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1. INTRODUCTION

Throughout the paper, Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a

smooth boundary ∂Ω, p, q > N and F : Ω×R2 → R is a function such that F (·, t1, t2)
is continuous in Ω for all (t1, t2) ∈ R2 and F (x, ·, ·) is C1 in R2 for every x ∈ Ω, and

Fs denotes the partial derivative of F with respect to s.

We are interested in establishing the existence of at least three weak solutions to

the following boundary value systems

(1.1)











−∆pu + a(x)|u|p−2u = λFu(x, u, v) in Ω,

−∆qv + b(x)|v|q−2v = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where ∆su =div(|∇u|s−2∇u) is the s-Laplacian operator, a, b ∈ L∞(Ω) with essinfΩa ≥
0 and essinfΩb ≥ 0, and λ is a positive parameter, based on a very recent three critical

points theorem due to Bonanno and Marano [5].
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In the sequel, X will denote the Sobolev space W 1,p
0 (Ω)×W 1,q

0 (Ω) equipped with

the norm

‖(u, v)‖ = ‖u‖ + ‖v‖,
where

‖u‖ =

(
∫

Ω

|∇u(x)|pdx

)1/p

and

‖v‖ =

(
∫

Ω

|∇v(x)|qdx

)1/q

.

We define

‖u‖1 =

(
∫

Ω

(|∇u(x)|p + a(x)|u(x)|p)dx

)1/p

and

‖v‖2 =

(
∫

Ω

(|∇v(x)|q + b(x)|v(x)|q)dx

)1/q

.

Put

(1.2) k = max

{

sup
u∈W 1,p

0 (Ω)\{0}

maxx∈Ω |u(x)|p
‖u‖p

, sup
v∈W 1,q

0 (Ω)\{0}

maxx∈Ω |v(x)|q
‖v‖q

}

.

Since p, q > N , one has k < +∞. Moreover, from [20] one has

sup
u∈W 1,p

0 (Ω)\{0}

maxx∈Ω |u(x)|
‖u‖ ≤ N−1/p

√
π

[Γ(1 +
N

2
)]1/N (

p − 1

p − N
)1−1/p[m(Ω)]1/N−1/p

and

sup
v∈W 1,q

0 (Ω)\{0}

maxx∈Ω |v(x)|
‖v‖ ≤ N−1/q

√
π

[Γ(1 +
N

2
)]1/N (

q − 1

q − N
)1−1/q[m(Ω)]1/N−1/q

where m(Ω) is the Lebesgue measure of the set Ω, and equality occurs when Ω is a

ball.

Clearly, one has

‖u‖ ≤ ‖u‖1 ≤ (1 + ‖a‖∞m(Ω)k)1/p‖u‖

and

(1.3)

‖v‖ ≤ ‖v‖2 ≤ (1 + ‖b‖∞m(Ω)k)1/q‖v‖.
Hence, in W 1,p

0 (Ω) × W 1,q
0 (Ω) the norm

‖(u, v)‖1 = ‖u‖1 + ‖v‖2

is equivalent to the usual one.

For all c > 0 we denote by K1(c) the set

(1.4)

{

(t1, t2) ∈ R2 :
|t1|p
p

+
|t2|q
q

≤ c

}

.
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By a solution (weak) of problem (1), we mean any (u, v) ∈ X such that
∫

Ω

(

|∇u(x)|p−2∇u(x)∇h1(x) + a(x)|u(x)|p−2u(x)h1(x)
)

dx

+

∫

Ω

(

|∇v(x)|q−2∇v(x)∇h2(x) + b(x)|v(x)|q−2v(x)h2(x)
)

dx

−λ

∫

Ω

(Fu(x, u(x), v(x))h1(x) + Fv(x, u(x), v(x))h2(x)) dx = 0

for every (h1, h2) ∈ X.

A special case of our main result is the following theorem.

Theorem 0. Let Ω ⊆ R2 be a non-empty bounded open set with boundary of

class C1. Let f, g : R2 → R be two continuous functions such that the differential

1-form w := f(ξ, η)dξ+g(ξ, η)dη is integrable and let F be a primitive of w such that

F (0, 0) = 0, F (d1, d2) > 0 for some d1, d2 > 0 and F (ξ, η) ≥ 0 in [0, d1] × [0, d2]. Fix

p, q > 2 and assume that

lim inf
(ξ,η)→(0,0)

F (ξ, η)
|ξ|p

p
+ |η|q

q

= lim sup
|ξ|→+∞, |η|→+∞

F (ξ, η)
|ξ|p

p
+ |η|q

q

= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗the problem

(1.5)











−∆pu = λf(u, v) in Ω,

−∆qu = λg(u, v) in Ω,

u = v = 0 on ∂Ω

admits at least three weak solutions.

