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ABSTRACT. In this study, we consider one class discontinuous Sturm-Liouville equation with

eigenparameter-dependent boundary and transmission conditions. In mathematical physics, when

the string has different densities and loaded additionally with point masses, we encounter with such

problems as spectral problem during the solution of suitable dynamic equations. The aim of this

paper is to investigate the completeness, minimality and basis properties of the considered boundary

value problem.
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1. INTRODUCTION

Boundary value problems with eigenparameter-dependent boundary conditions

have been growing interests with physical applications. These problems are arised

in vibrating string problems when the string has different densities and loaded addi-

tionally with point masses or in thermal conduction problems for a nonhomogenous

thin composed by different materials [1-3]. They are dealed with n-th order ordinary

differential equations in [5] and given examples related to the subject. In these works

it is formed a special Hilbert space which is appropriate to the spectral problem

and in that space boundary value problem is examined by reducing to its equiva-

lent operator equation. Some problems on eigenvalues for second order equation with

spectral parameter in the boundary conditions are considered in [4-11]. Completeness

and basis properties of the system of eigenfunctions of the Sturm-Liouville problem

with a spectral parameter in the boundary conditions are studied in [12-14]. In [15]

Rayleigh-Ritz formula is developed for eigenvalues. The spectral properties of the

boundary value problem with a discontinuous coefficient have been investigated in

[17-20].

We consider the following boundary value problem for the differential equation:

(1) ℓ(u) :≡ −u′′ + q(x)u = λu, x ∈ [−1, 0) ∪ [0, 1) ,
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with the eigenparameter-dependent boundary conditions;

(2) α11u(−1) − α12u
′(−1) − λ(α21u(−1) − α22u

′(−1)) = 0,

(3) β11u(1) − β12u
′(1) + λ (β21u(1) − β22u

′(1)) = 0,

and the eigenparameter-dependent transmission conditions;

(4) u(+0) − u(−0) = 0,

(5) γ2u
′(+0) − γ1u

′(−0) + (λδ1 + δ2)u(0) = 0,

where the real valued function q(x) is continuous in [−1, 0) ∪ (0, 1] and has finite

limits q(±0) = lim
x→±0

q(x), λ is a complex parameter, δk, γl,αij , βij (i, j, k, l = 1, 2) are

positive real numbers. Let be ρ1 := α11a22 − α21α12, ρ2 := β11β22 − β21β12.

Our goal is to investigate the completeness, minimality and basis property of the

eigenfunctions of the boundary value problem (1)-(5). In this work, we introduce a

special inner product in a special space and construct a linear operator A in it so that

the problem (1)-(5) can be interpreted as the eigenvalue problem for A. To study the

basis properties of the system of eigenfunctions of the boundary value problem in the

space L2[−1, 1] ⊕ C
3, we should use the asymptotic formulas for eigenvalues of this

problem.

Let us give the basic definitions which will be used in our main results:

Definition 1.1. [21] A sequence {fj}j≥1
of vectors of a Hilbert space B is called a

basis of this space if every vector f ∈ B can be expanded in a unique way in a series

f =
∞∑

j=1

cjfj , which converges in the norm of the space B.

Definition 1.2. [21] A basis {fj}j≥1
of B is called a Riesz basis if it is obtained from

an orthonormal basis by means of a bounded linear invertible operator.

2. THE OPERATOR THEORETIC FORMULATION

It is convenient to represent the spectral problem (1)-(5) as an eigenvalue problem

for a linear problem in a Hilbert space. We denote by H = L2[−1, 1]⊕C3, the special

Hilbert space of all elements

ũ =




u(x)

u1

u2

u3




∈ H, ṽ =




v(x)

v1

v2

v3




∈ H,
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with the inner product;

(6) (ũ, ṽ) = γ1

0∫

−1

u(x)v(x)dx + γ2

1∫

0

u(x)v(x)dx +
γ1

ρ1

u1v1 +
γ2

ρ2

u2v2 +
1

δ1

u3v3.

