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ABSTRACT. This paper is concerned with the valuation of guaranteed equity-linked life insurance.

The underlying reference equity fund and interest rate are dictated by a set of diffusions coupled

by a finite state Markov chain. Two approaches are developed for pricing European options that

are embedded in the life insurance contracts. The first approach involves a discounted characteristic

function and inversion of Fourier transform. The second approach follows a Monte-Carlo simulation

technique. These two approaches together with a bond valuation procedure are used to determine

the fair value of the guaranteed equity-linked life insurance contracts. Finally, numerical examples

are provided to illustrate the results.
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1. INTRODUCTION

We consider in this paper the risk-neutral valuation of guaranteed equity-linked

life insurance (GELLI) contracts under regime-switching models. In a typical GELLI

contract, a portion of the premium is invested (or deemed to be invested) into an

equity fund (the reference fund), and the benefit (either upon death or at contract

expiration) is linked to the performance of the fund. In addition, a rate of growth of

the premium is specified as a guaranteed minimum benefit. The objective of study

is to determine the fair portion of the premium that should be initially credited into

the reference fund. Or equivalently, we aim at finding the fair value of the insurance

contracts under consideration.

Early studies using derivative valuation theory for equity-linked life insurances

can be found in Boyle and Schwartz [8], Brennan and Schwartz [9, 10, 11]. These

works related the payoff of a guaranteed equity-linked contract to the payoffs of

certain financial options and then applied the Black-Scholes-Merton’s option pricing
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methodology to obtain the risk-neutral value of the contract. The reference equity

fund price was assumed to follow a geometric Brownian motion (GBM) and the

interest rate was a constant for the entire term. Analytical formulae were derived for

fair contract values.

Whereas most stock options have maturities less than two years, the duration

of insurance contracts is much longer. Typical fixed-term contracts are for 10 to

20 years and in some cases even longer. Because of this long maturity nature, the

constant interest rate assumption (or moderately generalized to assuming a varying

but deterministic function for interest rate, as in Bacinello and Ortu [3] and in Persson

[24]) is clearly not appropriate for life insurance valuation. The exposure to interest

rate risk must be taken into consideration. For this purpose, a natural generalization

of the model aforementioned is to introduce a stochastic interest rate. This extension

was done by several people; see Bacinello and Ortu [2, 4], Nielsen and Sandmann [23],

Miltersen and Persson [21], Bacinello and Persson [5], among others.

Along another line, the presence of regime-switching in long term market dynam-

ics has been well acknowledged. A phenomenon that has been frequently observed is

that the transitions between business cycle expansion and contraction usually lead to

significant changes in stock returns, interest rates and other financial indices, and the

changes exhibit certain cyclic or periodic patterns. Reasonably, the dynamic changes

of asset prices over long time periods is better described by models that incorporate

a regime-switching component. Extensive studies on regime-switching models have

been done in recent decades, including both statistical testing of models using market

data and derivative valuation based on the models. Empirical studies have provided

considerable support to including regime-switching in both equity models (see Hardy

[18]) and interest rate models (see Bansal and Zhou [6]) when long time horizons are

involved. On the other hand, option valuation formulae and algorithms were devel-

oped in Guo [16], Guo and Zhang [17], Yao, Zhang, and Zhou [25], Buffington and

Elliott [12], Bollen [7], Liu, Zhang and Yin [20], among others. Noticeably, those

option results use a constant interest rate, which is acceptable when the time hori-

zon involved is relative short. When long maturity derivatives come up, a stochastic

regime-switching diffusion model for interest rate will be a better choice. The present

paper attempts to apply the financial mathematics theory to tackle the life insurance

pricing problem using regime-switching models for both equity price and interest rate.

