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ABSTRACT. A novel mathematical model is formulated to show the dynamical aspects of Hepa-
titis-C (HCV) model, assuming four partitions of population: susceptible, latent, acute and chronic
infection. Analysis of the underlying system shows the existence of positive global solution. After-
wards, we explore the parametric conditions for extinction of the disease. It is verified that there is
an ergodic stationary distribution, which reveals the disease’s persistence. Moreover, It has found
that there exists a threshold value that determines essential parameter to be used in studying the
dynamics of the model. Theoretical findings are illustrated numerically, and examples are given to
justify the obtained results.
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1. Introduction

Hepatitis-C virus infection is amongst one of the huge health hazards the world
has ever faced [2]. It is a blood-induced infection that can be a reason for progressive
liver failure, hepatocellular carcinoma, cirrhosis and premature death. Little was
known about Hepatitis-C until 1975 when the application of the diagnostic test for
Hepatitis-A and B revealed that many cases were neither Hepatitis-A nor Hepatitis-B.
In the year 1989 the causative agent was identified as Hepatitis-C [3]. Out of the total
population, people suffering from Hepatitis-C, approximately 75% to 85% experience
Chronic Hepatitis. It has been found that 130 to 170 million people are infected with
HCV, while the global prevalence lies in the range, 2% — 3% [7]. The prevalence
rates are highest in central Asia, West Africa, and Eastern Europe. More than 80%
of the global HCV cases are noted in low and middle-income countries [3]. Almost
80 million people estimated to have chronic Hepatitis-C virus(HCV) infection, with
the predominant HCV genotypes being 1 (46%) and 3 (22%) [8] and among them

approximately 0.7 million people die untreated annually. Though great successes
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have been achieved in virology and diagnostics, but several difficulties have prevented
further developments in HCV infection control and extinction. New HCV infections
cases have been noted, especially in poor socioeconomic regions, where HCV can be

endemic, and long-term sequel cause growing economic and health burdens [9)].

Appropriate mathematical models help to answer biologically essential queries
concerned with effectiveness of drug treatment, pathogenesis as well as dynamics of
the immune response. Among the important components of the environment, which

affect epidemic models, environmental noise is the most important [10]-[15].

It is a matter of fact that parameters used in a phenomena fluctuate around some
average values and this is due to regular fluctuations in the environment. Because of
such indeterminate interferences of environmental factors, the parameters used in de-
terministic models are not absolute constants. Therefore, the classical deterministic
mathematical models have limitations, while predicting the dynamical aspects of a
system accurately. Incorporating the influence of a fluctuating environment, several
authors have formulated epidemics models with perturbation in some of the parame-
ters [16, 29]. Studying the HCV mathematical model introduced by [21], one can infer
that the disease transmission coefficients 3; and 35 are the key parameters to disease’s
transmission. It is of special interest to evaluate the effect of perturbed parameters
0y and (o, and o; for © = 1,...,4. Here, we assume these parameters are subject
to the environmental white noise, that is 3, 32, and o; for i = 1,...,4 changed to
random variables. Hence, taking into account these noise terms in the parameters
we formulate a novel HCV model. Our method to include stochastic perturbations
is similar to [20]. We will incorporate essential stochastic environmental factors that

act simultaneously on every individual in the population.

The assumption of Gaussian noise in the SDE setting is appropriate for this model
because, in such kinds of epidemiological problems physical noise can be properly es-
timated by white noise. If the noise acting upon mathematical models possesses a
finite memory interval, this is often achievable after varying the time scale to discover
an approximating system, perplexed by the Gaussian white noise. For further dis-
cussion on the applications of Gaussian white noise and related results we refer the

readers to see the book, [27] and references therein.

For the underlying model the letters, S, E, I, C' are designated to represent
dependent variables: susceptible, latent, acute and chronic infectious of HCV, re-
spectively. The symbol N represents the total population, i.e., N =S+ FE+ 1+ C.
To the best of authors knowledge, little attention has given to the existence of er-
godic stationary distribution and other related results to a stochastic HCV epidemic

model. The underlying model can be described by the following system of stochastic
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differential equations:
(1.1)

(dS IS cs
E =b— (51 + O'ldB1>W - (52 + O'gng)W - (/J, — Ugng)S"— (1 - q)y] + OKC,
dE IS cS
% = (61 + UldBl)W + (62 + O-QdBQ)W - (,u - O'4dB4)E — EE,
% =eF —~y] — (u—05dB5)1,
ac
—r = 0 = (a+0)C — (p— 06dB;)C.
\

1.1. Description of the Model. The model contains several parameters, therefore
the parameters’ description is given as; o; > 0 while B;(t),i = 1,2,...,6, denote
standard Brownian motion. Positivity of o; reflect the intensities of white noise and
mathematically o; show the standard deviation of noise terms. In order to study the
model in the framework of stochastic calculus, we assume B;(t),i = 1,2,...,6 to be
independent of each other. New susceptible individuals enter into the S class at a
fixed rate b. Let u be the natural death rate of the population, while 6 represent the
HCYV induced death rate, the transmission coefficients are denoted by, 3;, fori=1,2.
The rates of progression from exposed to infected and from infected to chronic are
denoted by € and 7, respectively. The parameter, ¢ is the proportion of progressing

to chronic state, and « is the rate of flow to susceptible from chronic state.

Studying the biological aspects of the parameters in the proposed system (1.1), we
assume (3; > 5. This assumption is due to the fact that chronic stage is less infectious
than the acute one. The parameters used in the model (1.1) are non-negative, and we
are interested in those non-negative solutions. The solution of (1.1) with non-negative

subsidiary initial condition is non-negative and it exists for all ¢ > 0.

In the study of epidemiology we need to use a measure, that describes the prob-
ability of occurrence of a medical circumstances in a community for a specific time
interval. This measure is called epidemiological incidence rate. It is the infection rate
of susceptible through their contacts with infective. In mathematical epidemiology,
transmission of a disease depends upon the type of incidence rate. If the sufficient

contacts for transmissions are denoted by (/f3;) for i = 1,2 which shows the average

number of adequate contacts, then % is the infectious fraction, % is the average

number of contacts with infective per unit time of one susceptible, and (%) S denote
the number of new cases per unit time due to the susceptible individual S(¢) . Since

this incidence is formulated from the aforementioned basic principle, therefore the

form % is known as standard incidence. Moreover, %

of contacts with chronic infective per unit time of one susceptible, and %S repre-

shows the average number

sent the number of new cases per unit time due to the individual S(t). The simple
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mass action law results in bi-linear incidence rate, 3S1 with b as a mass action co-
efficient. Nevertheless, the standard incidence is more realistic for human’s diseases
than the simple mass action incidence. This result is well defined and is inline with
the concept that people are infected via their daily encounters and the patterns of

daily encounters are largely independent of community size within a given country.

In order to facilitate the readers about the prerequisite knowledge as well as
to demonstrate the main results, we divide the manuscript into various sections.
In Section 2, we introduce some results that will be used throughout the paper.
In Section 3, we show that there is a unique positive solution of system (1.1). In
Section 4, disease extinction and in Section 5 stationary distribution and ergodicity
property is studied. In Section 6, we estimate the parameters of the SDE (1.1) by LSE
directly and in the last section, we will discuss the numerical results, with illustrative

examples.

2. Preliminary Results

This section of the manuscript is devoted to provide some background material.
These results will make the present manuscript friendly to the readers working in

epidemiology and virology.

Definition 2.1. [31] A filtration F is the collection of fields, F = {Fo,Fy, ..., Fy, ...,
Fr} such that F, C Fyyq, fort =0,1,2,...,T.

Definition 2.2. [28] “A stochastic process is defined as a collection of random vari-
ables X = {X;: t € T'} defined on a common probability space, taking values in a
common set S (the state space), and indexed by a set T, often either N or [0, c0) and

thought of as time (discrete or continuous, respectively)”.