In this space we define the operator

Aũ =




−u′′ + q(x)u,

α11u(−1) − α12u
′(−1),

−(β11u(1) − β12u
′(1)),

γ2u
′(+0) − γ1u

′(−0) + δ2u(0),




on the domain

D(A) =





ũ| ũ = (u(x), u1, u2, u3) , u(x), u′(x) ∈ AC ([−1, 0) ∪ (0, 1]) ,

u′(+0) = lim
x→±0

u′(x), ℓ(u) ∈ L2 [−1, 1] , u(+0) − u(−0) = 0,

u1 = α21u(−1) − α22u
′(−1),

u2 = β21u(1) − β22u
′(1), u3 = −δ1u(0),





where AC ([−1, 0) ∪ (0, 1]) is the space of all absolutely continuous functions on the

interval. Obviously, the operator A is well defined in H . It is clear that the spectral

problem (1)-(5) is equivalent to the eigenvalue problem form

(7) Aũ = λũ,

and the eigenvalues of A coincide with those of the problem (1)-(5) (see Lemma 1.4

in [5]). If ũ =




u(x)

u1

u2

u3




∈ D(A) and Aũ = λ0ũ, then for λ = λ0,




−u′′ + q(x)u

α11u(−1) − α12u
′(−1)

− (β11u(1) − β12u
′(1))

γ2u
′(+0) − γ1u

′(−0) + δ2u(0)




= λ0




u(x)

α21u(−1) − α22u
′(−1)

β21u(1) − β22u
′(1)

−δ1u(0)




equality holds. Here the problem (1)-(5) is obtained.

Inversely, if u0(x) is an eigenfunction corresponding to the eigenvalue λ0, u0(x)

is the non-zero solution of equation (1) providing the conditions (2)-(5). Taking

u1 = α21u(−1) − α22u
′(−1),

u2 = β21u(1) − β22u
′(1),

u3 = −δ1u(0),

we find the components of ũ = (u0(x), u1, u2, u3)
T and we get Aũ = λ0ũ.
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Also, there exists a correspondence between eigenfunctions

ũk(x) ↔




uk(x),

α21u(−1) − α22u
′(−1),

β21u(1) − β22u
′(1),

−δ1u(0).




Lemma 2.1. The domain D(A) of the operator A is dense in the space H.

Proof. The proof is similar using the same method in [14] and [19]. Suppose that f̃ ∈

H is orthogonal to all g̃ ∈ D(A) with respect to the (6), where f̃ = (f(x), f1, f2, f3),

g̃ = (g(x), g1,g2,g3). Let C̃∞
0

denotes the set of functions

Φ(x) =

{
ϕ1(x), x ∈ [−1, 0) ,

ϕ2(x), x ∈ (0, 1] ,

where ϕ1(x) ∈ C∞
0

[−1, 0) and ϕ2(x) ∈ C∞
0

(0, 1] . Since C̃∞
0
⊕0 ⊂ D(A) (0 ∈ C3) any

ũ = (u(x), 0, 0, 0) ∈ C̃∞
0

⊕ 0 is orthogonal to f̃ , namely,

(f̃ , ũ) = γ1

0∫

−1

f(x)u(x)dx + γ2

1∫

0

f(x)u(x)dx = (f, u)1,

where (, )1 denotes inner product in L2[−1, 1]. This implies that f(x) is orthogonal

to C̃∞
0

and (f, u)1 = 0. So,

(f̃ , g̃) =
γ1

ρ1

f1g1 +
γ2

ρ2

f2g2 +
1

δ1

f3g3 = 0.

Thus f1 = f2 = f3 = 0 since g1 = α21g(−1) − α22g
′(−1), g2 = β21g(1) − β22g

′(1),

g3 = −δ1g(0) can be chosen arbitrary. Therefore f̃ = (0, 0, 0, 0). Hence, D(A) is dense

in H.

Lemma 2.2. If ρ1 > 0, ρ2 > 0, the operator A is selfadjoint.

