 1, . . . , n.(2.1)

The solution could be solved out as

Xk(t) =
Λk

dk

(1 − e−dkt) +Xk(0)e−dkt.(2.2)

By comparison principle we have Sk(t) ≤ Xk(t).

Consider the Lyapunov function V (t) as follows

V (t) =
n

∑

k=1

wk

dk + γk

Ik(t),(2.3)

where w = [w1, . . . , wn]
T is the left eigenvector of the matrix defined in (2.1). By Per-

ron Frobenius Theorem w has all positive components, so V (t) is always nonnegative.

Differentiate V (t) along the solution of (2.1).

V̇ (t) =
n

∑

k=1

wk

dk + γk

(

n
∑

j=1

βkjSk(t)Ij(t) − (dk + γk)Ik(t)
)

(2.4)

≤
n

∑

k=1

n
∑

j=1

wk

dk + γk

βkjXk(t)Ij(t) −
n

∑

k=1

wkIk(t)

=
n

∑

j=1

n
∑

k=1

wk

βkjΛk

dk(dk + γk)
Ij(t)

+

n
∑

j=1

n
∑

k=1

wk

βkj

dk + γk

Ij(t)
(

Xk(t) −
Λk

dk

)

−

n
∑

k=1

wkIk(t)

=

n
∑

j=1

R0wjIj(t) +

n
∑

j=1

n
∑

k=1

wk

βkj

dk + γk

Ij(t)
(

Xk(t) −
Λk

dk

)

−

n
∑

k=1

wkIk(t)

=

n
∑

j=1

[

n
∑

k=1

wk

βkj

dk + γk

(

Xk(t) −
Λk

dk

)

+ (R0 − 1)wj

]

Ij(t)

We know that lim
t→∞

Xk(t) =
Λk

dk

, and with the knowledge that R0 < 1, we will have

V (t) decreasing with time and the equilibrium E0 is globally stable.

2.3. Stability of Endemic Equilibrium for R0 > 1. Now we consider the case

when R0 > 1, for which there is an endemic equilibrium E∗ = [S∗
1 , S

∗
2 , . . . , S

∗
n, I

∗
1 , I

∗
2 , . . . , I

∗
n].
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We have the equilibrium condition

Λk −
n

∑

j=1

βkjS
∗
kI

∗
j − dkS

∗
k = 0,(2.5)

n
∑

j=1

βkjS
∗
kI

∗
j − (dk + γk)I

∗
k = 0.

Define β̄kj = βkjS
∗
kI

∗
j , and

B̄ =

















−
∑

j 6=1
β̄1j β̄21 β̄31 . . . β̄n1

β̄12 −
∑

j 6=2
β̄2j β̄32 . . . β̄n2

β̄13 β̄23 −
∑

j 6=3
β̄3j . . . β̄n3

...
...

...
. . .

...

β̄1n β̄2n β̄3n . . . −
∑

j 6=n β̄nj

















.(2.6)

By Kirchhoff’s Matrix Tree Theorem, the linear equation B̄w = 0 has a positive

solution w = [w1, . . . , wn]
T . The k-th row of the equation is equivalent to

n
∑

j=1

β̄kjwk =
n

∑

j=1

β̄jkwj.

We define g(x) = x−1−ln x. By checking the derivative of g(x) we easily get g(x) ≥ 0

for x > 0 and g(1) = min
x>0

g(x) = 0. We define the Lyapunov function

V (t) =

n
∑

k=1

wk

[

S∗
kg

(Sk(t)

S∗
k

)

+ I∗kg
(Ik(t)

I∗k

)]

=
n

∑

k=1

wk

[

Sk(t) − S∗
k − S∗

k ln
(Sk(t)

S∗
k

)

+ Ik(t) − I∗k − I∗k ln
(Ik(t)

I∗k

)]

.(2.7)
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Differentiate V (t), and using the equilibrium condition (2.5, 2.6), we have

V̇ (t) =

n
∑

k=1

wk

[

(

1 −
S∗

k

Sk

)(

n
∑

j=1

βkjS
∗
kI

∗
j + dkS

∗
k −

n
∑

j=1

βkjSkIj − dkSk

)

+
(

1 −
I∗k
Ik

)(

n
∑

j=1

βkjSkIj − (dk + γk)Ik

)

]