Our methodology is a combination of analytical formula with numerical approx-

imation. Because of the further complexity introduced by the regime-switching com-

ponent in both equity price and interest rate models, in addition to the already

complicated structure of the GELLI itself (comparing with standard options), a com-

plete analytical solution to the valuation problem is, if not impossible, very difficult

to obtain. For analytically hard problems, a natural alternative would be to choose
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a numerical scheme, for instance, the Monte-Carlo simulation. However, unsophisti-

cated implementations of Monte-Carlo simulations usually lead to high consumption

of computational time in order to have a decent approximation of solution. In this

work, we exploit the availability of analytical solutions to components of the entire

problem, and then switch to numerical approximation. Following this idea, by care-

fully looking into the structure of the GELLI problem under consideration, we have

made the following major contributions:

• We use a regime-switching two-factor stochastic diffusion model for both equity

price and interest rate, that better fits GELLI valuation with long time horizon.

We formulate the GELLI valuation problem under the regime-switching model

and derive the equilibrium equation (2.9) that must be satisfied by the “fair”

portion δ of the initial premium that should be put into the reference fund.

• We develop two approaches for determining the values of European options under

the regime-switching model, which are used to value the GELLI under consid-

eration. The first method is based on inverting Fourier Transform. We derive

the characteristic function of the stochastic processes underlying the options in

closed-from up to the solution of a system of differential equations. The option

values are then obtained by numerically inverting a Fourier transform that is

given in terms of the characteristic function. The second approach combines

Monte-Carlo simulation with analytical formula and is referred to as a Semi

Monte-Carlo (SMC) simulation method. We show that for a given sample path

of the underlying Markov chain, the conditional option values can be determined

by a Black-Scholes-Merton type analytical formula. To derive the unconditional

option value, we take random samples of the Markov chain, calculate the condi-

tional option value associated with each sample path, and then take average of

these conditional option values to get the desired approximation. This new treat-

ment results in a faster algorithm compared to the primitive implementation of

Monte-Carlo simulation.

The rest of the paper is organized as follows. Section 2 begins with a description

of the GELLI contracts and followed by the formulation of the valuation problem.

The no-arbitrage principle is used in this connection. Regime-switching stochastic

diffusion models for equity price and interest rate are introduced. In Section 3 we

present a solution for bond values where the interest rate follows the regime-switching

model. The solution is used in the option valuation as well as in the GELLI valuation

in the following section. Section 4 is devoted to the two approaches for option pricing,

namely, inverting Fourier Transform and semi Monte-Carlo simulation. Numerical

studies using a hypothesized GELLI contract are presented in Section 5. Section 6

provides further remarks and concludes the paper. In addition, an appendix provides

two analytical results.
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2. PROBLEM FORMULATION

In this section we first describe the GELLI contracts under study. Then we

formulate the valuation problem by relating it to valuing a series of financial options

and bonds. After that, we present respectively the regime-switching diffusion models

for the reference equity fund price and the interest rate, based on which the GELLI

will be valued.

2.1. GELLI. We consider a term N equity-linked life insurance policy. The unit of

time is year, i.e., one term is for one year. The contract is issued at time t = 0 and

expires at t = N . Let z denote the age of the insured person at inception of contract.

A single amount P is paid at t = 0, of which a fixed portion

(2.1) PS := δP, with 0 < δ < 1

is invested (or deemed to be invested) in a reference equity fund. Our objective in

this study is to determine the “fair” portion δ.

Suppose the equity fund is a traded mutual fund in market and it is split into

units and does not pay any dividend during the life of the insurance policy. Let St

denote the unit price of the fund at time t ≥ 0 with initial price S0 > 0. Then the

number of units of fund credited into the insured’s account at t = 0 is given by

(2.2) nS :=
PS

S0
=

δP

S0

and it remains unchanged over time. The value of the investment in the reference

fund at time t is hence given by

(2.3) At := nSSt =
δP

S0
St,

which is simply a constant multiplier ( δP
S0

) of the unit price St. Therefore At is fully

determined by St at any time t.

We use Bn, 1 ≤ n ≤ N to denote the insurance benefits. That is, if the insured

dies during the period (n − 1, n], then the beneficiary (or beneficiaries) will receive

Bn for the death benefit, where 1 ≤ n ≤ N ; of course, if the person survives to the

maturity, he/she will receive the maturity benefit BN . Note that for the last term,

BN can be either death benefit or maturity benefit. Let gn denote the guaranteed

minimum benefit at time t = n. As is common in practice, we consider gn in the form

of a guaranteed rate of growth of the initial payment P , given by

(2.4) gn := Peng,

where g is the guaranteed growth rate stipulated in the policy. The benefit Bn is

calculated as the maximum of the guaranteed amount gn and the equity fund value
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An, i.e., Bn = max{An, gn}, which can be decomposed as

(2.5) Bn = gn + max{An − gn, 0}.