A complete probability space, (R, , B(R, ), {Fi>o}, P) with filtration {F;>o} sat-
isfying the conditions (i.e., it is rightly continuous and increasing while Fy contains all
P—null sets), will be assumed in the present study. For ¢t > 0, a k—dimensional Brow-
nian motion, B(t) = (Bi(t), Ba(t), -+ , Br(t)) is assumed, defined on the given com-
plete probability space. If t; € [0, T), T < oo and Y be a F,, measurable R'-valued
random variable such that, E|Yy|? lies below infinity. Also, if ¢; : R x [tg, T] — R!
and ¢o : R' x [ty, T] — R"* be Borel measurable functions. In light of these
aforementioned supposition, we consider [t6 type [-dimensional stochastic differen-

tial equation,
(2.1) dY (t) = ©1(Y(t), t)dt + Po(Y (1), t)dB(t),Y (0) = Yo, t € [to, T

Denote by Ve C*!(R3 x [t,, oo]; R, ) the family of all non-negative functions V(Y,t)

defined on R? x [t,, oo] such that they are twice continuously differentiable in Y and
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once with respect to ¢, then the differential operator L of (2.1) is defined by [28],

a 3
L_EJF;@DM(Y, t>8—Yi+2 av.aY

> I 000 D

If the operator L is applied to V € C*}(R? x [t,, o0]; R, ), then
LV(Y(t),t) = Vi(Y(t),t) + W (Y (1), )1 (Y (), 1)
Fatracelo} (Vo )Vyy (Y (1), DoY)
where V;, = OV/ 0t,Vy = (0V/ Oy, ...,0V/ Oys) and Vyy = (0?V/ Oy;0y;)axs. 1f
Y(t) € R, then by Ito’s formula we have
(2.2) dV(Y,t) = LV(Y (1), t)dt + V(Y (t),t)$2(X (¢), t)dB(t).

Lemma 2.3 ([4]). “The Markov process Y (t) has a unique ergodic stationary distri-
bution 7(.) if there exists a bounded domain D € E; with reqular boundary T and
(Aq): there is a positive number M such that Z a;j(x)&& > M|EP?, v € D, €
R

(Ag): there exists a non-negative C? function V' such that LV is negative for any

E\ D. Then
{ lim / F(X ] f(:)s)ﬂ(dx)} 1

for all x € E;, where f(.) is a function integrable with respect to the measure

i,j=1

Definition 2.4 (stochastic permanence [26]). “The solution X (¢) of equation (1.1) is
said to be stochastically permanent if for any £ € (0, 1), there exists a pair of positive
constants § = §(§) and y = x(§) such that for any initial value X, the solution X ()
to (1.1) has the properties

tlim inf P{|X(t)] >0} >1—¢&, tlim inf P{|X(t)| <x}>1-¢".

Theorem 2.5 ([27]). “Let [0,00) x D = U be a domain containing the line v = x*
and assume there exist a function V(t,x) € CY(U) (i.e V(t,x) is twice continuously
differentiable with respect to the first variable and once continuously differentiable
with respect to second variable everywhere except possibly at the point x = 0), which
is positive definite in Lyapunove’s sense and satisfies LV < 0 for x # x*. Then the
solution X(t) = z* of SDE (2.1) is stable in probability”.

Lemma 2.6 ([27]). “If f : R. — R is integrable with respect to measure v(.), then

lim — / f(z(s))ds = " f(y)v(dy), a.s.

t—oo {

i i ta L »
for every initial value x(0) € R.,”.
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Definition 2.7. [31] “A stochastic process M (t), where time t is continuous 0 < t <
T, or discrete t = 0,1,...,T, adapted to a filtration F = (F;) is a martingale if for any
t, M(t) is integrable, that is, E|M(t)| < co and for any ¢ and s with 0 < s <t < T,
E(M(t|Fy)) = M(s) a.s.”

Definition 2.8. [31] “A regular right-continuous with left limits adapted process,
S(t) is a semimartingale if it can be represented as a sum of two processes: a local
martingale M (t) and a process of finite variation A(t), with M(0) = A(0) = 0, and
S(t) = S(0) + M(t) + A(t).”

Definition 2.9 ([31]). “If X(¢) and Y (¢) are semimartingales on the common space,
then the quadratic covariation process, also known as the square bracket process and
denoted by [X, Y](t) is defined, by

X, = hmZ X )Y (Er) —Y(em,),

where the limit is taken over shrinking partitions {¢7 } of the interval [0, ] with

At = max,(t" —t7 ;) — 0 as m — oo and is in probablhty .

Lemma 2.10 ([31]). “If X and Y are semimartingales, Hy and Hy are predictable
processes, then the quadratic covariation of stochastic integrals fot H(s)dX(s) and

fot Hy(s)dX (s) have the following property:

{ / Hi(d)dX (s / Hy(d)dY (s ](t): /OtHl(s)Hg(s)d[X,Y](s)”.

Lemma 2.11. If f is continuous and g is of finite variation, then their covariation
is zero i.e [f, g](t) = 0.

3. Existence of Global Solution

To study the underlying model, our initial target is to show the solution has a
global property. For a population dynamic model, it need to show that the solution
is non-negative. The present section is devoted to show that the solution of the
proposed model is of global nature as well as positive. To see uniqueness of the global
solution, the coefficients of the equation are generally required to satisfy the linear
growth condition and local Lipschitz condition [28]. The system’s (1.1) coefficients
do not satisfy the linear growth condition. Nevertheless, they are locally Lipschitz
continuous, hence the solution of system (1.1) has probability to explode in finite
time. The method introduced by, [29] will be used to show that solution of system
(1.1) is positive and global.

Theorem 3.1. The system (1.1) has unique solution (S(t), E(t),I(t),C(t)) under
some initial condition (S(0), £(0),1(0),C(0)) € Ry fort > 0, and the solution lies
in R with probability 1.
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Proof: It is not difficult to see that the coefficients of the system (1.1) are locally
Lipschitz continuous. Also, for any initial value (S(0), E(0), 1(0),C(0)) € R%, there
is a unique local solution (S(t), E(t), 1(t),C(t)) ont € [0, 7.) where 7, is the explosion
time (see [28]).

For global solution it need to show 7. = oo a.s. Therefore, we assume that the
non-negative quantity, o is sufficiently large so that (S(0), £(0), 1(0),C(0)) € [Kio, Ko

For each integer k > kg, we define the stopping time as,

7. = inf {t € [0,7) 1 (S(t), E(t), I(t),C(t)) ¢ (% m) } .

Here, we set inf ) = co. According to the definition, 7, is increasing as k — 0o. We
set Too = lim,_,o 7, Whence 7o, < 7. a.s. For the completion of the required result
we need to prove, T,, = oo a.s. If this statement is false, then there exist a pair of
constants 7' > 0 and € € (0,1) such that P{r,, < T} > . Hence, there is an integer

K1 > ko such that
(3.1) P{1. < T} > ¢ for all k > k.
We define a function V; : R} — R

V(S,E,I,C) = (S—1-1logS)+ (E—1—1logFE)

+(I—1—logl)+ (C—1—1logC).

Prior to apply Ito’s formula, we use the information from the underlying model and

find out the terms of the Ité’s formula. Therefore, we proceed as:

_ Bl BC b (A—al
(3.2) Vof = btatf+y+etdpt =+ < 5

aC  eE gyl B OIS B B,CS

_—— = — uN —0C.
S 1 C EN EN
The associated diffusion coefficient matrix is,
— 0.2 I2 S2 0.2 02 S2 2 12 0.2 I2s2 0.2 02S2 -
1N2 _'_ 2N2 _'_0-35 - 1N2 - 2N2 0 O
0?1282 02C?S5? 0?1282 020252 2 112
. 1]\72 _ 2N2 1]\72 _'_ 2]\[2 _'_ 0'4E 0 0
A=
0 0 o2l* 0
0 0 0 o02C?