Proof. In this case integrating by parts, we obtain that (Af̃, g̃) is real. According to

the Lemma 2.1., we find that the operator A is symmetric in the space H. Boundary

value problem (1)-(5) is solvable for every non-eigenvalue λ and has discrete spectrum.

Since the operator A is symmetric and has discrete spectrum, the operator A is

selfadjoint in H.

3. MAIN RESULTS

Theorem 3.1. The eigenfunctions of the operator A form an orthonormal basis in

the space H = L2[−1, 1] ⊕ C
3.
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Proof. According to [18], the operator A has countable many real eigenvalues, {λk(x)}∞
0

and each one of them convergent to the infinity at the infinity. Then for any number λ

which is not an eigenvalue and arbitrary f̃ ∈ H , it can be found an element ũ ∈ D(A)

satisfying the condition (A − λI) ũ = f̃ . Thus the operator (A − λI) is invertible

except for the isolated eigenvalues. Without loss of generality we assume that the

point λ = 0 is not an eigenvalue. Then we obtain that the bounded inverse operator

A−1 is defined in H. Therefore, the selfadjoint operator A−1 has at most countable

many eigenvalues and each one of them converges to zero at the infinity. So, the

selfadjoint operator A−1 is compact. Applying the Hilbert-Schmidt theorem to this

operator we obtain that the eigenfunctions of the operator A form an orthonormal

basis in the Hilbert space H.

Now we investigate the cases ρ1 > 0, ρ2 = 0 or ρ2 > 0, ρ1 = 0. In these cases, only

one of these boundary conditions depend on spectral parameter λ.

Let us consider the case ρ1 > 0, ρ2 = 0. In the Hilbert space H = L2[−1, 1] ⊕ C2

we define a scalar product

(8) (ũ, ṽ) = γ1

0∫

−1

u(x)v(x)dx + γ2

1∫

0

u(x)v(x)dx +
γ1

ρ1

u1v1 +
1

δ1

u2v2,

for the elements ũ = (u(x), u1, u2) ∈ H and ṽ = (v(x), v1, v2) ∈ H.

We define the operator A1 by

(9) A1ũ =




−u′′ + q(x)u,

α11u(−1) − α12u
′(−1),

γ2u
′(+0) − γ1u

′(−0) + δ2u(0),




and its domain

D(A1) =






ũ| ũ = (u(x), u1, u2) , u(x), u′(x) ∈ AC ([−1, 0) ∪ (0, 1]) ,

u′(+0) = lim
x→±0

u′(x), ℓ(u) ∈ L2 [−1, 1] , u(+0) − u(−0) = 0,

β11u(1) − β12u
′(1) = 0, u1 = α21u(−1) − α22u

′(−1),

u2 = −δ1u(0).






Theorem 3.2. The eigenfunctions of the operator A1 form an orthonormal basis in

the Hilbert space H = L2[−1, 1] ⊕ C2.

Proof. If we concern the following boundary problem

−u′′ + q(x)u = λu, x ∈ [−1, 0) ∪ [0, 1) ,

α11u(−1) − α12u
′(−1) = λ(α21u(−1) − α22u

′(−1)),

β11u(1) − β12u
′(1) = 0,

u(+0) − u(−0) = 0,

γ2u
′(+0) − γ1u

′(−0) + (λδ1 + δ2)u(0) = 0,
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and the operator A1, we can prove this theorem similarly to the proof of the The-

orem 3.1. According to [18], the operator A1 has countable many real eigenvalues,

{λk(x)}∞
0

and each one of them convergent to the infinity at the infinity. Then for any

number λ which is not an eigenvalue and arbitrary f̃ ∈ H , it can be found an element

ũ ∈ D(A) satisfying the condition (A1 − λI) ũ = f̃ . Thus the operator (A1 − λI) is

invertible except for the isolated eigenvalues. We assume that the point λ = 0 is not

an eigenvalue without loss of generality. Then we obtain that the bounded inverse

operator A−1

1
is defined in H. The selfadjoint operator A−1

1
has at most countable

many eigenvalues and each one of them converges to zero at the infinity. So, the

selfadjoint operator A−1

1
is compact. By the spectral theory of compact operator, the

conclusion holds. Hence, the eigenfunctions of the operator A1 form an orthonormal

basis in the Hilbert space H.