Thus Bn is equal to the sum of gn and the payoff of an European call option written

on At with maturity n and strike price gn.

Using (2.3) and (2.4) in (2.5), we have

(2.6) Bn = Peng + max

{
δP

S0
Sn − Peng, 0

}
= Peng +

δP

S0
max

{
Sn − S0

δ
eng, 0

}
.

We see now the call option payoff in (2.5) is equal to the constant δP
S0

multiplied by

the payoff of a call option written on the unit price St with maturity n and strike

price Kn := S0

δ
eng. Note that this latter option payoff does not depend on the initial

premium P . In contrast, it is a function of the investment portion factor δ, which

will be determined later. It also depends on the guaranteed rate g. We will expose

the relation between δ and g in the numerical example section.

Let C0(δ, g, n) be the time-zero value of the option in (2.6), G0(g, n) be the time-

zero value of the amount eng that is to be paid at time t = n. Then the time-zero

value of the benefit Bn that is due to pay at t = n, denoted by B0(δ, g, n), is given

by the following equation:

(2.7) B0(δ, g, n) = PG0(g, n) +
δP

S0
C0(δ, g, n).

Let pn be the probability that the benefit Bn is to be paid at t = n, 1 ≤ n ≤ N .

That is, for 1 ≤ n < N , pn denotes the conditional probability that the insured dies

during the period (n − 1, n], given that the person survives at time t = n − 1; pN

is the probability that either the person dies during the last period (N − 1, N ] or is

still alive at the maturity t = N , given that the person survives to time t = N − 1.

Then
∑N

n=1 pn = 1. In practice pn can be either obtained using a mortality table or

calculated from a fitted model (for example, the Gompertz hazard function for death

rate, see Section 5).

We assume that the mortality risk is independent of the financial risk. Applying

the no-arbitrage principle, the time-zero value of the probability weighted sum of all

the future benefits should be set equal to the premium paid at t = 0, i.e.,

(2.8) P =
N∑

n=1

pnB0(δ, g, n).

Using (2.7) in (2.8), we obtain the following equilibrium equation from which the fair

portion δ can be determined.

(2.9) 1 =
N∑

n=1

pnG0(g, n) +
δ

S0

N∑

n=1

pnC0(δ, g, n).
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Note that (2.9) is composed of two summations. The first one involves a stream of

fixed future payments and does not depend on the parameter δ. The second one

consists of a series of call options and it is a nonlinear function of δ. Moreover, in

view of (2.6) it is readily seen that each option value is an increasing function of δ.

Hence equation (2.9) possesses an unique solution for δ, which determines the “fair”

portion of the initial premium that should be invested in the reference fund. It is

also clear that in order to solve equation (2.9), we need to develop methods for both

option and bond valuations.

2.2. Regime-Switching Model. We apply the risk-neutral principle to bond and

option valuations. Generally speaking, one starts with the probability space (Ω,F ,P)

that underlies the stochastic processes for real world asset prices, and looks for a prop-

erly transformed probability space (Ω,F , P̃) upon which the (transformed) discounted

asset price processes become martingales; this new probability space is well known

as the risk-neutral world and the associated probability P̃ is called the risk-neutral

or equivalent martingale measure. As a consequence, the present value of a deriva-

tive is calculated as P̃ expectation of the discounted future payoff of the derivative.

Since this type of transformation of probability measures is standard in derivative

pricing theory, we begin with the assumption that the risk-neutral probability space

(Ω,F , P̃) is given and will directly work on it. Therefore, all the stochastic processes

presented next are under (Ω,F , P̃) and unless mentioned otherwise, all expectations

are taken with respect to the risk-neutral measure P̃.

