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ABSTRACT. Some oscillation criteria for the oscillatory behavior of fourth order superlinear

dynamic equations on time scales are established. Criteria are proved that ensure that all solutions

of superlinear and linear equations are oscillatory. Many of our results are new for corresponding

fourth order superlinear differential equations and fourth order superlinear difference equations.

1. INTRODUCTION

This paper deals with the oscillatory behavior of the fourth order superlinear

and/or linear dynamic equation

(1) x∆4 (t) + q (t) xγ (σ (t)) = 0,

on an arbitrary time scale T ⊆ R with sup T = ∞, where q : T → (0,∞) is rd-

continuous function and γ is the ratio of positive odd integers.

We recall that a solution of equation (1) is said to be nonoscillatory if there exists

a t0 ∈ T such that x (t) x (σ (t)) > 0 for all t ∈ [t0,∞) ∩ T; otherwise, it is said to be

oscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

In the last decade, there has been an increasing interest in studying the oscillatory

behavior of first and second order dynamic equations on time scales [1]–[7]. With

respect to dynamic equations on time scales, it is fairly new topic, and for general

basic ideas and background, we refer to [1] and [2]. To the best of our knowledge,

there are no results for the oscillation of equation (1). Therefore the main purpose

of this paper is to establish some new criteria for the oscillation of equation (1). Our

results are new even for the cases when T = R and T = Z.
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2. MAIN RESULTS

In order to prove our main results, we shall use the formula

(2)
(

(x (t))λ
)∆

= λ

∫ 1

0

[hxσ (t) + (1 − h) x (t)]λ−1 x∆ (t) dh,

where x (t) is delta-differentiable and eventually positive or eventually negative, which

is a simple consequence of Keller’s chain rule (see [1, Theorem 1.90]).

The following lemmas are needed in the proof of our main results.

Lemma 1. Assume that x (t) is an eventually positive solution of equation (1). Then

there exists a t0 ∈ T such that one of the following two cases holds:

(I) x (t) > 0, x∆ (t) > 0, x∆∆ (t) > 0, x∆3 (t) > 0, x∆4 (t) < 0(3)

for all t ∈ [t0,∞) ∩ T,

(II) x (t) > 0, x∆ (t) > 0, x∆∆ (t) < 0, x∆3 (t) > 0, x∆4 (t) < 0(4)

for all t ∈ [t0,∞) ∩ T.

The proof is easy and hence omitted.

In [1, Sec. 1.6], the Taylor monomials {hn (t, s)}∞n=0 are defined recursively by

h0 (t, s) = 1, hn+1 (t, s) =

∫ t

s

hn (u, s)∆u, t, s ∈ T ∩ [t0,∞) , n > 1.

Lemma 2 ([4]). Let y (t) be an eventually positive solution of the equation

y∆∆∆ (t) + q̄ (t) yγ (t) = 0

where q̄ (t) ∈ Crd ([t0,∞) , (0,∞)) and γ is as in equation (1). If

(5) y (t) > 0, y∆ (t) > 0, y∆∆ (t) > 0 and y∆∆∆ (t) 6 0 for t1 ∈ [t0,∞) ∩ T,

then

(6) lim inf
t→∞

ty (t)

h2 (t, t0) y∆ (t)
> 1.

The following result is a straightforward extension of Lemma in [4] and hence we

omit the proof.

Lemma 3. Assume that y (t) satisfies (5). If

(7)

∫

∞

t0

q̄ (τ) (h2 (τ, t0))
γ ∆τ = ∞,

then

(8) y∆ (t) > ty∆∆ (t) and y∆ (t) /t is eventually nonincreasing.

Next, we shall state some sufficient conditions for the oscillation of second order

dynamic equation

(9) y∆∆ (t) + Q (t) yγ (σ (t)) = 0,
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where Q : T → (0,∞) is rd-continuous, γ is as in equation (1), which are needed in

the proof of our main results.