Now let us examine the case ρ2 > 0, ρ1 = 0 below the following boundary value

problem:

(10) −u′′ + q(x)u = λu, x ∈ [−1, 0) ∪ [0, 1) ,

(11) α11u(−1) − α12u
′(−1) = 0,

(12) (β11u(1) − β12u
′(1)) + λ (β21u(1) − β22u

′(1)) = 0,

(13) u(+0) − u(−0) = 0,

(14) γ2u
′(+0) − γ1u

′(−0) + (λδ1 + δ2)u(0) = 0.

Theorem 3.3. In the case ρ2 > 0, ρ1 = 0, eigenfunctions of the boundary value

problem (10)-(14) form an orthonormal basis in the Hilbert space H = L2[−1, 1]⊕C2.

Corollary 3.4. For the case ρ1 > 0, ρ2 > 0, the remainder system of eigenfunctions

{un(x)}∞
0

of the boundary problem (1)-(5) obtained by omitting three elements from

them is a complete and minimal system in L2[−1, 1].

Proof. The system of all eigenfunctions ũk(x) = {uk(x), a, b, c} (a, b, c ∈ C) of the

boundary problem (1)-(5) form a basis in H = L2[−1, 1]⊕C3 according to the Theo-

rem 3.1. Hence, the system of the eigenfunctions {ũk(x)}∞
0

is complete and minimal in

H. We denote by P the orthogonal projection defined by the formula P ũk(x) = uk(x).

Then, of course, codimP = 3. According to Lemma 2.1 in [5], the complementary sys-

tem in {P ũk(x)}∞
0

= {uk(x)}∞
0

obtained by omitting three elements from {uk(x)}∞
0

is a complete and minimal system in L2[−1, 1]. Hence, the complementary system of

eigenfunctions {uk(x)}∞
0

of the boundary problem (1)-(5) obtained by omitting three

elements from {uk(x)}∞
0

is a complete and minimal system in L2[−1, 1].

Similarly, we can obtain the following result:
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Corollary 3.5. In the cases ρ1 > 0, ρ2 = 0, or ρ1 = 0, ρ2 > 0, the complementary

systems of eigenfunctions {uk(x)}∞
0

of the boundary problem (10)-(14) obtained by

omitting two elements from them are complete and minimal systems in L2[−1, 1].

Proof. According to the Theorem 3.1; in the space H = L2[−1, 1]⊕C3 the system of

all eigenfunctions ũk(x) = {uk(x), a, c} or ( ũk(x) = {uk(x), b, c} ) (a, b, c ∈ C) of the

boundary problem (1)-(5) form a basis. Therefore, the system of the eigenfunctions

{ũk(x)}∞
0

is complete and minimal in H. We denote by P the orthogonal projection

defined by the formula P ũk(x) = uk(x). Then, codimP = 2. According to Lemma 2.1

in [5], the complementary system in {P ũk(x)}∞
0

= {uk(x)}∞
0

obtained by omitting

two elements from {uk(x)}∞
0

is a complete and minimal system in L2[−1, 1]. Hence,

the complementary system of eigenfunctions {uk(x)}∞
0

of the boundary problem (1)-

(5) obtained by omitting two elements from {uk(x)}∞
0

is a complete and minimal

system in L2[−1, 1].

Let us investigate the cases ρ1 > 0, ρ2 < 0 or ρ1 < 0, ρ2 > 0 for the operator A.

In these cases the operator A is not selfadjoint in the space H. Therefore we need to

introduce the operator J

J =




I 0 0 0

0 sgnρ1 0 0

0 0 sgnρ2 0

0 0 0 I




which is selfadjoint and has a bounded inverse operator in H = L2[−1, 1] ⊕ C3. (I is

unit operator.)