2.2.1. Markov Regime-Switching. Markov chains are often used for capturing random

shifts between different regimes (see Zhang [27], Buffington and Elliott [12], and Guo

[16], among others). Let αt be a continuous-time Markov chain taking value among

m different states, where m is the total number of states considered for the economy.

Each state represents a particular regime and is labeled by an integer i between

1 and m. Hence the state space of αt is given by M := {1, . . . , m}. Moreover,

let Q = (qij)m×m denote the generator of αt. From Markov chain theory (see for

example, Yin and Zhang [26]), the entries qij in matrix Q satisfy: (I) qij ≥ 0 if j 6= i;

(II)
∑m

j=1 qij = 0 for each i = 1, . . . , m.

2.2.2. Equity Fund Model. Let (W 1
t , W 2

t ) be a standard two-dimensional Brownian

motion defined on (Ω,F , P̃) and assume it is independent of the Markov chain αt.

The risk-neutral process for the unit price of the reference equity fund is given by the

following stochastic differential equation:

(2.10)
dSt

St

= rtdt + σ(αt)[ρdW 1
t +

√
1 − ρ2dW 2

t ], t ≥ 0,

where rt denotes the instantaneous interest rate at time t whose model is presented

in the following (2.13), σ(αt) is the regime-dependent volatility of the equity, and ρ
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denotes the correlation coefficient between the unit price St and the interest rate rt.

Usually ρ < 0.

The solution to (2.10) can be written as

(2.11) St = S0e
Xt ,

where Xt satisfies

(2.12) dXt =

(
rt −

1

2
σ2(αt)

)
dt + σ(αt)[ρdW 1

t +
√

1 − ρ2dW 2
t ], X0 = 0.

2.2.3. Interest Rate Model. We consider a regime-switching mean-reverting diffusion

model for the short rate rt. Specifically, we assume that rt follows a stochastic differ-

ential equation given by:

(2.13) drt = κ[θ(αt) − rt]dt + η(αt)dW 1
t , t ≥ 0,

with deterministic initial value r0 > 0, where θ(αt) is the regime-dependent mean

reversion level, κ is the speed at which rt is pulled back to the mean reversion level,

and η(αt) is the volatility of the interest rate. Note that without the embedded

Markov chain αt, (2.13) would reduce to the well known Vasicek model for short

rate. Therefore, the model we consider here can be called a regime-switching Vasicek

model.

3. BOND VALUATION

In this section we consider bond valuation using the regime-switching Vasicek

model (2.13) for the interest rate.

Consider a zero-coupon bond with maturity T and face value $1. Let P (t, rt, αt, T )

denote the value function at time 0 ≤ t ≤ T . Then,

(3.1) P (t, rt, αt, T ) = E

{
exp

(
−
∫ T

t

rs ds

) ∣∣∣Ft

}
,

where Ft is the σ-algebra generated by the Brownian motions W 1
s , W 2

s and the Markov

chain αs, 0 ≤ s ≤ t, i.e.,

(3.2) Ft = σ{(W 1
s , W 2

s , αs), 0 ≤ s ≤ t}.

Note that
{

exp
(
−
∫ t

0
rs ds

)
P (t, rt, αt, T )

}
t≥0

is a martingale with respect to the

filtration {Ft}t≥0. For brevity of notation, introducing

(3.3) P α := P (t, r, α, T ) := P (t, rt, αt, T )
∣∣
rt=r,αt=α

.

Using a version of Ito’s formula for Markov-modulated diffusions, we obtain the fol-

lowing system of m partial differential equations satisfied by P α, α = 1, . . . , m,

(3.4)
∂P α

∂t
+ κ[θ(α) − r]

∂P α

∂r
+

1

2
η2(α)

∂2P α

∂r2
+
∑

j 6=α

qαj(P
j − P α) = rP α
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with terminal conditions P (T, r, α, T ) = 1, α = 1, . . . , m.

Landén [19] showed that the solution of (3.4) is of an exponential linear function

form (or a semi-affine term structure, as he used). Following the arguments, we

ascertain the following proposition. For convenience, in what follows we will use

diag{∆(α), α = 1, . . . , m} for an m×m diagonal matrix with entries ∆(1), . . . , ∆(m).