=

n
∑

k=1

wkdkS
∗
k

(

2 −
Sk

S∗
k

−
S∗

k

Sk

)

+

n
∑

j,k=1

wkβkjS
∗
kI

∗
j

(

2 −
S∗

k

Sk

+
Ij

I∗j
−
SkIjI

∗
k

S∗
kI

∗
j Ik

−
Ik

I∗k

)

≤

n
∑

j,k

wkβkjS
∗
kI

∗
j

[

− g
(S∗

k

Sk

)

+ g
( Ij

I∗j

)

− g
(SkIjI

∗
k

S∗
kI

∗
j Ik

)

− g
(Ik

I∗k

)]

≤
n

∑

j,k=1

wkβ̄kjg
( Ij

I∗j

)

−
n

∑

j,k=1

wkβ̄kjg
(Ik

I∗k

)

=
n

∑

j,k=1

wkβ̄kjg
( Ij

I∗j

)

−
n

∑

k=1

g
(Ik

I∗k

)

n
∑

j=1

β̄jkwj

= 0.

We notice that V̇ (t) = 0 only when Sk(t) = S∗
k , Ik(t) = I∗k . Therefore, the endemic

equilibrium E∗ is globally stable.
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Figure 1. Susceptible Population Groups
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Figure 2. Infected Population Groups

3. MULTI-GROUP SIR MODEL WITH VACCINATION

In this section, we consider an optimal control problem based on the SIR model.

We know that people get the disease when contacting people from the infectious

group. Restriction on the transportation could lower the rate of the spreading of the

disease, but it might also bring negative effect to economic activity. Another solution

to control the disease is to provide vaccination to the people of the susceptible group or

quarantine people, both of which has negative effect on economic activity. Therefore

the decision has to be carefully to what extent transportation should be restricted

and how many people should be provided with vaccination.

3.1. Statement of the Problem. We consider the following system






































Ṡk = Λk −
∑

j

(βkj − ukj)SkIj − dkSk,

İk =
∑

j

(βkj − ukj)SkIj − (dk + γk)Ik, t ∈ (0, τ) ∪ (τ, T )

Sk(τ
+) = Sk(τ

−) − ck,

Ik(τ
+) = Ik(τ

−),

with the cost functional

J(u, c) =

∫ T

0

L(t, u, S, I)dt+ ψ(S(τ−), I(τ−), c) + φ(S(T ), I(T )).(3.1)

Here the ukj is the control parameter which represents the transportation restriction

from group j to group k, and ck denotes the amount of vaccination applied to the

group k at time τ . The cost function L(t, u, S, I) represents the negative effect to



MULTI-GROUP SIR MODEL: STABILITY AND CONTROL 129

the economy brought by transportation restriction, and ψ(S, I, c) is the expense due

to vaccination. The problem is to work out a transportation policy and vaccination

strategy such that the cost functional is minimized.

3.2. General Impulse Optimal Control. We consider a general impulse control

problem. The dynamics of the system is given as follows:

ẋ = f(x, u, t), t ∈ (0, τ) ∪ (τ, T )(3.2)

x(τ+) = g(x(τ−), c).

The control u(t) and the impulse control c are chosen to minimize the cost functional:

J(u(·), c) =

∫ T

0

L(t, u, x)dt+ ψ(x(τ−), c) + φ(x(T )).

Now, we use variational methods to seek the optimal control. Assume that {û(·), ĉ}

is the optimal control pair and x̂(t) is the state corresponding to {û(·), ĉk}. Let

{ũ(·, θ), c̃k(θ)} be another pair of decision variable where

ũ(t, θ) = û(t) + θv(t),

c̃(θ) = ĉ+ θc,

Let v(·), ck are arbitrary perturbations, and let x̃(t) be the state corresponding to

{ũ(·), c̃k}. Define

y(t) =
1

θ
(x̃(t) − x̂(t)).