Also,
1[(E? + 5%)(aiI? + 03C?)
2 E2N?

1
(3.3) §tmce (AV,,) = + 05+ 03 +o0: +og|,
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and
E-S E-S
ngdB = ( EN >0'1]dBl + %UQCCZBQ + (S - 1)0’15dBl
(3.4) +(E = 1)021 EdBy + +(I — 1) o3I EdB; + (C — 1)041CdB,.

Now substituting (3.2), (3.3) and (3.4) in (2.2), we get the inequality,

Bl | C b
< - - — —
dV(xz(t),t) b+a+0+y+e+4u+ N+ N T3S

+—{a%+a§+a§+ai+ag+a§]

+

E-S E-S
( EN )UlldBl+( EN >0'20ng+ (S—l)alSdBl

—|—<E - 1) O'QIEdBQ + (I - 1) Ug[Eng + <C - ].) O'4ICdB4.

This implies,

E-S E-8
AV(z(t),t) = LV@%+(EN)JJUBV%(EN)aﬂMBy+<S—1)@Sﬂ%

Here, the operator LV (x) is approximated as,
a?bt  olb?
LV(z) < bta+0+y+etdutp+p6+ 20 + 22
2ut - 2ut
1
+ﬂﬁ+ﬁ+ﬁ+ﬁ+ﬁ+ﬁ}
Integrating both sides of equation (3.5) from 0 to 7, AT, yield us,

/ de(m ) E(r),l(r),C(r)) < /0 "+ /0 ES) 5 1a,

T,.;/\T T NT
/ O'QCng + / (S — 1) UngBg
0 0
T NT T NT'
—I—/ (E )0’4EdB4+/ (I_ I)USICZBS
0 0
T NT
‘l‘/ (C )UﬁCdBﬁ,

[e=]
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here 7, AT = min{r,, T}. Expectation of the last inequality leads to
EV (S(TH ANT),E(te NT), (1. NT),C(7: A T)) <
(3.6) V(S(0), E(0),1(0),C(0)) 4+ AT.

We set, S, = {7 < T} for k > Ky, and also from (3.1), we obtain p(3,) > €. Note
that for every w € S, there is at least one term among these three S(7, AT), E(7, A
T), I(r, AT) and C(7,, AT) which is either equal to x or L, hence

1 1
V(S(t« NT),E(te NT), I(1. ANT),C(1. ANT)) > ((k =1 —=Ink) A (= — 1 —In—)).

K K

Therefore, from (3.6) we can easily obtain
V(5(0), £(0),1(0),C(0)) + hT = Ells, )V (S(7k), E(7), 1(7:), C(7x))];

(3.7) > g<o€—1-hmgA(1-1—zn1{>

K K

Where Ig, () is the indicator function of 3 (w). Now if we allow & to approach infinity
i.e K — 00, then one can obtain

(3.8) 00 > V(S(0), £(0), 1(0), C(0)) + hT = 00 a.s.,

which is an absurd result. Thus, we must have 7., = co. Hence, the solution of model

(1.1) will not explode at a finite time with probability one.

4. Disease’s Extinction

In the present part of the manuscript we explore the parametric conditions for
extinction of the disease for the system (1.1). Before proving the main results, we

initiate with a useful lemma given as follows.

Theorem 4.1. Assume (S(t), E(t),1(t),C(t)) be the solution of system (1.1) with
any initial value (So, Eo, Iy, Co) € RY. Then the solution (S(t), E(t),I(t),C(t)) of
system (1.1) satisfies

lim sup In(eE + (n+ €)1 + a1C) < € N By lw
00 t w+e a4

Y

where w is given as,

0'262 2 a 0'2 € 3 0'2 € (0% 60'2 € 0'262 2 €
[( 12ﬁ1 L@ 5(u42r;3(u+) )/\74/\((”7)2(“;;,322( +u+0) | a(u;r;z(w) 4 61(5;;/)(#+ ))}

Proof: To get our goal we assume a function, P(t) = eE + (u+¢€)I +a,C. First,
we differentiate In P(t) using It¢’s formula to obtain,

€f2 (L+e)fs ayfi
eE+(u+e)l+aC eE+(u+e)l+alC  eE+ (u+e)l+aC

Vof =
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€IS €02CS
(eE+ (p+e)l+aC)N  (eE+ (p+e)] +a,C)N
(b+7)(p+e)(atp+0)C
qy(eE + (u+€)l)

Also,
0?2282 1? B o2e? 32521
2(eE + (n+e)I + a1C)2N?  2(eE+ (p+ €)I + a C)I)2N?
B o3 E? B ao2(p+ €)1?
2eE + (n+ )l + aC)I)?2 2(eE+ (u+ €)1 + a,C)?
areaiC?
2(eE + (u+€)I + a,;C)?

1
§tracA1Vm = —

(4.1) -

eo1115dB, €o9CSdB,
(eE+ (p+e)l+a;C)N  (eE+ (n+€e)l +a;C)N
N eo EdBy (1~ €)os1dBs
eE+ (p+e)l+a,C  eE+ (u+e)l+a,C
a106CdBg
eE+ (n+e)l+aC’

avi(z(t),t) = L(V(x))+

(4.2)

here LV (z) can be estimated as,

€ L €fy 1 { (Uffzﬁ% n a102(p+7) (1 + 6)3)

L+e a4 2 207

/\<(“ )Pt elatutt)  eospt)(ute
4> 2q7y
LBt ) (i + 6)) A U_Z] _
2qy 2
Integrating (4.2) from 0 to ¢, and then dividing both sides by ¢, we have

mP({t) PO _ ef e 1 [ <a§€2gg . alaé(u+v)(u+e)3) L

t t —u+e+a_1_1 2 207y 2

LV (x)

N ((u et atptt)  eolnt)lete  oeBiu+)(nt 6)) }
7y 297 297
' s ! C'SdB,
+ dBy + /
i /0 (Bt tl+aO)N T ) B+t ol + wC)N
' E ! 1dBs
dB
+€U4/0 eE+ (n+e)l 4+ a,C 4—|—(,u—|—e)a5/0 eE+ (u+e)l + a,C
! C
(4.3){‘&10'6/ dBﬁ
0 €E+(M+€)I+&1C
Lastly, taking limit superior of (4.3), one can see that
In P 1
lim — ®) < ¢ + @ ——-w < 0,a.s. U

tmoo  t T p+e a4
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5. Stationary Distribution

Dealing with epidemic models we are often interested in circumstances when
disease prevail in a population. For a deterministic model it is enough to show
that endemic equilibrium is either global attractor or it is globally asymptotically
stable. Nevertheless, there is no endemic equilibrium point for (1.1), therefore we
study ergodic property of the system [27]. In this section, based on the work of
Hasminskii [22], we show that there is an ergodic stationary distribution, which reveals
that the disease will persist. Using the next generation matrix method, we find an
essential parameter to be used in studying the dynamics of the main model. Therefore,
after tedious calculations we can reach to a conclusion that the associated threshold

quantity is defined as,

utl=

RS .— ( peBaq )
0 -— o2 o2 o2 o2 o2 o2
(ht+bit+botz+3+F)Netp+F) 0 +p+3)atp+i+3)

Theorem 5.1. There exist a unique stationary distribution w(-) of the model (1.1)

and it has ergodic property, whenever Ry > 1.

Proof: In order to make the proof more easier we split the proof in parts. First,
we prove condition (A;) of Lemma 2.3. In view of Theorem (3.1), it can be obtained
that for any initial value (S, Ey, Iy, Cy) € RY, there exist a unique global solution
(S,E,I,C) e R}.