Proposition 1. Under the risk-neutral interest rate process (2.13), the value at time

t of a zero-coupon bond maturing at time T is given by

(3.5) P α = exp [Aα(τ) + B(τ)r]

where τ = T − t is the time to maturity, the functions Aα(τ), α = 1, . . . , m, satisfy a

system of ordinary differential equations given by:

(3.6)
dU(τ)

dτ
=

(
Q + diag

{
κθ(α)B(τ) +

1

2
η2(α)B2(τ), α = 1, . . . , m

})
U(τ), U(0) = 11m,

where

(3.7) U(τ) =
(
eA1(τ), eA2(τ), . . . , eAm(τ)

)′
∈ R

m,

11m = (1, . . . , 1)′ ∈ Rm, and the function B(τ) satisfies

(3.8)
dB(τ)

dτ
+ κB(τ) + 1 = 0, B(0) = 0.

Proof. Substituting (3.5) into PDEs (3.4), comparing the coefficients of r in both

sides of the resultant equation, we obtain (3.8) for B(τ) and a system of m differential

equations for Aα(τ), α = 1, . . . , m, the latter can be rewritten in the vector form (3.6)

by using (3.7). �

Notice that B(τ) does not depend on the Markov state α and is given by

(3.9) B(τ) = −1

κ
(1 − e−κτ ).

Remark 1. In general one needs to employ a numerical scheme to solve the system

(3.6) to obtain the functions Aα(τ). However, for a special case when the Markov

chain has two states and that the volatility in (2.13) takes same value for different

regimes, i.e., m = 2 and η(1) = η(2) = η, where η > 0 is a constant, the resultant pair

of differential equations from (3.6) are analytically solved and the explicit solutions

for A1(τ) and A2(τ) are given in terms of Whittaker functions (see Landén [19]).

Using the bond value P (t, rt, αt, T ) given by (3.5), the first summation in (2.9)

can be evaluated as below:

(3.10)

N∑

n=1

pnG0(g, n) =

N∑

n=1

pne
ngP (0, r0, α0, n) =

N∑

n=1

pn exp[ng + Aα0(n) + B(n)r0],

where α0 is the given initial state of αt.
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4. OPTION VALUATION

Whereas bond valuation presented in the previous section involves the interest

rate process (2.13) only, we need to deal with both stochastic interest rate and equity

price uncertainties when moving to equity option valuation. Assuming both variables

are regime-dependent diffusion processes, we are facing a much more challenging task.

In this section, we develop two different approaches for European option pricing,

which are then used in determining the GELLI value. The first approach is based on

Fourier transform. We derive the characteristic function of the (stochastic interest

rate) discounted unit price first, and then employ an inverse Fourier transform to

obtain the option value. Our second approach is a Monte-Carlo simulation based

method. We exploit the fact that conditioned on the Markov chain, it is possible

to derive a Black-Scholes-Merton type analytical formula for the conditional option

value. Consequently, we can combine the Monte-Carlo simulation of the Markov chain

with the analytical formula to produce an algorithm (we may call it Semi Monte-Carlo

(SMC) simulation) that is much more efficient than the plain Monte-Carlo simulation

for which random samples would be taken for all random processes (unit price, interest

rate and Markov chain) involved.

4.1. Approach I: Inverting Fourier Transform. We consider an European call

option written on the unit price St with strike price K and maturity T . Introduce a

discounted characteristic function of XT defined by

(4.1) Φ(u, t, T, Xt, rt, αt) := E

{
exp

(
−
∫ T

t

rs ds

)
euXT

∣∣∣Ft

}
,

where XT is given by (2.12), Ft is given by (3.2) and u ∈ C, the complex set. Let

(4.2) Φα := Φ(u, t, T, x, r, α) := Φ(u, t, T, Xt, rt, αt)
∣∣
Xt=x,rt=r,αt=α

.