Taking the derivative of y(t), we have

ẏ(t) =
∂f

∂x
(x̂(t), û(t), t)y(3.3)

+
∂f

∂u
(x̂(t), û(t), t)v + θη(t), t ∈ (0, τ) ∪ (τ, T ),

and

y(0) = 0,(3.4)

y(τ+) =
∂g

∂x
(x̂(τ−), ĉ)y(τ−) +

∂g

∂c
(x̂(τ−), ĉ)c+ θζ.
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Then, we can solve

y(t) =

∫ t

0

Φ(t, s)
∂f

∂u
(x̂(s), û(s), s)v(s)ds(3.5)

+θ

∫ t

0

Φ(t, s)η(s)ds, t ∈ (0, τ)

y(t) = Φ(t, τ)
(∂g

∂x
(x̂(τ−), ĉ)y(τ−) +

∂g

∂c
(x̂(τ−), ĉ)c

)

(3.6)

+

∫ t

τ

Φ(t, s)
∂f

∂u
(x̂(s), û(s), s)v(s)ds

+θ
(

Φ(t, τ)ζ +

∫ t

τ

Φ(t, s)η(s)ds
)

, t ∈ (τ, T )

where Φ(t, s) is the fundamental matrix for the linear system

ż =
∂f

∂x
(x̂(t), û(t), t)z.

We will have the following fact.

Lemma 3.1. There is a function p(t) ∈ L(t0, tN ; Rn), satisfying the differential equa-

tion

−ṗ(s) =
(∂L

∂x
(x̂(s), û(s), s)

)T

(3.7)

+
(∂f

∂x
(x̂(s), û(s), s)

)T

p(s), s ∈ (0, τ) ∪ (τ, T ),

and the jump condition

pT (τ−) = pT (τ+)
∂g

∂x
(x̂(τ−), ĉ) +

∂φ

∂x
(x̂(τ−), ĉ).

Then

J(û+ θv, ĉ+ θc) − J(û, ĉ) = θαT c+ θ

∫ T

0

(

pT ∂f

∂u
+
∂L

∂u

)

v(s)ds+ o(θ),

where

αT =
∂ψ

∂c
(x̂(τ−), ĉ) + pT (τ+)

∂g

∂c
(x̂(τ−), ĉ)
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Proof. To prove the lemma, we compute the difference between the perturbed cost

and the minimal cost:

J(û+ θv, ĉ+ θc) − J(û, ĉ)

(3.8)

= θ

{

∂ψ

∂c
(x̂(τ−), ĉ)c+

∂ψ

∂x
(x̂(τ−), ĉ)y(τ−) +

∫ τ

0

∂L

∂x
(x̂, û, t)y(t) +

∂L

∂u
(x̂, û, t)v(t)dt

+

∫ T

τ

∂L

∂x
(x̂, û, t)y(t) +

∂L

∂u
(x̂, û, t)v(t)dt+

∂φ

∂x
(x̂(T ))y(T )

}

+ o(θ)

= θ

{

∂ψ

∂c
(x̂(τ−), ĉ)c+

∂ψ

∂x
(x̂(τ−), ĉ)y(τ−) +

∫ τ

0

∂L

∂x
(x̂, û, t)y(t) +

∂L

∂u
(x̂, û, t)v(t)dt

+

∫ T

τ

[

∂L

∂x

(

Φ(t, τ)
(∂g

∂x
y(τ−) +

∂g

∂c
c
)

+

∫ t

τ

Φ(t, s)
∂f

∂u
v(s)ds

)

+
∂L

∂u
v(t)

]

dt

+
∂φ

∂x
(x̂(T ))

(

Φ(T, τ)
(∂g

∂x
y(τ−) +

∂g

∂c
c
)

+

∫ T

τ

Φ(T, s)
∂f

∂u
v(s)ds

)}

+ o(θ)

= θ

{(

∂ψ

∂c
(x̂(τ−), ĉ) +

∂φ

∂x
(x̂(T ))Φ(T, τ)

∂g

∂c
(x̂(τ−), ĉ) +

∫ T

τ

∂L

∂x
(x̂, û, t)Φ(t, τ)

∂g

∂c
dt

)

c

+

∫ T

τ

[

(∂φ

∂x
(x̂(T ))Φ(T, s) +

∫ T

s

∂L

∂x
(x̂, û, t)Φ(t, s)dt

)∂f

∂u
(x̂, û, t)v(s) +

∂L

∂u
v(s)

]

ds

+
(∂φ

∂x
Φ(T, τ)

∂g

∂x
+

∫ T

τ

∂L

∂x
Φ(t, τ)dt

∂g

∂x
+
∂ψ

∂x

)

y(τ−)

+

∫ τ

0

∂L

∂x
(x̂, û, t)y(t) +

∂L

∂u
(x̂, û, t)v(t)dt

}

+ o(θ)