Diffusion matrix of system (1.1) is given by

021282 020252 202 0?1282 02C?S52
1N2 _'_ 2N2 _'_0-35 - 1N2 - 2N2 0 O
0?1282 02C?85? 0?1282 020252 2 112
—A - e L+ e + o E 0 0
A=
)
0 0 o212 0
0 0 0 0(2302
also choose
M = min 038% 0 E? 031, 030 3,
(8,E,1,C)eDsCRY.

and we can get the estimation,

6 272 Q2 2,12 a2\ 2

I°S (OLR)
E aij()&& = (Ul + 22 ) (&1 — &)+ 035%¢2
ij=1

N2 N2

FO PG + 03P + g PG + 030
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> 038P + 0BG + 035G + o5 PG + 06 O

> €l

(S,E,I,C) € D,, &= (&,&,8,8) € RL. Hence, the condition (A4;) of Lemma 2.3
holds.

Construction of Lyapunov Function: Let’s construct a C? function, Q :

R:{ — R in the following way,

Q(S,E, I1,C) = (S+E+1+C—alnS—aylnE—azlnl —ayslnC)

1 0+1
+1+%S+E+I+C) InS—Inf

—InC+(S+E+1+0)

(5.1) = i+ Vot Va+ Vit Vit Vi
where description of the parameters a1, as, a3, as and 6 is given as,
b b
ay = o 2 g 2= 3,
p+Bi+Bt+ g +2+% etp+%
b b
as = o2 Gy o2
THp+ G atp+0+ 3
0<d< m Here, we also suppose
3 4 5 6
o} o2 o2 o2 o
Z = b+B+Btdutytatf+ 24+ 2+ 24548
2 2 2 2 2
1
A = 5b ( e qye,@ggQ - > ) -1
(bt+B1+Bat 5+ + 5 ) (etput=5H) (yHpt+ 3 ) (atpt+0+ )
= 5b(R; — 1),
B = sup {b(S—l—E—I—I+C’)9
(S,E,1,C)eRY

1 1
-3 [u—ﬁe(ag\/ai\/ag\/ag)} (S+E+I+C’)1+9} < 00,

1 1
¢ - B-1 [u ~16(oivaival vO-g)] (S10 4 B0 1 40 4 1+9) +z},
2 2 2
+03)8
a2(01 02) +C1} .

Co = sup { SE?

4
(S,B,1,C)eRY

It is not difficult to check,

lim Q(S,E, 1,C) = 0,

0—00, (Svalvc)eRi\UQ
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where U, = (%,g) X (1 g) X (1 g) X (%,g). The function Q(S, E,I,C) have a

o’ o’
minimum point (S, Ey, lo, Co) in the interior of RY. Now we define a non-negative,
C?-function V : Ry — R as,

V(Sa Ea [> C) = Q(S>E>Ia C) - Q(SO>EO>IO>CO)'

Since, the Lyapunov functional (5.1) is the sum of V;, for (i = 1,2,...,6), therefore

we deal with each V;, 1 =1,2,...,6. Using [td's formula, we obtain
alb CL3€E a26205 a4qul
LV = —|(uN+ —
! Q‘*’S+ T "TEN TTC

a(1—q)yl  aaC  ay1S
S BN 0C+

+ b+ ap+ azy + asp + agph + ase + ager + agp + agb.

S _
alﬁlf alﬁzc
TN TN

Use of the relation, a+b+c+d-+e > 5V abede for a, b, c,d, e > 0 leads to the following
estimation,

1
LVi < =5 (a1asazasbpefaq)® + ar (u+ B + Po) + b+ az (e + )
(5.2) tas(V+p) +as(a+p+0),

and

agS%(oil* + 02C?)  ai(0? + o3 + 03)

1
§TraceAVm < SEPN? + 5
(53) CLQO’E CL30’§ CL40'§ .
2 2 2

In view of (5.2) and (5.3) the formula (2.2) gives the inequality,

asS? (0?2 1? + 02C?)

. < -
(5.4) Vi < A+ P

Similarly, we deal with V5 while using It’o formula:

1

(5:5) V=19

(S+E+I+C)",

Voef = bD(S+E+I1+C) —pu(S+E+I1+C)'"

(5.6) —0C(S+E+I1+0C)°

here we assume,

(S+E+I1+0) =a.
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Now
B U%}{;SZ 4 0%]6\']2252 4 a§ 52 _0%1{72252 . afj?;sz 0 0
0.2 2q2 0_2 2q2 0_2 2q2 0.2 2q2
_ 1]{[23 . 1]?[25 1]{725 + 1]C\'[23 _'_O_ZEQ 0 0
AVogw =
’ 0 0 o220
0 0 0 oiC?
a a a a
a a a a
X )
a a a a
a a a a
and
1 025%  o02E%* 02 o2CP
“traceAVy, = (S+E4+T1+0) (22— 4 A= 4 25 | 76
2 2 2 2 2
0
(5.7) = §(S+E+I+C’)1+9(032,\/03\/052,\/0(25).

Using (5.6) and (5.7) in (2.2), we get the following estimation

dVy < b(S+E+I1+C) —pu(S+E+I+0)'°

6
+§(S—|—E+I+C)1+9(032,\/UZV0§\/0§),

< B—%(u—%@(ag\/ai\/ag\/ag)),(Sl+6+E1+9+Il+9+Cl+9),
similarly we also obtain,
(L‘/BS_%_%_%+ﬁl+ﬁ2+u+%§+%§+%§a
(5.8) LV‘*:_§+“+7+%§’
L\@:—%+a+u+9+%§,

| LVe=b—pN —0C <b—puN
Hence, using (5.4), (5.8) and (5.8) in (2.2), we obtain

asS? (0?1 + 02C?) gyl eE  aC b (1 —q)vI
L = — _ - )y - - e
v AT T e c T 5) s S
1 1
+B — §(u — 59 (o3 voivaivag) (S + B 4 10 4+ ')

0'2 O'2 O'2 0'2 0'2
—l-b—l-/@l+ﬁz+4u+’7+0z+9+71+?2+?3+75+76.
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Use of the inequality a + b+ ¢ > 3vabe, a,b,c > 0 implies,

1
peab\' SR +o3C) b (1-gnl
LV = —\— TS §
’ ( 5 ) BTN R
1 1
+B = S(u—50 (o5 Vol vaivag) (S + B 4 I+ C10) + 2.

Construction of Compact Set: Now it need to construct a compact set D
such that we are able to satisfy condition Ay of Lemma 2.1. For this purpose we

define a bounded closed set as,

1
2

1

1 1
_37Q3§C§_3}7
0 0

where 0 < o < 1 is sufficiently small constant satisfying the following conditions,

b
(5.9) 14+C—-—A<0,
%
1 2 2
(510) 1+C1—)\—3(q76a92)3 +a2(0'1g2+ 0'2) SO,
2 2
(5.11) 1+0 - A+ =2+ 22— (1 - e <,
2 2.2
(5.12) 1+cl—A+“22‘71 +“20229 <0,
1 1 2 2 2 2
(5.13) El—W ,u—§9(03\/a4\/a5\/06) ,
1 1 2 2 2 2
(514) EQ—W ,u—§9(03\/a4\/05\/06) y
1 [ 1 2 2 2 2 ]
(515) Eg—w ILL—§9(0'3\/0'4\/0'5\/0'6) 5
1 [ 1 2 2 2 2 ]
(516) E4—W M—§9(03VU4\/0'5\/0'6) .
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In the sequel we will see that E;, © = 1,2,3,4 and C;, « = 1,2 are positive. To avoid

complex calculations, we partition R%\D into eight domains in the following way,

U1
Uz
Us
Uy

Us

1 1
U, = %&EJﬁﬂeRi:[>-E}l%z{@JuxDeRi:C>>—}.