Then it can be shown that Φα, α = 1, . . . , m satisfy the following second order partial

differential equations:

rΦα =
∂Φα

∂t
+

(
r − 1

2
σ2(α)

)
∂Φα

∂x
+ κ[θ(α) − r]

∂Φα

∂r
(4.3)

+
1

2
σ2(α)

∂2Φα

∂x2
+

1

2
η2(α)

∂2Φα

∂r2
+ ρη(α)σ(α)

∂2Φα

∂x∂r
+
∑

j 6=α

qαj(Φ
j − Φα)

with terminal conditions Φ(u, T, T, x, r, α) = eux, α = 1, . . . , m.

Note that if the Markov chain αt were absent, the processes (2.10) and (2.13)

would fall into the class of affine linear models; see Duffie, Filipović and Schacher-

mayer [14], Duffie, Pan and Singleton [15]. For the affine linear models, [15] showed

that the discounted characteristic function of the underlying variables has an expo-

nential linear function form where the coefficients are determined by the solutions of

certain ordinary differential equations (ODEs). Our next proposition generalizes the
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result to the regime-switching models (2.10) and (2.13). For brevity, in Proposition 2

and thereafter we suppress the dependence on variable u in V(τ) and Π(α).

Proposition 2. The solution of (4.3) is given by:

(4.4) Φα = exp (Cα(u, τ)) exp (D(u, τ)r) exp(ux),

where τ = T − t,

(4.5) D(u, τ) =
u − 1

κ

(
1 − e−κτ

)
,

Cα(u, τ), α = 1, . . . , m, satisfy the following system of ODEs:

(4.6)
dV(τ)

dτ
=
(
Q + diag

{
Π(α), α = 1, . . . , m

})
V(τ), V(0) = 11m,

where

(4.7) V(τ) =
(
eC1(u,τ), eC2(u,τ), . . . , eCm(u,τ)

)′
∈ C

m,

and

Π(α) = −1

2
σ2(α)(u − u2) + [κθ(α) + ρη(α)σ(α)u]D(u, τ) +

1

2
η2(α)D2(u, τ).

Proof. Assume the solution to (4.3) is of the form:

(4.8) Φα = exp (Cα(u, τ) + Dα(u, τ)r + Eα(u, τ)x) ,

where Cα, Dα, Eα, α = 1, . . . , m are deterministic functions satisfying the conditions:

(4.9) Cα(u, 0) = Dα(u, 0) = 0, Eα(u, 0) = u.

Substituting (4.8) into PDEs (4.3) and matching the coefficients of r and x in both

sides of the resultant equality, we have: for Eα,

(4.10)
dEα(u, τ)

dτ
= 0 and Eα(u, 0) = u,

which yield Eα(u, τ) = u; for Dα,

(4.11)
dDα(u, τ)

dτ
+ κDα(u, τ) = u − 1 and Dα(u, 0) = 0,

whose solution is independent of α and is given by (4.5); for Cα,

(4.12)



dCα(u, τ)

dτ
= −1

2
σ2(α)(u − u2) + [κθ(α) + ρη(α)σ(α)u]D(u, τ)

+
1

2
η2(α)D2(u, τ) +

∑

j 6=α

qαj

(
exp[Cj(u, τ) − Cα(u, τ)] − 1

)
,

Cα(u, 0) = 0.

Using (4.7), we can rewrite (4.12) as (4.6). �
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Remark 2. We point out that our generalization leads to a system of ODEs (4.6)

contrast to the result obtained in [15] that involves a single ODE for affine linear

models. This is of course due to the introduced regime-switching in the underlying

models. The number of states of the Markov chain αt is the same as the dimension

of the system of ODEs. An interesting issue is to develop efficient computational

method when αt has a very large state space.

Inspired by the analytical solution for bond value presented in Landén [19], we

have analytically solved the system (4.6) with two regimes and obtained the explicit

solutions for C1 and C2. The details of the solution are provided in Appendix.