In the case ρ1 > 0, ρ2 < 0 the inner product in H = L2[−1, 1] ⊕ C3 is defined by

the equality

(15) (ũ, ṽ) = γ1

0∫

−1

u(x)v(x)dx + γ2

1∫

0

u(x)v(x)dx +
γ1

ρ1

u1v1 −
γ2

ρ2

u2v2 +
1

δ1

u3v3,

where u(x) ∈ L2[−1, 0) ∪ L2(0, 1] and u1,u2, u3 ∈ C.

In this case, the boundary problem (1)-(5) is equivalent to the eigenvalue problem

(7) or the eigenvalue problem for the operator pencil

(16) (B − λJ) ũ = 0,

such that B = JA in the space H. We obtain that (7) is equivalent to (16).

Lemma 3.6. The operator A is J-selfadjoint in the space H.

Proof. Analogously to Lemma 2.1; we can show that the domain D(A) is dense in

space H. From the definition of operator A and (15), applying two times integration

by parts, (Bũ, ũ) is real. Hence, the operator B is symmetric. Therefore, the operator
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A is J-symmetric in the space H. In this case it can be proved that the operator A

has a discrete spectrum. Taking into consideration that the operator B is symmetric

we have that the operator JA is selfadjoint.

Theorem 3.7. In the case ρ1 > 0, ρ2 = 0, the eigenfunctions of the operator A form

a Riesz basis in the Hilbert space H = L2[−1, 1] ⊕ C
3.

Proof. In this case, analogously to the other cases, it is shown that the operator

B−1 is compact and from this it is obtained that A−1 = B−1J is compact in H,

where J is bounded operator. Taking into consideration the ideas of Theorem 3.1

and according to the Azizov-Iokhvidov Theorem in Section IV of [16], we obtain

that the eigenfunctions of the operator A form a Riesz basis in the Hilbert space

H = L2[−1, 1] ⊕ C3.

Now we consider the cases ρ1 < 0, ρ2 = 0 or ρ1 = 0, ρ2 < 0. For the case ρ1 < 0,

ρ2 = 0 the inner product in H = L2[−1, 1] ⊕ C2 is defined by the equality

(ũ, ṽ) = γ1

0∫

−1

u(x)v(x)dx + γ2

1∫

0

u(x)v(x)dx −
γ1

ρ1

u1v1 +
1

δ1

u2v2,

and we assume that the operator A1 is defined by the equality (9) in the domain

D(A1). Let the operator J1 be

J1 =




I 0 0

0 sgnρ1 0

0 0 I




which is selfadjoint and has a bounded inverse operator in H = L2[−1, 1]⊕C2. In this

case, too, it can be shown that regarding the equality of the eigenvalues problem (7)

and the boundary problem (10)-(14) are proved. Repeating the proof of Theorem 3.1

for this case we have the next theorem:

Theorem 3.8. The eigenfunctions of the operator A1 form a Riesz basis in the space

H = L2[−1, 1] ⊕ C2.

By analogy, the same result can be obtained for the case ρ1 = 0, ρ2 < 0.

In the case ρ1 < 0, ρ2 < 0 we define the inner product in H = L2[−1, 1] ⊕ C3 by

the equality

(ũ, ṽ) = γ1

0∫

−1

u(x)v(x)dx + γ2

1∫

0

u(x)v(x)dx −
γ1

ρ1

u1v1 −
γ2

ρ2

u2v2 +
1

δ1

u3v3,

and we assume that the operator A is defined in the domain D(A). In the considered

case, the boundary problem (1)-(5) is equivalent to the eigenvalues problem (7) or
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the eigenvalues problem for the operators pencil (16) in the space H, where B = JA.

In the similar way of the other cases we obtain the following results:

Theorem 3.9. In the case ρ1 < 0, ρ2 < 0 the eigenfunction of the operator A form a

Riesz basis in the Hilbert space H = L2[−1, 1] ⊕ C
3.

Using this theorem we have the next result:

Corollary 3.10. In the case ρ1 < 0, ρ2 < 0, the complementary system of eigenfunc-

tions of the boundary value problem (1)-(5) obtained by omitting two elements from

them is a complete and minimal system in L2[−1, 1].
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