= θ

{

αT c+

∫ T

τ

(

pT ∂f

∂u
v(s) +

∂L

∂u
v(s)

)

ds + βTy(τ−) +

∫ τ

0

∂L

∂x
y(t) +

∂L

∂u
v(t)dt

}

+ o(θ),

where we define

αT ,
∂ψ

∂c
(x̂(τ−), ĉ) +

∂φ

∂x
(x̂(T ))Φ(T, τ)

∂g

∂c
(x̂(τ−), ĉ)

+

∫ T

τ

∂L

∂x
(x̂, û, t)Φ(t, τ)

∂g

∂c
(x̂(τ−), ĉ)dt,(3.9)

pT (s) ,
∂φ

∂x
(x̂(T ))Φ(T, s) +

∫ T

s

∂L

∂x
(x̂, û, t)Φ(t, s)dt, s ∈ (τ, T ),(3.10)

βT ,
∂φ

∂x
(x̂(T ))Φ(T, τ)

∂g

∂x
(x̂(τ−), ĉ)(3.11)

+

∫ T

τ

∂L

∂x
(x̂, û, t)Φ(t, τ)dt

∂g

∂x
(x̂(τ−), ĉ)

+
∂ψ

∂x
(x̂(τ−), ĉ).
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From (3.9, 3.10, 3.11) we notice that

αT =
∂ψ

∂c
(x̂(τ−), ĉ) + pT (τ+)

∂g

∂c
(x̂(τ−), ĉ),(3.12)

βT = pT (τ+)
∂g

∂x
(x̂(τ−), ĉ) +

∂ψ

∂x
(x̂(τ−), ĉ),

and p(s) satisfies the differential equation:

−ṗ(s) =
(∂L

∂x
(x̂(s), û(s), s)

)T

+
(∂f

∂x
(x̂(s), û(s), s)

)T

p(s), s ∈ (τ, T ).

Remind the expression for y(t) (3.5, 3.6), and plug it into (3.8), we will have

J(û+ θv, ĉ+ θc) − J(û, ĉ)(3.13)

= θ

{

αT c +

∫ T

τ

(

pT ∂f

∂u
v(s) +

∂L

∂u
v(s)

)

ds+ βT
(

∫ τ

0

Φ(τ, s)
∂f

∂u
v(s)ds

)

+

∫ τ

0

∂L

∂x

(

∫ t

0

Φ(t, s)
∂f

∂u
v(s)ds

)

+
∂L

∂u
v(t)dt

}

+ o(θ),

= θ

{

αT c +

∫ T

τ

(

pT ∂f

∂u
v(s) +

∂L

∂u
v(s)

)

ds

+

∫ τ

0

(

βT Φ(τ, s) +

∫ τ

s

∂L

∂x
Φ(t, s)dt

)∂f

∂u
v(s) +

∂L

∂u
v(t)ds

Define

pT (s) = βT Φ(τ, s) +

∫ τ

s

∂L

∂x
Φ(t, s)dt, s ∈ (0, τ),

and then we will have

J(û+ θv, ĉ+ θc) − J(û, ĉ)(3.14)

= θ

{

αT c+

∫ T

0

(

pT ∂f

∂u
+
∂L

∂u

)

v(s)ds

}

+ o(θ)

We could see that in the interval (0, τ), p(s) satisfies the same differential equation:

−ṗ(s) =
(∂L

∂x
(x̂(s), û(s), s)

)T

(3.15)

+
(∂f

∂x
(x̂(s), û(s), s)

)T

p(s), s ∈ (0, τ).

Combining (3.13) and (3.14), we will have

pT (τ−) = pT (τ+)
∂g

∂x
(x̂(τ−), ĉ) +

∂ψ

∂x
(x̂(τ−), ĉ).

Therefore the lemma is proved.

Assuming there is no constraint for the control variables, we will have the follow-

ing result.
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Theorem 3.2. If x̂(t) is the solution of the impulse optimal control problem stated

as above, then we have

∂ψ

∂c
(x̂(τ−), ĉ) + pT (τ+)

∂g

∂c
(x̂(τ−), ĉ) = 0,(3.16)

pT (s)
∂f

∂u
(x̂, û, t) +

∂L

∂u
(x̂, û, t) = 0, s ∈ (0, τ) ∪ (τ, T ).