In the literature many papers [1,2,3,7–13,17,18] discuss quasilinear elliptic sys-

tems. For example in [9] the authors studied a class of quasilinear elliptic systems

involving the p-Laplacian operator where the right hand side is closely related to

the critical Sobolev exponent and they proved the existence of at least one nontrivial

solution under suitable assumptions on the nonlinearities. In [8], Y. Bozhkova, E. Mi-

tidieri using the fibering method, introduced by Pohozaev, established the existence

of multiple solutions for a Dirichlet problem associated with a quasilinear system

involving a pair of (p, q)-Laplacian operators. In [12], A. Kristály using an abstract

critical point result of B. Ricceri established the existence of an interval Λ ⊆ [0, +∞[

such that for each λ ∈ Λ the quasilinear elliptic system

(1.6)











−∆pu = λFu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω

where Ω is a strip-like domain and λ > 0 is a parameter, has at least two distinct

nontrivial solutions. In [18], the authors studied the Nehari manifold for a class

of quasilinear elliptic systems involving a pair of (p, q)-Laplacian operators and a

parameter, and proved the existence of a nonnegative solution for the system by
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discussing properties of the Nehari manifold, and they obtained global bifurcation

results. We also refer the reader to [1,2,13] where the three critical points theorem of

B. Ricceri [15] is used. For example, Chun Li and Chun-Lei Tang in [13] established

the existence of an interval Λ ⊆ [0, +∞[ and a positive real number ρ such that

for each λ ∈ Λ problem (3) admits at least three weak solutions whose norms in

W 1,p
0 (Ω) ×W 1,q

0 (Ω) are less than ρ, and in [1] some similar results for the quasilinear

elliptic system

(1.7)































∆p1u1 + λFu1(x, u1, u2, . . . , un) = 0 in Ω,

∆p2u2 + λFu2(x, u1, u2, . . . , un) = 0 in Ω,

· · ·
∆pnun + λFun(x, u1, u2, . . . , un) = 0 in Ω,

ui = 0 for 1 ≤ i ≤ n on ∂Ω

were obtained. Also, in [4], G. Bonanno and P. Candito using Ricceri’s three critical

points theorem, proved the existence of an interval Λ ⊆ [0, +∞[ and a positive real

number q such that for each λ ∈ Λ the problem

(1.8)

{

−∆pu + a(x)|u|p−2u = λf(x, u) in Ω,
∂u
∂υ

= 0 on ∂Ω

where Ω ⊂ RN (N ≥ 1) is a nonempty bounded open set with a boundary ∂Ω of class

C1, a ∈ L∞(Ω) with ess infΩ a > 0, p > N , λ > 0, f : Ω×R → R is a function and υ

is the outward unit normal to ∂Ω, admits at least three weak solutions whose norms

in W 1,p(Ω) are less than q.

For other basic notations and definitions, we refer the reader to [6,14,16] and the

references therein.

2. MAIN RESULTS

First we here recall for the reader’s convenience Theorem 2.6 of [5].

Theorem A. (see [5, Theorem 2.6]) Let X be a reflexive real Banach space, let

Φ : X −→ R be a sequentially weakly lower semicontinuous, coercive and continuously

Gâteaux differentiable whose Gâteaux derivative admits a continuous inverse on X∗,

and let Ψ : X −→ R be a sequentially weakly upper semicontinuous and continuously

Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that

there exist r ∈ R and u1 ∈ X with 0 < r < Φ(u1), such that

i. supu∈Φ−1(]−∞,r]) Ψ(u) < rΨ(u1)
Φ(u1)

,

ii. for each λ ∈ Λr :=]Φ(u1)
Ψ(u1)

, r
supu∈Φ−1(]−∞,r]) Ψ(u)

[ the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ−λΨ has at least three distinct critical points

in X.