Theorem 4. Equation (9) is oscillatory if one of the following conditions holds:

(i)

(10)

∫

∞

t0

Q (s)∆s = ∞ for all γ > 0;

(ii)

(11)

lim sup
t→∞

t

∫

∞

t

Q (s)∆s > c, c > 0, or

∫

∞

t0

∫

∞

s

Q (u)∆u∆s = ∞, when γ > 1;

(iii) There exists a positive nondecreasing delta differentiable function η such that for

every t1 ∈ [t0,∞) ∩ T

(12)



























(a1) lim sup
t→∞

∫ t

t1

[

η (s) Q (s) −
1

s
η∆ (s)

]

∆s = ∞; or

(a2) lim sup
t→∞

∫ t

t1

[

η (s)Q (s) −
1

4

(

η∆ (s)
)2

η (s)

]

∆s = ∞;

when γ = 1.

The proof of Theorem 4 is given in [5] and [6].

For t > t0, we let

Q (t) =

∫

∞

t

∫

∞

s

q (u)∆u∆s.

(13)

{

We assume that there exists a rd-continuous function g : T → T such

that g(t) < t, g(t) is non–decreasing for t > t0 and limt→∞ g(t) = ∞.

We also let φ(t) = t − g(t) for t ≥ t0, and assume that

(14)

∫

∞

t0

(φ(s)h2(g(s), t0))
γ q(u)∆u = ∞.

Now, we establish the following oscillation result for superlinear (γ > 1) as well

as linear (γ = 1) equation (1).

Theorem 5. Let γ > 1 and conditions (13) and (14), and condition (11) when γ > 1,

and (12) when γ = 1 hold. Moreover, assume that there exists a positive function

ξ (t) ∈ C1
rd ([t0,∞) , R) such that for every constant k > 0, and t > t1 ∈ [t0,∞) ∩ T

(15) lim sup
t→∞

∫ t

t1

[(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) − k
ξ∆ (s)

s

]

∆s = ∞,

then equation (1) is oscillatory.
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Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t >

t0 ∈ T. Then by Lemma 1, there are two cases to consider:

Assume that x (t) satisfies Case (I). Then

x (t) = x (g(t)) +

∫ t

g(t)

x∆ (s)∆s

and since x∆(t) is an increasing function for t > t0, we get

(16) x (t) > (t − g(t))x∆ (g(t)) = φ(t)x∆ (g(t)) for t > t1 > t0.

Using (16) in equation (1) and setting y (t) = x∆ (t) in the resulting inequality, we

have

(17) y∆∆∆ (t) + (φ(t))γ q (t) yγ (g(t)) 6 0 for t > t1.

Define

(18) W (t) = ξ (t)
y∆∆ (t)

(y∆ (t))γ for t > t1.

Then W (t) > 0 for t > t1 and by using the product rule, we find

W∆ (t) = ξ∆ (t)
y∆∆ (t)

(y∆ (t))γ + ξσ (t)

(

y∆∆∆ (t)
(

y∆ (t)
)γ

− y∆∆ (t)
((

y∆ (t)
)γ)∆

(y∆ (t))γ (y∆ (σ (t)))γ

)

= ξ∆ (t)
y∆∆ (t)

(y∆ (t))γ + ξσ (t)
y∆∆∆ (t)

(y∆ (σ (t)))γ − ξσ (t)

((

y∆ (t)
)γ)∆

(y∆ (t))γ (y∆ (σ (t)))γ

for t > t1.(19)

Using (17)–(19), we get

W∆ (t) 6 −φγ(t)ξσ (t) q (t)

(

y (g(t))

y∆ (σ (t))

)γ

+ ξ∆ (t)
y∆∆ (t)

(y∆ (t))γ

− ξσ (t)

((

y∆ (t)
)γ)∆

(y∆ (t))γ (y∆ (σ (t)))γ for t > t1.(20)

Thus,

(21) W∆ (t) 6 −φγ(t)ξσ (t) q (t)

(

y (g(t))

y∆ (σ (t))

)γ

+ ξ∆ (t)
y∆∆ (t)

(y∆ (t))γ for t > t1.

From (6) and (8), for any constant c, 0 < c < 1, we obtain
(

y (g(t))

y∆ (σ (t))

)γ

=

(

y (g(t))

y∆ (g(t))

)γ (
y∆ (g(t))

y∆ (σ (t))

)γ

>

(

c
h2 (g(t), t0)

g(t)

)γ (
g(t)

σ (t)

)γ

for t > t1.(22)

Also from (8), there exists a t2 > t1 ∈ [t0,∞) ∩ T such that

(23) y∆ (t) > ty∆∆ (t) for t > t2.
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Using (22) and (23) in (21), we get

(24) W∆ (t) 6 −cγ

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

ξσ (t) q (t)+ ξ∆ (t)
1

t

(

y∆ (t)
)1−γ

for t > t2.