We now turn our attention to valuing the series of call options embedded in the

GELLI equation (2.9). In view of (2.6), the call option whose value is denoted by

C0(δ, g, n) has a maturity T = n and a strike price K = S0

δ
eng . We have

(4.13)

C0(δ, g, n) = E

{
exp

(
−
∫ n

0

rs ds

)
max

{
Sn − S0

δ
eng, 0

}}

= S0E

{
exp

(
−
∫ n

0

rs ds

)
max

{
eXn − eng

δ
, 0

}}

= S0E

{
exp

(
−
∫ n

0

rs ds

)(
eXn − eng

δ

)
I{Xn≥(ng−ln δ)}

}

= S0

[
H1,−1(−ng + ln δ, n) − eng

δ
H0,−1(−ng + ln δ, n)

]
,

where I is the indicator function and, for constants a, b, y and T > 0, the function

Ha,b(y, T ) is defined by

(4.14) Ha,b(y, T ) = E

{
exp

(
−
∫ T

0

rs ds

)
eaXT I{bXT ≤y}

}
.

Given the discounted characteristic function Φ(u, t, T, Xt, rt, αt), the Fourier-Stieltjes

transform of Ha,b(·, T ) is given by

Ha,b(ν, T ) :=

∫ ∞

−∞

eiνy dHa,b(y, T ) = Φ(a + ibν, 0, T, 0, r0, α0)

where i =
√
−1 and ν ∈ C. Using a result presented in Duffie, Pan and Singleton

([15], Proposition 2), the following formula for Ha,b(y, T ) can be obtained via inverting

its Fourier-Stieltjes transform Ha,b(ν, T ):

(4.15) Ha,b(y, T ) =
Φ(a, 0, T, 0, r0, α0)

2
− 1

π

∫ ∞

0

Im[Φ(a + ibν, 0, T, 0, r0, α0)e
−iνy]

ν
dν

where Im(ν) denotes the imaginary part of ν ∈ C.
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Applying (4.15) in (4.13), we obtain,

(4.16)

C0(δ, g, n) =
S0Φ(1, 0, n, 0, r0, α0)

2
− S0e

ngΦ(0, 0, n, 0, r0, α0)

2δ

−S0

π

∫ ∞

0

Im
[
Φ(1 − iν, 0, n, 0, r0, α0)e

iν(ng−ln δ)
]

ν
dν

+
S0e

ng

δπ

∫ ∞

0

Im
[
Φ(−iν, 0, n, 0, r0, α0)e

iν(ng−ln δ)
]

ν
dν.

Noting that x = X0 = 0 and when u = 1, D(1, n) = 0. Moreover, it’s easy to find

that Cα0(1, n) = 0 and hence Φ(1, 0, n, 0, r0, α0) = 1 in view of (4.4) for Φ. Using

these results in (4.16), we have

(4.17)

C0(δ, g, n) =
S0

2
− S0e

ng exp(Cα0(0, n) + D(0, n)r0)

2δ

−S0

π

∫ ∞

0

Im [exp(Cα0(1 − iν, n) + D(1 − iν, n)r0 + iν(ng − ln δ))]

ν
dν

+
S0e

ng

δπ

∫ ∞

0

Im [exp(Cα0(−iν, n) + D(−iν, n)r0 + iν(ng − ln δ))]

ν
dν,

which can be calculated by employing a numerical scheme for integration. This gives

the second summation in (2.9), i.e.,

(4.18)
δ

S0

N∑

n=1

pnC0(δ, g, n).

Note that S0 will be canceled out when we substitute (4.17) into (4.18). As a conse-

quence, the solution of (2.9) for the fair δ value does not depend on the initial unit

price S0, as one may expect.

4.2. Approach II: Semi Monte-Carlo Simulation. Under the assumption that

the Markov chain αt is independent of the Brownian Motion (W 1
t , W 2

t ), we have

observed the following fact: for a given realization of the chain, namely, {αt : 0 ≤ t ≤
T}, the regime-dependent parameters σ(αt) in the unit price model (2.10) and θ(αt),

η(αt) in the interest rate model (2.13) all become deterministic functions of time t.