{(S,E,I,C)eR,: 0 < S < o},

( )
{(SEIC')ERi:S < 0, 0 > E},
{(SE[C’)ERi: S < o E > I< 92},
{(S,E,I,C)eR,: 0 < C < o},

1 1
{SEICeR%:;>E}%:{@Emcm3512>?},

92

Further, we prove that LV (S, E,I,C) < —1 on R%\U,, which is equivalent to check
the condition on the above eight domains.
Case 1: If (S, E,I,C) € Uy, we see

LV

(5.17)

<

IN

1
A_3 (qyeaE) 5 ap0iI?S? a03C*S* b (1—q)yI

S 2E2N? 2F2N2 S g
1 1
+B — 5(# - 59 (02V 02V 02V 62) (S0 4+ B0 4 [0 4 01+0) 4 7
by (DB} woil’S aedC’S? (1 gnl
S S 2L2N? 22 N2 g
1 1
+B — 5(# - —9 (0'32, V ai V o—g \/0(25) (51+9 + EU 4o C”@) 3
b ax0i1%5?  as05C?S?
S * 2IE2N?2 2 N2 + b+
1 1
_§(M - 59 (02V 02V 02V 02) (SHH0 4 BI04 [0 4 o0 4 2,

Py
0

In view of (5.9), one can obtain that for a sufficiently small o, LV < —1 for any
(S, E,1,C) € Us.
Case 2: If (S, E,I,C) € Uy, we have

LV

<

y_3 qveaE 5 N a0 ’S®  ay03C2S* b (11— q)7[+
S 2E2N? 2E2N? S S

Y

1 1
+B — 5(,u - 56’ (o3vaiVvarVvay) (ST + B 4 " 00 + 2

CL20'152 CLQU%SZ
2F? 2F?

—\ — 3 (gyeao® )%+ + B+
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1 1
_§(u - 59 (a§ V ai V ag \V, ag) (51+9 Ny Uy & C1+9) 3

oG

(5.18) < —A—3(q760¢g2)%+

From (5.10), we get that for a small enough o, LV < —1 for any (S, E, I,C) € Us.
Case 3: If (S, E,I,C) € Us, we have

LV <

y_3 qveaE 5 N a0 l’S®  ay03C2S* b (11— q)7[+
S 2E2N? 2E2N? S S

1 1
+B — 5 (n— 56’ (032, VoiVoiV gg) (51+9 4 B0 e 0”9) 3

2
1
qveaE\ 3  ay0?I?S?*  ay02C?S* b (1 —q)yI
— A3 ANk
< S ) TN TN S g o
2
(5.19) < —>\+a2201 +a;‘;2 —(1—q)yo+0Ci.

In view of (5.11), we obtain that for a sufficiently small o, LV < —1 for any
(S,E,1,C) € Us.
Case 4: If (S, E,I,C) € Uy, we have

1
_3 <q7€aE) 5 apo?l?S? ap02C?S* b (1-— q)7[+

LV < T 9
< S 2E2N? ' 2E2N? S S
1 1
+B - [u — 303V aivaRvar)| (87 + B 4 I O 1 2,
axoiI?  ay03C?
S —>\ —|— 2E2 2E2 + C17
2 2 2
(5.20) < -+ 214 22C 4o

2 2

In view of (5.12), one can obtain that for a sufficiently small o, LV < —1 for any
(S,E,I,C) € Us.
Case 5: If (S, E,I,C) € Us, we have

1

1 1
LV < —= [,LL—§9(03\/04\/O'5\/U§)51+9] ~ 1 {u——ﬁ(ag\/aw%\/%)sw

1 1
1 u——@ (o3 VoiVaiVog) (E1+€+II+G+CI+9)) — A

QJ

b U=apd g o
Y 22 S g TPt

1
n— = 03\/04\/05\/06)}

IN

+ E;.

NH

(queozE) a2U%S2 a035* b (1 —q)yI
5

146
Q+
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Relation (5.13) suggest that LV < —1 for all (S, E,I,C) € Us.

1
E, = sup {—— {,u——@ (o3 VoiVoiVog) SH@}
(S,E,I,C)eRA 4 2
1 1
- {M ~18(o3voivaival) } (B 4 140 4 0V9) Ay
(5.21) B4z a2025% ay035? 5 qyeal 5o (1 —q)vI
' 2FE? 2F? S S S '
Case 6: If (S, E,I,C) € Ug, we have
1 1
LV < 1 {u — 59 (U§ VoiVaiV gg) E1+9}
1 Lo oy, o, 2., 9y pite
1 u—§9(03\/04\/a5\/06)E
1 1
- (u ~10(o3vaivavad) (8 + 10 4 O1) ) —>\
1
qveaE\ 3  ay0iS?  ay03S?* b (1 —q)yl
-3 LA S A W
< S ) 22 2B S s 07
1
< —2 {,u 9(03\/02\/05\/06)]W+E2.
It follows from (5.14) that LV < —1 for all (S, E,I,C) € Us
1 1
E, = sup { — = [,u — =0 (03 Va;VoiVag) EHO}
(5,B,1,C)eRY 4 2
1 1
1 [,u - 59 (032, Vi Vo:iVag) } (SHG + 1M 4 CHe)
2 02 2
B+ Z
2F? 2F2 e
reaB\® b (1—qpl
5.22 -A-3 - .
(5.22) ( S ) S S

Case 7: If (S, E,I,C) € Uy, we have

1 1
LV < {u — 59 (03 Voi VoV 06) [1+9}

= 03\/04\/05\/06) [1+9}

5l
1 1 140 1+6 1+6
i 5 03\/04\/05\/06)(5 +ET 4+ 0 ) = X +er
qveaFE aga%Sz a035* b (1—q)yI
LA ey
- ( 5 ) 057 22§ R
1 1 1
L 5 03\/04\/05\/06) W—l—Eg.
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It follows from (5.15) that LV < —1 for all (S, E,I,C) € Us.

1 1
E; = sup {——[u——@(ag\/ai\/ag\/ag)flw}
(8,E,I,C)eR: 4 2
1 1
- [u “l@vatvatve) ] (S 4+ B 1 01+0)
2 ¢2 202
ay07S*  a03S
572 57z T B+2Z
a_g(eeBNt b (A —and
S S S '
Case 8: If (S, E,I,C) € Us, we have
1 1 1 1
LV < 1 [,u—??(ag\/ai\/ag\/ag)clw} -1 {M—§9(U§\/ai\/a§\/a§)01+e
1 1
-1 <u — 50 (03 Vi Vo vag) (S™0 + B0 4 10 ) — M
1
qveaE\?  a0?5%  ayo3S? b (1 —q)yl
- 2 BT gz
3(5) 0k? T 2E2 5 R
1 Lo o, o, 2, o 1
< 1 ,u—§6’(03\/a4\/05\/06) W+E4.

So it follows from (5.16) that LV < —1 for all (S, E, I,C) € Us,

1 1
E, = sup {—— [,LL——H (03 VoiVaiVog) CHG]
(8,E,I,C)eR: 4 2
1 1 252
—2 [,u - 59 (03 VoiVa:Vog) ] (S™0+ BV 4 1) 4 QQ;E12

02035 qveaE)% b —qw}
. |

2F? S S
From (5.17)-(5.23), we obtain that for a sufficiently small p,

—I—B+Z—)\—3(

LV(S,E,1,C) < -1, VY(S,E,1,C)€ R}\U,.

Therefore, the condition Ay of Lemma (2.3) is satisfied. By Lemma (2.3), we get that
system (1.1) is ergodic and admits a unique stationary distribution. This completes

the proof.

6. Estimation of Parameters

This part of the article shows approximation of the parameters used in the system
(1.1). We split the proof in various sections. In the first section we estimate the drift
coefficients of the system (1.1), for which we will construct the objective function.
In the next section we will find out normal equations via Least Square Estimation
(LSE) method. It is not possible to obtain the explicit expressions from LSE to get
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drift coefficients. Therefore, we estimate it for the system of stochastic differential
equations (1.1) by other way. After the estimation of drift coefficients we will find the
diffusion coefficients of the SDE. We will use a quadratic variation of the logarithm
of sample paths to estimate the diffusion coefficients of the SDE (1.1). We calculate

all those results which will be used in estimation of the parameters.