3.3. Forward Backward Differential Equations. From the condition (3.16, 3.17),

we assume the optimal control û and optimal impulse ĉ are of feedback form: û(t) =

û(x(t), p(t)), ĉ = ĉ(x(τ−), p(τ+)). In order to solve the impulse optimal control prob-

lem, we need to solve the following forward backward system:

ẋ(t) = f(x, û(x, p), t), s ∈ (0, τ) ∪ (τ, T )(3.17)

−ṗ(t) =
(∂L

∂x
(x, û(x, p), t)

)T

+
(∂f

∂x
(x, û(x, p), t)

)T

p(t), s ∈ (0, τ) ∪ (τ, T ),

with boundary condition x(0) = x0, p(T ) =
∂φ

∂x
(x(T )), and jump condition

x(τ+) = g(x(τ−), ĉ(x(τ−), p(τ+))),(3.18)

pT (τ−) = pT (τ+)
∂g

∂x
(x̂(τ−), ĉ) +

∂ψ

∂x
(x̂(τ−), ĉ).

3.4. Numerics on SIR Model. To verify that the conditions we derived minimizes

the cost function, we consider the following SIR model:


































Ṡk = Λk −
∑

j

(βkj − ukj)SkIj − dkSk,

İk =
∑

j

(βkj − ukj)SkIj − (dk + γk)Ik, t ∈ (0, τ) ∪ (τ, T )

Sk(τ
+) = Sk(τ

−)(1 − ck),

Ik(τ
+) = Ik(τ

−),

with the cost function

J(u, c) =

∫ T

0

n
∑

k=1

b

2
I2

k(t) +
n

∑

j,k=1

1

2
u2

jk(t)dt

+
n

∑

k=1

a

2
(ckSk(τ

−))2 +
n

∑

k=1

e

2
I2

k(T )(3.19)

Let the adjoint variable p be written as

p =

[

ξ

η

]

.(3.20)
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The condition (3.16) will be rewritten as

a[S2

1(τ
−)c1, . . . , S

2

n(τ−)cn]

+[ξ1(τ
+), . . . , ξn(τ+), η1(τ

+), . . . , ηn(τ+)]













−S1(τ
−)

. . .

−Sn(τ−)

0













= 0,

which implies the vaccination strategy to have the form ĉk =
ξk(τ

+)

aSk(τ−)
. The condition

(3.17) could be written as

∂

∂ukl

n
∑

i=1

[

ξi

(

Λi −
∑

i,j

(βij − uij)SiIj − diSi

)

(3.21)

+ηi

(

∑

i,j

(βij − uij)SiIj − (di + γi)Ii

)

]

+ ukl = 0,

which implies the transportation control policy to have the form ûkl(t) = (ηk(t) −

ξk(t))Sk(t)Il(t). The connecting condition for the adjoint variable (3.18) in fact could

be simplified as ξ(τ+) = ξ(τ−), η(τ+) = η(τ−). Then, the forward backward system

will be given as


































































































Ṡk = Λk −
∑

j

(βkj − ûkj)SkIj − dkSk,

İk =
∑

j

(βkj − ûkj)SkIj − (dk + γk)Ik,

ξ̇k = dkξk +
∑

j

(βkj − ûkj)Ij(ξk − ηk),

η̇k = −bIk +
∑

j

(βjk − ûjk)Sk(ξk − ηk) + (dk + γk)ηk,

Sk(τ
+) = Sk(τ

−)(1 − ĉk),

Ik(τ
+) = Ik(τ

−),

ξ(τ+) = ξ(τ−);

η(τ+) = η(τ−).

Here we choose the parameters as

n d β γ a b e T τ

3







.1

.2

.1













1 .05 .05

.05 1 .05

.05 .05 1













.5

1

.5






1 2 1 20 10

The following table shows the optimal control ends up with lower cost than some

other controls.
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u c J

0 0 0.533489

0.01β 0 0.523788

0.02β 0 0.520120

0.03β 0 0.522487

0 0.1 0.521285

0 0.2 0.523069

0.01β 0.1 0.511869

0.02β 0.1 0.508492

0.02β 0.2 0.511201

û ĉ 0.461618
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Figure 3. Optimal Susceptible Population Groups
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Figure 4. Optimal Infected Population Groups
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Figure 5. Costate Variables
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