Since y∆(t) is an increasing function for t > t1, there exist a constant c2 > 0 such

that

(25) y∆ (t) > c1 for t > t2.

Using (25) in (24), we get

c−γW∆ (t) 6 −

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

ξσ (t) q (t) + c−γc1−γ
1

ξ∆ (t)

t
for t > t2.

Integrating the above inequality from t2 to t > t2, we have

−c−γW (t2) 6 −

∫ t

t2

[(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) − C

(

ξ∆ (s)

s

)]

∆s,

where C = c−γc1−γ
1 , which yields

lim sup
t→∞

∫ t

t2

[(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) − C

(

ξ∆ (s)

s

)]

∆s

6 c−γW (t2) < ∞ for all t > t2,

which contradicts (15).

Assume that x (t) satisfies Case (II). Integrating equation (1) from t > t0 to u > t

and letting u → ∞, we get

(26) x∆∆∆ (t) >

(
∫

∞

t

q (s) ∆s

)

xγ (σ (t)) for t > t0.

Integrating (26) from t > t0 to u > t and letting u → ∞, we have

−x∆∆ (t) >

(
∫

∞

t

∫

∞

s

q (τ) ∆τ∆s

)

xγ (σ (t)) for t > t0,

or

(27) x∆∆ (t) + Q (t) xγ (σ (t)) 6 0 for t > t0.

By a comparison result (see [7]), the equation

(28) y∆∆ (t) + Q (t) yγ (σ (t)) = 0

has a positive solution, while condition (11) or (12) implies the oscillation of equation

(28), a contradiction. This completes the proof.

The following corollary is immediate.

Corollary 6. In Theorem 5, let the condition (15) be replaced by

(29) lim sup
t→∞

∫ t

t1

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s)∆s = ∞,
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and

(30) lim
t→∞

∫ t

t1

ξ∆ (s)

s
∆s < ∞,

then the conclusion of Theorem 5 holds.

Next, we present the following result.

Theorem 7. Let γ > 1, conditions (11) and (14) hold and assume that there exists

a function ξ (t) ∈ C2
rd ([t0,∞) , R) such that

(31) ξ (t) > 0, ξ∆ (t) > 0 and ξ∆∆ (t) 6 0 for t > t0.

If for t > t1 ∈ [t0,∞) ∩ T

(32) lim sup
t→∞

∫ t

t1

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s)∆s = ∞,

then equation (1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t > t0.

Then by Lemma 1, there are two cases to consider. The proof of Case (II) is similar

to that of Theorem 5 - Case (II) and hence omitted. Now, we consider Case (I). As

in the proof of Theorem 5 we obtain the inequality (17). Next, we define W by (18)

and apply the product rule to

W (t) =
(

ξ (t) y∆∆ (t)
) (

y∆ (t)
)

−γ
for t > t1 ∈ [t0,∞) ∩ T

to find

W∆ (t) =
[

ξ∆ (t) y∆∆ (t) + ξσ (t) y∆∆∆ (t)
] (

y∆ (σ (t))
)

−γ

+ ξ (t) y∆∆ (t)
(

(

y∆ (t)
)

−γ
)∆

.

Since y∆∆ (t) > 0 and
(

(

y∆ (t)
)

−γ
)∆

6 0 for t > t1, we see that

(33)

W∆ (t) 6 ξ∆ (t) y∆∆ (t)
(

y∆ (σ (t))
)

−γ
− φγ(t)ξσ (t) q (t)

yγ (g(t))

(y∆ (σ (t)))γ for t > t1.