We need the following proposition in the proof of Theorem 1.
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Proposition 1. Let T : X → X∗ be the operator defined by

T (u, v)(h1, h2) =

∫

Ω

(|∇u(x)|p−2∇u(x)∇h1(x) + a(x)|u(x)|p−2u(x)h1(x))dx

+

∫

Ω

(|∇v(x)|q−2∇v(x)∇h2(x) + b(x)|v(x)|q−2v(x)h2(x))dx

for every (u, v), (h1, h2) ∈ X. Then T admits a continuous inverse on X∗.

Proof. Taking into account (2.2) of [19] for every x, y ∈ RN there exists a

positive constant cp such that

〈|x|p−2x − |y|p−2y, x− y〉 ≥ cp|x − y|p

where 〈·, ·〉 denotes the usual inner product in RN . Thus, it is easy to see that

(T (u1, v1) − T (u2, v2))(u1 − u2, v1 − v2) ≥ min{cp, cq}(‖u1 − u2)‖p
1 + ‖v1 − v2)‖q

2)

for every (u1, v1), (u2, v2) ∈ X, which means that T is uniformly monotone. Therefore,

since T is coercive and hemicontinuous in X, by applying Theorem 26.A. of [21], we

have that T admits a continuous inverse on X∗. �

Now, we state our main result:

Theorem 1. Let F : Ω×R2 → R be a function such that F (·, t1, t2) is continuous

in Ω for all (t1, t2) ∈ R2, F (x, ·, ·) is C1 in R2 and F (x, 0, 0) = 0 for every x ∈ Ω.

Assume that there exist a positive constant r and a function w = (w1, w2) ∈ X such

that

(α1)
‖w1‖

p
1

p
+

‖w2‖
q
2

q
> r;

(α2)
R

Ω
sup(t1,t2)∈K1(kr) F (x,t1,t2)dx

r
<

R

Ω F (x,w1(x),w2(x))dx

‖w1‖
p
1

p
+

‖w2‖
q
2

q

where K1(kr) = {(t1, t2) ∈ R2;

|t1|p

p
+ |t2|q

q
≤ kr} (see (4)) and k is given by (2);

(α3) lim sup|t1|→+∞, |t2|→+∞
F (x,t1,t2)
|t1|

p

p
+

|t2|
q

q

<
R

Ω sup(t1,t2)∈K1(kr) F (x,t1,t2)dx

m(Ω)kr
uniformly with re-

spect to x ∈ Ω.

Then, for each λ ∈ Λ1 :=

]

‖w1‖
p
1

p
+

‖w2‖
q
2

q
R

Ω
F (x,w1(x),w2(x))dx

, r
R

Ω
sup(t1,t2)∈K1(kr) F (x,t1,t2)dx

[

the problem

(1) admits at least three distinct weak solutions in X.

Proof: In order to apply Theorem A, we begin by taking X = W 1,p
0 (Ω)×W 1,q

0 (Ω)

endowed with the norm ‖(u, v)‖1 as defined before. Moreover, put

(2.1) Φ(u, v) =
1

p
‖u‖p

1 +
1

q
‖v‖q

2

and

(2.2) Ψ(u, v) =

∫

Ω

F (x, u(x), v(x))dx

for each (u, v) ∈ X. Since p, q > N , X is compactly embedded in C0(Ω)×C0(Ω) and it

is well known that Φ and Ψ are well defined and continuously Gâteaux differentiable
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functionals whose Gâteaux derivatives at the point (u, v) ∈ X are the functionals

Φ′(u, v), Ψ′(u, v) ∈ X∗, given by

Φ′(u, v)(h1, h2) =

∫

Ω

(|∇u(x)|p−2∇u(x)∇h1(x) + a(x)|u(x)|p−2u(x)h1(x))dx

+

∫

Ω

(|∇v(x)|q−2∇v(x)∇h2(x) + b(x)|v(x)|q−2v(x)h2(x))dx

and

Ψ′(u, v)(h1, h2) = (

∫

Ω

Fu(x, u(x), v(x))h1(x)dx +

∫

Ω

Fv(x, u(x), v(x))h2(x)dx)

for every (h1, h2) ∈ X, respectively, as well as Ψ is sequentially weakly upper semi-

continuous. We claim that Ψ′ : X → X∗ is a compact operator. Indeed, for fixed

(u, v) ∈ X, assume (un, vn) → (u, v) weakly in X as n → +∞. Then (un, vn) → (u, v)

strongly in C(Ω). Since F (x, ·, ·) is C1 in R2 for every x ∈ Ω, so it is continuous in

R2 for every x ∈ Ω, and we get that F (x, un, vn) → F (x, u, v) strongly as n → +∞.