Theorem 6.1. If 4 > max {0—;} fori=2,3,---6, then a positive constant C exist
which is independent of t, such that the solution X (t) = (S(t), E(t), 1(t),C(t)) of the
system (1.1) has the property,
tlim sup E| X (t)]* < C.

Proof: It is essay to see that the unique solution, X () of the SDE (1.1) remains

in RY. Let )
¢ =g min {2p — 03,2 — 0F, 2 — 0, 2 — o5} .

Assume a function, V. : R} — Ry :
(6.1) Vo=eMS+E+1+0)%
Applying Itos formula to (6.1) we can find,

Veof = 28(S+E+1+C)(b—uN —0C).

Also,
— 0_%]{[2252 0316\1[2252 _'_ O—§S2 B 0_%]{[2252 B U%]c\;zsz O 0 -
_ol$_gCs dlS O 22 0 0
AVers 0 0 o220
0 0 0 o2C?

[ 268t 268t 268t Debt

2est 2eft 268t 268t

2est 2eft 268t 268t

2est 2eft eS8t 268t

1 262 22 272 2012
§t7’aC€Ach — 26& <032 +J42 052 062 )
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= 03S% + ot B + Mol + eMoi O,

o551 0232SC

VogdB = 28(S+E+1+C) dB, +2¢*(S+ E+1+C) dB,

+265(S + E+ 1 + C)03SdBs +2¢*(S + E+ I + C)o4EdB,

+2e8(S + E + I + C)os1dBs + 26" (S + E + I + C)osCdBs,
and

dV (X (1)) = LV.(X(t))dt+ 26 a18,SIdB; + 26753, SCd B,
+2¢*(S + E + I 4+ C)035dBs + 2¢*'(S + E + I + C)o4EdB,

+2e8(S 4+ E + 1+ O)osIdBs + 25 (S + E + I + O)osCd B,
where the operator LV, : RY — R is given as,

LV.(X(t)) = &S+ E+1+0)?

4288 (SHE+T+C)b—u(S+E+1+0C)—00)

+e03S? + ol B2 + Mol + o C?,

S (S+E+1+C)? —e%(2u— 02)S? 4 2¢5bS — e (2u — 02) E?
(6.2) +2e50E — 5 (2u — o) I? — €51 (2u — 02)C?* 4 2501 + 2e50C.

IN

Using the inequality (a + b+ c+d) < 2(a® +0* + ¢ + d?), a,b,c,d € R we obtain

LV.(X(t) = 26e8(S*+ E? + I* + C%) — (2 — 02)S? + 2¢°'bS

—e8(2u — 02)E? 4 2e5'0E — €51 (2u — 02)I? — €51 (2u — 02)C?
+2e4b1 + 2¢40C,

£e'Q(x),

1 ) 2\’ 2\’ 2\
) = _5(2“_03){ <5_2u—<f§) (E_2u—<f§) <]_2u—0§)
e 2\ 16>
2p — o3 2n—03)? )

Note that the function Q(x) is uniformly bounded, namely,

IN

C := sup Qz) < oo

4
zERY

therefore we have,

LV,(X) =< €8C.
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Integration of (6.2), provide us

U E(S(1), E(t), 1(t), C(t))?

IN
—~
N
—~
S
~—
&
—
o
~
~
—
o
~
Q
—~
o
~—
~—
[\
_|_

This immediately implies,
lim sup E(S(t),E(t),I(t),C(t)?* < C:=

Using the relation a® +b* + 2 +d*> < (a+ b+ c+d)?, for a,b,c,d > 0, we obtain

tlirglosup E|X(t)|* <C.
In this way we get the required proof.
Theorem 6.2. If 2u > 02, 2u > 03, 2u > 02, 2u > o2 hold, then
(1 + €)0g = b — pudy + 03 — qy3 — ady

(6.3) €0y = (1 + )03
qy03 = (a+ p+ 0)0y

t

1 t
(01, g, 03, 04)7 = lim = [ x(s)ds = / yu(dy) a.s
0

t—oo t 0

Proof: For any initial value X(0) = (5(0), E(0),1(0),C(0)) € R, it follows
directly from the SDE (1.1) that

S = S(0) + / (b_ﬁmu) (W) _ BC@SW) _ g

N(u) N(u)
+ (1 = @)y (u) + aC |d(u — To(t) + Ts(0),
6 EO=EO+ [ (ﬁ” (S)(“ + ¢ 185 W+ 9B dw

+ T (t) + Talt) + Yu(t),
1(t) = 1(0) + / (cE(u) — (1 + 1) (w)) d(w) + Ys().
C(t) = C(0) + / (7T () — (o + o+ 0)C(u)) d(u) + T (t),

for t > 0, where Y,;(t) = o; fo gi(w)dB;(u), 1 =1,2,...,6. The quadratic variation of
Yi(t),i=1,2,...,6 is given by

¢
(1, T,] = 02-2/ g (u)du, i=1,2,...,6.
0
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According to Theorem (5.1), Lemma (2.6), and Theorem (6.1) we obtain,

[ ottty <o, [ lotan) <o,
RY RY

tim = [ () (w)ds = /

) viy;o(dy) a.s.,
— 00 0 R4

1
for every X (0) = (5(0), £(0),1(0),C(0)) € R}, and 4,5 = 1,2,...,6. It then follows
that, fort=1,2,...,6,
T, (¢t
lim sup % < 00 a.s.

t—o0
Therefore, due to the strong law of large numbers of martingales, for all i = 1,...,6,

T,
lim i)

t—o0

=0, a.s.

Now we can divide the two sides of (6) by ¢ and then letting ¢t — oo gives

oS(t . . .
tli)rilo ¥ =b— p0y + (1 — q)y03 + aly — fimy — Fama,
. Bt .
thm ¥ = —(u + €)0y + Bimy + Bame,
I(t
tlim % = €Uy — (u+ )03,

Clt
lim ¥ = qy03 — (v + p + 0) 04

t—oo
where
1 [t I 1 [t
m; = lim —/ o5 ds and mo = lim —/ 6ISCds.
t—oo t 0 N t—oo t 0 N
We will show that
limw:(), limwzo, lim@:O, lim@:O, a.s.
t—o0 t—oo t—oo ¢ t—oo ¢

Otherwise, it is positive. When it is positive then it tend to infinity, which contradicts

Theorem 6.1. Hence, we obtain the required assertion (6.3). O

6.1. Discrimination via EM Scheme. In the next steps we get the estimators
b, i, 1, B2, 4, @&, and 6 by applying the technique used in [29].

Let (So, Eo, I, Co)t, (S1, B, I,C)T, ..., (Sn, En, I, Cp)T be the observations
from the system (1.1). For a given step size At and setting (5(0), £(0), 1(0),C(0)) =
(So, Eo, Iy, Co) the EM scheme produces the following discrimination over small in-
tervals [kAt, (k + 1)At]

BilixSi—r BaC1-kSi-k
- N N
I Siy ik — 0 Cr-1S1-k

Ny 77 Ny

S, —Si_r = |b — puSi_k + (1 — q)’y[l_k + aC_i| At

—0q Ea1-k + 0351-kE3 k1,
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I 15— Chi_pSi— IS
Ek — El—k = ﬂl lelk_kl k + 62 ]ifllikl b - (,U‘l‘E)El—k At‘l‘al 1]\? _1 k€11 k
Ch_pSi—
+U2%§2J—k + o3 B _p€a k-1,
1—k
I — Ly = [eErk— (u+y) 1] At + o4ly &5 -1,
Cp—Cir = gyl — (a+ p+0)Ci_y) At 4+ 06C1_kEs5 -1,

where & (1 = 1,2,3,4) is an i.i.d. N(0,1) sequence and & = (&1k, on, Eapy Ea)?
is independent of {(S,, E,, I,,C,)",p < k} for each x. Besides, when i # j,& . is
independent of ¢, ,, for 4,7 = 1,2, 3, 4.