As in the proof of Theorem 5, we obtain (22) and hence (33) becomes

W∆ (t) 6 ξ∆ (t) y∆∆ (t)
(

y∆ (σ (t))
)

−γ

− ξσ (t) φγ(t)q (t)

(

ch2 (g(t), t0)

g(t)

)γ (
g(t)

σ (t)

)γ

for t > t1.(34)

By applying (2), we have

(

(

y∆ (t)
)1−γ

)∆

= (1 − γ)

∫ 1

0

[

hy∆ (σ (t)) + (1 − h) y∆ (t)
]

−γ
y∆∆ (t) dh

6 (1 − γ)

∫ 1

0

[

hy∆ (σ (t)) + (1 − h) y∆ (σ (t))
]

−γ
y∆∆ (t) dh

= (1 − γ)
(

y∆ (σ (t))
)

−γ
y∆∆ (t) .(35)
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Using (35) in (34), we get

W∆ (t) 6
1

1 − γ
ξ∆ (t)

(

(

y∆ (t)
)1−γ

)∆

− cγ

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

ξσ (t) q (t) for t > t1.

Integrating this inequality from t1 to t, we obtain

− W (t1) 6 W (t) − W (t1) 6
1

1 − γ

[

ξ∆ (t)
(

y∆ (t)
)1−γ

− ξ∆ (t1)
(

y∆ (t1)
)1−γ

]

−
1

1 − γ

∫ t

t1

ξ∆∆ (s)
(

y∆ (s)
)1−γ

∆s − cγ

∫ t

t1

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) ∆s.

Using condition (31) in the above inequality, we get
∫ t

t1

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) ∆s 6 W (t1) < ∞.

Taking lim sup of both sides of the above inequality as t → ∞, we obtain a contra-

diction to condition (32). This completes the proof.

The following corollary is immediate.

Corollary 8. In Theorem 7, let conditions (31) and (32) be replaced by

lim sup
t→∞

∫ t

t1

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

σ (s) q (s) ∆s = ∞,

then the conclusion of Theorem 7 holds.

Proof. The proof is similar to that of Theorem 7 by setting ξ (t) = t.

Finally, we establish the following result.

Theorem 9. In Theorem 5, let condition (15) be replaced by: for every constant

β > 0

(36) lim sup
t→∞

∫ t

t1

[

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

ξσ (s) q (s) − β

(

σ (s)

s

)γ
(

ξ∆ (s)
)2

ξσ (s)

]

∆s = ∞,

then the conclusion of Theorem 5 holds.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t > t0.

Then by Lemma 1, there are two cases to consider and the proof of Case (II) is

similar to that of Theorem 5 - Case (II) and hence omitted. Now, we consider Case

(I). Proceeding as in the proof of Theorem 5 we obtain (17) and by defining W as in

(18), we obtain (19) and (22), that is,

W∆ (t) 6 −cγξσ (t) q (t)

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

+
ξ∆ (t)

ξ (t)
W (t)

− ξσ (t)
y∆∆ (t)

((

y∆ (t)
)γ)∆

(y∆ (t))γ (y∆ (σ (t)))γ for t > t1.(37)
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From (2), γ > 1, we have

((

y∆ (t)
)γ)∆

= γ

∫ 1

0

[

hy∆ (σ (t)) + (1 − h) y∆ (t)
]γ−1

y∆∆ (t) dh

> γ
(

y∆ (t)
)γ−1

y∆∆ (t) > γ
(

y∆ (t1)
)γ−1

y∆∆ (t) := Cy∆∆ (t) for t > t1,

where C = γ
(

y∆ (t1)
)γ−1

. Thus, (37) takes the form

W∆ (t) 6 −cγξσ (t) q (t)

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

+
ξ∆ (t)

ξ (t)
W (t)

− Cξσ (t)

(

y∆∆ (t)
)2

(y∆ (t))γ (y∆ (σ (t)))γ for t > t1.(38)

By (8), we see that y∆ (t) /t is nonincreasing, and hence

(39) y∆ (t) >

(

t

σ (t)

)

y∆ (σ (t)) for t > t1.

Using (39) in (38), we have

W∆ (t) 6 −cγξσ (t) q (t)

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

+
ξ∆ (t)

ξ (t)
W (t)

− C

(

t

σ (t)

)γ
ξ∆ (t)

ξ2 (t)
W 2 (t) for t > t1.(40)

By completing the square on the right-hand side of (40), we find

c−γW∆ (t) 6 −ξσ (t) q (t)

(

φ(t)

σ(t)
h2 (g(t), t0)

)γ

+
1

4cγC

(

σ (t)

t

)γ
(

ξ∆ (t)
)2

ξσ (t)
for t > t1.