By the Lebesgue control convergence theorem, Ψ′(un, vn) → Ψ′(u, v) strongly, which

means that Ψ′ is strongly continuous, then it is a compact operator. Hence the claim

is true. Furthermore, Proposition 1 gives that Φ′ admits a continuous inverse on

X∗ and since Φ′ is monotone, we obtain that Φ is sequentially weakly lower semi

continuous (see [21, Proposition 25.20]).

Choose (u0, v0) = (0, 0) and (u1, v1) = (w1, w2), from (α1) and (9) we get 0 < r <

Φ(u1, v1), and from (10) we have Ψ(u0, v0) = (0, 0), which are required assumptions

in Theorem A. Moreover, since

sup
x∈Ω

|u(x)|p ≤ k‖u‖p

and

sup
x∈Ω

|v(x)|q ≤ k‖v‖q

for each (u, v) ∈ X, we see that

sup
x∈Ω

|u(x)|p ≤ k‖u‖p
1

and

sup
x∈Ω

|v(x)|q ≤ k‖v‖q
2

for each (u, v) ∈ X, and so

(2.3) sup
x∈Ω

(
|u(x)|p

p
+

|v(x)|q
q

) ≤ k(
‖u‖p

1

p
+

‖v‖q
2

q
)

for each (u, v) ∈ X. Using (9) and (11), we obtain

Φ−1(] −∞, r]) = {(u, v) ∈ X; Φ(u, v) ≤ r}

=

{

(u, v) ∈ X;
‖u‖p

1

p
+

‖v‖q
2

q
≤ r

}
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⊆
{

(u, v) ∈ X;
|u(x)|p

p
+

|v(x)|q
q

≤ kr} for all x ∈ Ω

}

,

and it follows that

sup
(u,v)∈Φ−1(]−∞,r])

Ψ(u, v) = sup
(u,v)∈Φ−1(]−∞,r])

∫

Ω

F (x, u(x), v(x))dx

≤
∫

Ω

sup
(t1,t2)∈K1(kr)

F (x, t1, t2)dx.

Therefore, from (10), owing to (α2), we have

sup
u∈Φ−1(]−∞,r])

Ψ(u, v) = sup
(u,v)∈Φ−1(]−∞,r])

∫

Ω

F (x, u(x), v(x))dx

≤
∫

Ω

sup
(t1,t2)∈K1(kr)

F (x, t1, t2)dx

< r

∫

Ω
F (x, w1(x), w2(x))dx

‖w1‖
p
1

p
+

‖w2‖
q
2

q

= r
Ψ(u1, v1)

Φ(u1, v1)
,

namely, assumption (i) of Theorem A is fulfilled. Furthermore from (α3) there exist

two constants γ, τ ∈ R with

0 < γ <

∫

Ω
sup(t1,t2)∈K1(kr) F (x, t1, t2)dx

r

such that

km(Ω)F (x, t1, t2) ≤ γ(
|t1|p
p

+
|t2|q
q

) + τ for all x ∈ Ω and for all (t1, t2) ∈ R2.

Fix (u, v) ∈ X. Then

(2.4) F (x, u(x), v(x)) ≤ 1

km(Ω)
(γ

|u(x)|p
p

+ γ
|v(x)|q

q
+ τ) for all x ∈ Ω.

So, for any fixed λ ∈ Λ1, from (9)–(12) we have

Φ(u, v) − λΨ(u, v) =
1

p
‖u‖p

1 +
1

q
‖v‖q

2 − λ

∫

Ω

F (x, u(x), v(x))dx

≥ 1

p
‖u‖p

1 +
1

q
‖v‖q

2 −
λγ

km(Ω)

(

1

p

∫

Ω

|u(x)|pdx +
1

q

∫

Ω

|v(x)|qdx

)

− λτ

k

≥ 1

p
‖u‖p

1 +
1

q
‖v‖q

2 −
λγ

km(Ω)
(
km(Ω)

p
‖u‖p

1 +
km(Ω)

q
‖v‖q

2) −
λτ

k

=
1

p
‖u‖p

1 +
1

q
‖v‖q

2 −
λγ

p
‖u‖p

1 −
λγ

q
‖v‖q

2 −
λτ

k

≥ 1

p

(

1 − γ
r

∫

Ω
sup(t1,t2)∈K1(kr) F (x, t1, t2)dx

)