In order to apply the least square estimation, (6.5) is rewritten as,

Sk — Si—k [ VAT - bGilick 5201k (1 —=g)vhir  aCiy
Ok DLk et + VAT
SV At Si—k Ni_g Ni_g a Si—k Si—k
L_kSi—g Ci_ikS1—k
— O ————& 4 — Og————E5 4 _ Sq_ _
o1 N §1,1-k — 02 N, Ea1-k + 035113 k-1,

Ey — Ei_y {@]1 kS1—k 5201—k51—k _ (,u—l-E)] VAL + o1 IS k€11 .

E VAt Ey_ N1y, El—kNl—k Nig

Ci_1S
2%521 K+ 03B 1€ k-1,
1—k
I, — I_ el
I]I_ki\/lA_]; = [ 1k M+7)}V t+oadi—k&s5 -1,
Cr — Cr_y {CNH k }
— = a+pu+0) VAL +osCi_ 1,
C’l_k\/A_t Crx o ) 60118501
from Theorem 6.2 we get,
b 01 03 03 on Uy o
(hte)=——p—+tr——qr——a—, e==(@u+7), ¢y=(a+p+0)—.
V2 Vg Vg o) Vg U3 U3

We will consider a time interval of total length T} divided into n sub-intervals each
of length At so nAt = T;. Hence, as n — oo and At — 0 with nAt = T7, one obtain

1 — 1 [
—= i At — — Jdt, i=1,2,3,4.
nAt;x’ HT/O zi(t) !

1

Thus,
D, 12": =1,2,3,4
UV = — Liky = 1,4,9,4.
n/@:l ’

Objective Function: The objective function for the proposed model is given as,

3 Sk — S1-k N Brli—y
F(h/@ﬁlaﬁ%’yaaaeae) Z |:<Sl . _t Sl . t+ Nl A \/_
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LG g pl(1+2) VAL - I NNy
Nl—k V3 S (%}

1-k

. 2

Uy Chig Ey,—Ei_p  Bili—pSi-k BoCh_S1—k

+a| — — VAL | + — VAt — ———— /AL
(Us Sl—k) ) (El_k\/ At BNy E N1y

N A~ ~ 2
2 VA - ovAL B VAL - (ﬂ + 1) VAL - a <% + 1) \/At>
(%) (%) (%)

(%)
I — Iy, <@2 El_k) )2
+H———=+€|— - VAL
<Il_k\/At vz iy,

+<7C'f “Ck L (g p+6) (1 _ 5 IM) \/A_t)T

Ci_iVAL U3 C1—p, .

Normal Equations: General form of normal equations are given by,
OF oF OF OF OF OF OF OF
%_0, %—0, 8—61_0’ 6—62_0’ 0—7—0, %_0, %—0, E—O.

The normal equations for the proposed underlying model will be estimated in the
succeeding discussion. Since, the calculations are lengthy therefore we shift the large
calculations to appendix, given at end of the manuscript. The first normal equation

is given as,

(6.5) aih + arpp + ar301 + arafa + arsy + arer + ai7f = byy.
From second normal equation (6.5) we get,

(6.6) ag1b + agept + agsBr + azafa + agsy + agex + agrd = by
From the third equation of normal equations (6.5) one can obtain,
(6.7) azib + azap + azzPr + azafa + azsy + azex + azrl = bs;.
Fourth equation of the normal equations (6.5) is given as,

(6.8) agb + asepr + a3 + asafa + assy + ase + ag70 = byy.
Another part of normal equations (6.5) is given as,

(6.9) asib + asapt + as3P1 + asafa + assy + asex + as70 = bs;.
Next part of normal equations (6.5) is given the following form,
(6.10) ag1b + agapt + a3 1 + aga B2 + agsy + assx + agrt = b
Second last part of the normal equations (6.5) is given as,

(6.11) arb + azap + ar3 By + araBr + azsy + azgor + a6 = by

The last part of normal equations (6.5) is given as,

oF a I — I (172 Ei g ) )
i o E—k (22— VAL VAL
Oe ;{ ([1_k\/At \os Ty
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x(@—iﬂ*¢Zavﬁﬂzo

03 Ii—g

n ~ 2 n A
Z Uy Eqi_g Z I, — Il—k) <Uz El—k)
1 (Us Il—k) —1 < I U3 Ly

Solution of Normal Equation: All the preceding calculations give the following

system of equations,

aib + arpp + a3 + arafa + arsy + are + arrl = by
ag1b + agept + ags B + azafa + agsy + agex + agr = by
azib + asapt + azs By + azafa + azsy + azer + azrl = by
agb + agept + aszfBr + asafa + assy + ase + asrd = by
asib + asapt + as3 P + asafa + assy + aser + as70 = bsy
ag1b + asapt + ag3 1 + agafa + agsy + assx + agrl = bey
arb + agap + a3y + azafa + arsy + aze + arrd = by

and
by B\’ (=L (B 0
c (2_11k> At — (k[ 1k)<]1k_2>'
iy \U3 1-k 1 1—k 1—k U3
Where a;; and b;; for 7,5 =1,2,3,---,7 are given in appendix. Thus, we have point

estimators as

Dy, 4 .
2 hi=2 h= 2 A=

~ae () G-l u (i)
At — Iy, L, 03 — o3 Ly )

From (6.3) we can write

A D,
b:— (1 =
D>,U

and

ECLY L) pwidel
S Dy
where
b1 aiz... air air... byp... ayr
D, — ba1 aoa... aor D, - Qo1 ... boy... aor |

b71 Q7 ... a7y arq ... b71... ar7
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a;pr Qi .. b11 ai; Qi2... Qaiy

91 Q922 ... b21 a91 Q922 ... A7
D7 - . 5 D =

ar ary... bp ar Grp... arp

We have estimated the drift coefficients of the SDE (1.1).

165

Estimation of Diffusion Coefficients: Next, we estimate the diffusion coefficients

o;,, © = 1,2,...,6. If we estimate the drift coefficients of the required model, then

we can apply regression analysis approach to give the unbiased estimators ;, i =

1,2,...,6. An efficient and simple method will be used for auto-regression case. The

method hugely relies on the properties of quadratic variation, which do not depend

on the drift coefficients. Using Ito formula, we find

E
(6.12) dlogl = {—(u +79) + 67:| dt + 05dBs(t).

Then, V ¢t > 0.

I(u)

(6.13) logI(t) =logI(0) + /Ot [—(u+7) +€ } du + /Ot os5dBs(u).

It is not difficult to see that, logI(¢) is semimartingales. By the properties of the

quadratic variation, it follows that

2 {/Ot {—(u +7) + 6?((5))} du, /Ot U5dB5(u)} (t)

log I,logI|(t) =

AR AR o

(6.14) + { /O t o5d B (1), /0 t o—5dB5(u)] ().

From equation (6.14) we can write

[ e

/0 t o5dBs(u).

Using Lemma (2.10), and Lemma (2.11) we obtain,

Uot [_(“ ) “?((5)) ] du, /Ot UsdB5<U>] (t)

= /Ot o5 (-(M + ) + 6?&?) dlu, Bs|(t) = 0,

H =

Hy =

similar way we can see that,

GRS CIN RS ok

0,

Jad] @
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[ /0 t 05d B (w), /0 t a5dBl(u)] (t) = o2t.