Integrating this inequality from t1 to t, we have

−c−γW (t1) 6 c−γ (W (t) − W (t1))

6 −

∫ t

t1

[

ξσ (s) q (s)

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

− a

(

σ (s)

s

)γ
(

ξ∆ (s)
)2

ξσ (s)

]

∆s,

which yields
∫ t

t1

[

ξσ (s) q (s)

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

− a

(

σ (s)

s

)γ
(

ξ∆ (s)
)2

ξσ (s)

]

∆s 6 c−γW (t1) < ∞,

where a = 1/4cγC, which contradicts (36). This completes the proof.

As an example, we let ξ (t) = 1 or t in Theorem 9 and obtain the following

immediate result.

Corollary 10. In Theorem 9, let condition (36) be replaced by: for every constant

β > 0

(41) lim sup
t→∞

∫ t

t1

[

σ (s) q (s)

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

−
β

σ (s)

(

σ (s)

s

)γ]

∆s = ∞,

then the conclusion of Theorem 9 holds.

Proof. Set ξ (t) = t in the proof of Theorem 9.
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Corollary 11. In Theorem 9, let condition (36) be replaced by:

(42) lim sup
t→∞

∫ t

t1

q (s)

(

φ(s)

σ(s)
h2 (g(s), t0)

)γ

∆s = ∞,

then the conclusion of Theorem 9 holds.

Proof. Set ξ (t) = 1 in the proof of Theorem 9.

Next, let T = R. In this case equation (1) takes the form

(43) x(4) (t) + q (t)xγ (σ (t)) = 0.

Now Theorem 9 when applied to equation (43) becomes:

Theorem 12. Let γ > 1,and condition (13) with T = R hold,
∫

∞

t0

(

(s − g(s))g2(s)
)γ

q (s) ds = ∞,

∫

∞

t0

∫

∞

s

Q (u) duds = ∞, when λ > 1

and assume that there exist two nondecreasing functions η (t) , ξ (t) ∈ C1 ([t0,∞) , (0,∞))

such that

lim sup
t→∞

∫ t

t1

[

η (s)Q (s) −
1

4

(η′ (s))2

η (s)

]

ds = ∞, when γ = 1,

where

Q (t) =

∫

∞

t

∫

∞

s

q (u) duds.

If for every constant β > 0, t > t1 ∈ [t0,∞) ∩ T

lim sup
t→∞

∫ t

t1

[

sλξ (s) q (s) − β
(ξ′ (s))2

ξ (s)

]

ds = ∞,

then equation (43) is oscillatory.

When T = Z. In this discrete case equation (1) becomes

(44) ∆4x (t) + q (t)xλ (t + 1) = 0.

Now, Theorem 5 when applied to equation (44) takes the form:

Theorem 13. Let γ > 1, and condition (13) with T = Z hold,
∞
∑

s=t0

(

(s − g(s)) g2(s)
)

qγ (s) = ∞,

∞
∑

s=t0

∞
∑

u=s

Q (u) = ∞, when λ > 1

and there exist two positive nondecreasing sequences {η (t)} and {ξ (t)} such that

lim sup
t→∞

t−1
∑

s=t1>t0

[

η (s) Q (s) −
(∆η (s))2

4η (s)

]

= ∞ when γ = 1,
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where

Q (t) =

∞
∑

s=t

∞
∑

u=s

q (u) .

If for every constant k > 0, and t > t1,

lim sup
t→∞

t
∑

s=t0

[(

s3

s + 1

)γ

ξ (s + 1) q (s) − k
∆ξ (s)

s

]

= ∞,

then equation (44) is oscillatory.

Remark 14. The results of this paper are presented in a form which is essentially

new even for the corresponding differential equation (43) and difference equation (44).

The obtained results are also extendable to delay dynamic equations of the form

x∆4 (t) + q (t) (xσ (τ (t)))λ = 0,

where τ : T → T satisfies τ (t) 6 t for t ∈ T, τ(t) is nondecreasing and lim
t→∞

τ (t) = ∞.

Remark 15. The literature is filled with many criteria for the oscillation of the

second order dynamic equations of type (9), and so, one may apply those results

rather than presented here.

Remark 16. We may employ other types of time scales, e.g., T = hZ with h > 0,

T = qN0 with q > 1, T = N
2
0 etc., see [1] and [2]. The details are left to the reader.
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