‖u‖p
1
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+
1

q

(

1 − γ
r

∫

Ω
sup(t1,t2)∈K1(kr) F (x, t1, t2)dx

)

‖v‖q
2 −

λτ

k
,

and thus

lim
||(u,v)||→+∞

(Φ(u, v) − λΨ(u, v)) = +∞,

which means the functional Φ − λΨ is coercive. So, Assumption (ii) of Theorem

A is satisfies. Now, we can apply Theorem A. Hence, by using Theorem A, taking

into account that the weak solutions of (1) are exactly the solutions of the equa-

tion Φ′(u, v) − λΨ′(u, v) = 0, the problem (1) admits at least three distinct weak

solutions. �

Let us here give a consequence of Theorem 1 for a fixed test function w.

Fix x0 ∈ Ω and pick r1, r2 with o < r1 < r2 such that

S(x0, r1) ⊂ S(x0, r2) ⊆ Ω.

Put

Qmin = (rN
2 − rN

1 )
πN/2

Γ(1 + N/2)
min

{

1

(r2 − r1)p
,

1

(r2 − r1)q

}

,

Qmax = (rN
2 − rN

1 )
πN/2

Γ(1 + N/2)
) max

{

1

(r2 − r1)p
,

1

(r2 − r1)q

}

,

R = 1 + m(Ω)k max{‖a‖∞, ‖b‖∞},

L =
1

kRQmax

and l = kQmin.

Corollary 1. Let F : Ω×R2 → R be a function such that F (·, t1, t2) is continuous

in Ω for all (t1, t2) ∈ R2, F (x, ·, ·) is C1 in R2 and F (x, 0, 0) = 0 for every x ∈ Ω.

Assume that there exist a constants c > 0 and a vector d = (d1, d2) ∈ R2, d1, d2 ≥ 0,

with c < l(
dp
1

p
+

dq
2

q
), such that

(β1) F (x, t1, t2) ≥ 0 for each (x, t1, t2) ∈ (Ω \ S(x0, r1)) × [0, d1] × [0, d2];

(β2)
R

Ω
sup(t1,t2)∈K1(c) F (x,t1,t2)dx

c
< L

R

S(x0,r1) F (x,d1,d2)dx

d
p
1
p

+
d
q
2
q

;

(β3) lim sup|t1|→+∞,|t2|→+∞
F (x,t1,t2)
|t1|

p

p
+

|t2|
q

q

≤ 0 uniformly with respect to x ∈ Ω, where

K1(c) = {(t1, t2) ∈ R2; |t1|p

p
+ |t2|q

q
≤ c} (see (4)) and l, L are given by (14).

Then, for each λ ∈
]

RQmax

d
p
1
p

+
d
q
2
q

R

S(x0,r1) F (x,d1,d2)dx
, 1

k
c

R

Ω sup(t1,t2)∈K1(c) F (x,t1,t2)dx

[

where Qmax

is given by (13), the problem (1) admits at least three distinct weak solutions in X.

Proof: We claim that all the assumptions of Theorem 1 are satisfied by choosing

w(x) = (w1(x), w2(x)) with

(2.5) wi(x) =















0 , x ∈ Ω \ S(x0, r2)

di

r2−r1
[r2 −

√

∑N
i=1(xi − x0

i )
2] , x ∈ S(x0, r2) \ S(x0, r1)

di , x ∈ S(x0, r1)
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for i = 1, 2 and r = c
k
. It follows from (15) that (w1, w2) ∈ X and

‖w1‖p = (rN
2 − rN

1 )
πN/2

Γ(1 + N/2)
(

d1

r2 − r1

)p

and

‖w2‖q = (rN
2 − rN

1 )
πN/2

Γ(1 + N/2)
(

d2

r2 − r1
)q.

Therefore,

Qmin(
dp

1

p
+

dq
2

q
) ≤ ‖w1‖p

p
+

‖w2‖q

q
≤ Qmax(

dp
1

p
+

dq
2

q
).

Hence, taking (3) into account, one has

Qmin(
dp

1

p
+

dq
2

q
) ≤ Φ(w1, w2) ≤ RQmax(

dp
1

p
+

dq
2

q
).

From c < l(
dp
1

p
+

dq
2

q
) one has

kr < kQmin(
dp

1

p
+

dq
2

q
) ≤ kΦ(w1, w2),

that is r < ‖w1‖p

p
+ ‖w2‖q

q
, namely (α1) is verified. Also, since 0 ≤ wi(x) ≤ di, i = 1, 2

for each x ∈ Ω, condition (β1) ensures that
∫

Ω\S(x0,r2)

F (x, w1(x), w2(x))dx +

∫

S(x0,r2)\S(x0,r1)

F (x, w1(x), w2(x))dx ≥ 0.