[logI,logI](t) = o2t, a.s.

and finally,

Consequently,

Following in the same lines one can also obtain,

[log S,log S| (t) = o2t, i=1,2,3,
[log E,log E] (t) = o3t

and
log C,1log O] (t) = o2t a.s.
It then follows that
= % log X, log X;| (t), 1 =1,2,3,4,5,6 a.s.
According to Definition (2.9), when n — oo, At — 0 with ¢t = nAt, we have

1
At

- 1
Z (log Xy, log X, ) n [log X;,log X;] (t), i =1,2,3,4,5,6 a.s.

k=1

Thus, we get the estimators

(3

1 n
~2 j : 2 .
% = Kt (longlOgXﬁ) y V= 17 2’374’5’6 a.s.

k=1
7. Numerical Simulations

In this section, we will give some numerical examples to illustrate our main results
by using Milsteiny Higher order Method [30]. In this way, model (1.1) can be rewritten
as discretized equations,

BileSk  B2CkSk
Ni N,

02C1S 023,C,S
SN, (k= DAL= ZEEEAG - ST - DAL

I.S
— uSp+ (1 — v, + aCy — o1k kvAtSLk

Sk+1 == Sk; + b - Nk

Ulﬁllksk
2N},

2
+03Sk VA3 ), + %Sk(fik — 1)At,

511 S 4 B2CSk

1S
— (1 + ) By + 255 ALe

E = F
k+1 kT N, N, N,
Ulﬂlfksk o2CLSy, a%ﬂzCkSk 2
DA VA - — 1A
RE— 9N, (& r— DAL+ N, &1k + 9N, (& — DAL

2
+osEpV At + %Ek(fik — 1)At,
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2
o
Iiywn = I+ eBy — (p+ 7)1 + o5, VAL + ?Slk(gik —1)At

2
Cri1 = Cr+qvly — (a+ p+0)Ch + +06Crp VAL 3 1, + %Ck(gik —1)At

where, &k, i = 1,2,3 and k=1,2,3...,n are the random variables N(0,1).

Example 7.1. In order to see when the disease go to extinction, we give numerical
simulations under the conditions, C; hold. In Figure 1-2, we choose the parameters
values in system (1.1) as: b = 0.02,4; = 0.2,8; = 0.4, = 0.001,¢q = 0.007,y =
0.5, = 0.02,e = 0.5, = 0.009 and o; = 0.1, ¢+ = 1,2,...,6 with initial values
(100,30,50, 10), we obtain Ry = 0.00025362 < 1 and A = ©@L 4 <= — 15 — 0.20114,
which means that C; hold in Theorem (4.1). In Figure-3, we keep all the parameters
unchanged but increase o; = 0.3, ¢ = 1,2,...,6 for which A = 0.19114 and for
o;, =03, 1 =1,2,...,6 the value of A = 0.17114. It implies that the condition C}
hold for both the values of o;, i = 1,2,...,6 of theorem (4.1). Figure 1-4 verify
theorem (4.1) so that if C; holds, I(¢) will tend to zero exponentially with probability

one.

180

160

120

b

10 20 30 40 50 60 70 80 90 100
Time

140

.
o
S

120 f

H
1}
3
Populations
®
8

Populations
©
3
@
3

@

3
IS
S

IS

S
N
S}

N

S
o

o

o

10 20 30 40 50 60 70 80 90 100
Time

=)

FiGure 2. Behavior
F1GURE 1. Behavior of of  Stochastic model
Deterministic model for for Hepatitis C with
Hepatitis C 0, =0.1,i=1,2,3.



168 Q. BADSHAH, G. RAHMAN, R. P. AGARWAL, S. ISLAM, AND F. JAN

180

350

Stochastic S
Stochastic E | |
Stochastic |
Stochastic C | |

Stochastic S
Stochastic E | 4
Stochastic |
Stochastic C

weor 300

140

250
120

200

,_.
1)
S

Populations
®
8
Populations
=
&
3z

@
3

100

IS
S

50
20

50 60 70 80 90
Time

40

50 60 70 80 90
Time

40 100 0 100

FiIGURE 3. Behavior FIGURE 4. Behavior
of  Stochastic model of Stochastic model
for Hepatitis C with for Hepatitis C with
0;=0.3, 1i=1,2,3 0;=0.5,1=1,2,3

Example 7.2. In this example we choose the parameter values in system (1.1) as
assumed in example (7.1), here we only consider 3 perturbation for R5 < 1 and the
rest of 0, i = 3,4,5,6 are considered to be zero. Its result is explained in figures 7.

We consider the natural death ratio p perturbation for Ry < 1 and the rest of o,

1 = 1,2 are considered to be zero. Its effect on the model is explained in figure 10.
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Example 7.3. We choose the parameter values in system (1.1) as follows: b = 0.3,
01 =0.01, B = 0.4, p=0.003, ¢ = 0.4, v = 0.001, « = 0.02, ¢ = 0.05, § = 0.04. By
calculation, we can get Ry = 1.0958 > 1, and W = 0.6 > 0, That is to say,
the conditions of Theorem (5.1) are satisfied.

I ——— FIGURE FIGURE
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Example 7.4. In this example we choose the parameter values of system (1.1) as in
example (7.3), here we only consider 3 perturbation for B > 1 and the rest of oy,
1 = 3,4,5,6 are considered to be zero. Its results are explained in figures 19, and
then we consider the natural death ratio y perturbation for the RS > 1 and the rest

of g;, i = 1,2 considered to be zero. Its effect on the model is explained in figure 21.
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8. Conclusion Part

Owing to the fact that stochastic mathematical models are more realistic as com-
pared to deterministic. Therefore, we formulated a model that describes the dynamics
of HCV disease. Findings of the present paper include, existence of global solution,
ergodic stationary distribution to the stochastic HCV infection model, disease persis-

tent and parameters estimation.

The discussion centers on the various aspects of a stochastic HCV epidemic model.
A wuseful and efficient function has found to prove the existence of a stationary dis-
tribution for the SDE (1.1). Our results do not depend on the endemic equilibrium
of system (1.1). In addition to the above, we also established sufficient conditions for
extinction of the disease. The paper also uses the quadratic variation to estimate the
diffusion coefficients of the SDE (1.1), a simple approach than the classical regression
analysis. For parameters estimation of the underlying model we used different meth-
ods. The first method shows the way how to estimates the drift coefficients of SDE
(1.1) by using the ergodic theory on the stationary distribution and LSE (least square
estimation). The later method estimates diffusion coefficients of the SDE (1.1) by
quadratic variation of the logarithm of sample paths. Finally, we support our analyt-
ical work through examples and numerical simulations. As a special case, if we put
o; equal to zero, for i = 1,...,4, we obtain the work carried out by [21]. Moreover,
the present work is first attempt to explore stationary of distribution of a stochastic
Hepatitis-C epidemic model. Conclusion of our investigation revealed the fact that

the stochastic stability of disease free equilibrium point depends on, the measure of
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the intensity of Gaussian while noise terms as well as the involved parameters of the
underlying model. Using the influence of impulsive perturbation on the model, (1.1),
we can show some further developments in the HCV model. Also, incorporating var-
ious kinds of incidence rates the present work can be modified as per feasibility of
the incidence rates. For the time being we leave these cases for future work. It will

motivate young researchers to generate novel results in the field.
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9. Appendix
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To avoid tedious calculations we express the preceding step as,

(9.1)

a11b + arapr + a13f1 + araB2 + a5y + argor + ar70 = by

From second normal equation (6.5) we get,

OF &[Sk — Sk
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Similarly we express the above relation as,

(9.2) a21b + agapt + ags3 B + agaB2 + a5y + ager + agrl = boy.

From the third equation of normal equations (6.5) one can obtain,

oF _ zn:|:2(5k_51k \/_+6111k\/_+6201k\/_
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Simplification of the above step leads to,
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Compact form of the last step is given as,
(9.3) az1b + azap + azzBr + azafa + assy + azear + azz0 = bay.

Fourth equation of the normal equations (6.5) is given as,
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Hence, we obtain the following form,

(9.4) aq1b + agopt + as3fr + a4aB2 + a4y + aser + ag76 = byy.
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Another part of normal equations (6.5) is given as,
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Which can be given the following form,
(9.5) as1h + asap + as3Br + asafa + assy + asea + as70 = bsy.

Second last part of the normal equations (6.5) is given as,
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The preceding relation can be written as,
(9.6) arb + agapt + a3 By + azafr + arsy + azea + ar70 = byy.

The last part of normal equations (6.5) is given as,
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