Moreover, from (β2) one has

∫

Ω

sup
(t1,t2)∈K1(kr)

F (x, t1, t2)dx = k

∫

Ω
sup(t1,t2)∈K1(c) F (x, t1, t2)dx

c

< kL

∫

S(x0,r1)
F (x, d1, d2)dx

dp
1

p
+

dq
2

q

=
1

RQmax

∫

S(x0,r1)
F (x, d1, d2)dx

dp
1

p
+

dq
2

q

≤
∫

S(x0,r1)
F (x, d1, d2)dx

Φ(w1, w2)

≤
∫

Ω
F (x, w1(x), w2(x))dx

‖w1‖p

p
+ ‖w2‖q

q

;

hence (α2) is satisfied. Finally (β3) implies (α3). Taking into account that


RQmax

dp
1

p
+

dq
2

q
∫

S(x0,r1)
F (x, d1, d2)dx

,
c

k
∫

Ω
sup(t1,t2)∈K1(c) F (x, t1, t2)dx



 ⊆ Λ1,

Theorem 1 ensures the conclusion. �
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We now point out the following special cases of Corollary 1 when F does not

depend on x ∈ Ω. Put

Q1
max := (rN

2 − rN
1 ) max

{

1

(r2 − r1)p
,

1

(r2 − r1)q

}

and

L1 =
rN
1

m(Ω)

1

kRQ1
max

.

Corollary 2. Let F : R2 → R be a C1−function such that F (0, 0) = 0. Assume

that there exist constant c > 0 and vector d = (d1, d2) ∈ R2, d1, d2 ≥ 0, with

c < l(
dp
1

p
+

dq
2

q
), such that

(β ′
1) F (t1, t2) ≥ 0 for each (t1, t2) ∈ [0, d1] × [0, d2];

(β ′
2)

sup(t1,t2)∈K1(c) F (t1,t2)

c
< L1 F (d1,d2)

d
p
1
p

+
d
q
2
q

;

(β ′
3) lim sup|t1|→+∞,|t2|→+∞

F (t1,t2)
|t1|

p

p
+

|t2|
q

q

≤ 0.

Then, for each λ ∈
]

RQ1
max

rN
1

d
p
1
p

+
d
q
2
q

F (d1,d2)
, 1

km(Ω)
c

sup(t1,t2)∈K1(c) F (t1,t2)

[

the problem

(2.6)











−∆pu + a(x)|u|p−2u = λFu(u, v) in Ω,

−∆qv + b(x)|v|q−2v = λFv(u, v) in Ω,

u = v = 0 on ∂Ω,

admits at least three distinct weak solutions in X.

Proof: Since Qmax = πN/2

Γ(1+ N
2

)
Q1

max and m(S(x0, r1)) = rN
1

πN/2

Γ(1+ N
2

)
, Corollary 1

ensures the conclusion. �

Finally, we prove the theorem in the introduction.

PROOF OF THEOREM 0

Fix λ > λ∗ := RQ1
max

rN
1

d
p
1
p

+
d
q
2
q

F (d1,d2)
. Taking into account that lim inf(ξ,η)→(0,0)

F (ξ,η)
|ξ|p

p
+

|η|q

q

= 0

there is {cn}n∈N ⊆]0, +∞[ such that limn→+∞ cn = 0 and

lim
n→+∞

sup(ξ,η)∈K1(cn) F (ξ, η)

cn
= 0.

In fact, one has lim
n→+∞

sup(ξ,η)∈K1(cn) F (ξ, η)

cn
= lim

n→+∞

F (ξcn, ηcn)
|ξcn |p

p
+ |ηcn |q

q

.

|ξcn |p

p
+ |ηcn |q

q

cn
= 0,

where F (ξcn, ηcn) = sup(ξ,η)∈K1(cn) F (ξ, η).

Hence, there is c > 0 such that

sup(ξ,η)∈K1(c) F (ξ, η)

c
< min







L1 F (d1, d2)
dp
1

p
+

dq
2

q

;
km(Ω)

λ







and c < l(
dp
1

p
+

dq
2

q
). From Corollary 2 the conclusion follows. �
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