Hence it is possible to determine the conditional option values via a Black-Scholes-

Merton type analytical formula in which the stochastic Markov chain is replaced

by its sample path. The unconditional option value is then the expectation of the

conditional option value with respect to the Markov chain. This expectation can

be numerically calculated by implementing a Monte-Carlo simulation of the Markov

chain trajectory. Note that this approach only takes random sampling of the Markov

chain and then takes advantage of the availability of analytical formula (therefore

exact) for conditional option values. It is both computationally faster and more

accurate than a fully implemented Monte-Carlo simulation of all random variables

involved.
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We discuss the semi Monte-Carlo simulation approach and develop an algorithm

for its implementation. Consider an European call option written on the unit price St

with strike price K and maturity T . Let C0(S0, r0, K, T ) denote the time-zero value

of the option. Let Fα
T denote the σ-algebra generated by αt, 0 ≤ t ≤ T , i.e.,

(4.19) Fα
T = σ{αt, 0 ≤ t ≤ T}.

Then we have

(4.20)
C0(S0, r0, K, T ) = E

{
exp

(
−
∫ T

0

rs ds

)
(ST − K)+

}

= EM

{
E

{
exp

(
−
∫ T

0

rs ds

)
(ST − K)+

∣∣∣Fα
T

}}
,

where we use EM for the expectation with respect to Fα
T .

We next present an analytical solution for the inner expectation in the second

line of (4.20), i.e., the conditional option value for a given Markov chain realization.

For this purpose, consider the following risk-neutral processes for the interest rate

and unit price, respectively given by

(4.21) drt = κ[θ(t) − rt]dt + η(t)dW 1
t , t ≥ 0,

(4.22)
dSt

St
= rtdt + σ(t)[ρdW 1

t +
√

1 − ρ2dW 2
t ], t ≥ 0,

where θ(t), η(t) and σ(t) are deterministic functions of time t ≥ 0.

The solution to (4.21) can be written as

rs = rte
−κ(s−t) + κ

∫ s

t

e−κ(s−v)θ(v) dv +

∫ s

t

e−κ(s−v)η(v) dW 1
v , s ≥ t.

Let

(4.23) β(t, T ) =
1

κ

(
1 − e−κ(T−t)

)
.

Then we have, for given rt,

(4.24)

∫ T

t

rs ds = β(t, T )rt + κ

∫ T

t

θ(s)β(s, T ) ds +

∫ T

t

∫ s

t

e−κ(s−v)η(v) dW 1
v ds.

It follows that, conditioned on rt,
∫ T

t
rsds is a Gaussian random variable with mean

and variance given by

(4.25) E

{∫ T

t

rs ds
∣∣∣rt

}
= β(t, T )rt + κ

∫ T

t

θ(s)β(s, T ) ds

and

(4.26) Var

{∫ T

t

rs ds
∣∣∣rt

}
=

∫ T

t

η2(s)β2(s, T ) ds.

Let

(4.27) P (t, rt, T ) := E

{
exp

(
−
∫ T

t

rs ds

)∣∣∣rt

}
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denote the time t value of a zero-coupon bond maturing at time T ≥ t. Then we have

(4.28) P (t, rt, T ) = exp

[
−β(t, T )rt +

∫ T

t

(
−κθ(s)β(s, T ) +

1

2
η2(s)β2(s, T )

)
ds

]
.

With bond value given by the formula (4.28), we present in the following propo-

sition an analytical formula for the option value C(S0, r0, K, T ) based on (4.21) and

(4.22). This type of results can be found in literature (for instance, see Brigo and

Mercurio [13, Chapter 12]). However, for completeness and for being consistent with

the notations introduced in the present paper, we include a derivation of the formula

in Appendix.

Proposition 3. The value at time t = 0 of an European call option with maturity T

and strike price K, written on the asset price St is given by:

(4.29)

C(S0, r0, K, T ) = S0N

(
ln S0

KP (0,r0,T )
+ 1

2
V 2(0, T )

V (0, T )

)

−KP (0, r0, T )N

(
ln S0

KP (0,r0,T )
− 1

2
V 2(0, T )

V (0, T )

)
,

where

(4.30) V 2(0, T ) =

∫ T

0

[σ2(s) + 2ρβ(s, T )σ(s)η(s) + β2(s, T )η2(s)] ds,

and N(·) denotes the cumulative standard normal distribution function.

We now develop the semi Monte-Carlo simulation method for valuing option with

regime-switching. To this end, we first describe a procedure that is used to obtain

sample paths of the continuous-time Markov chain αt, 0 ≤ t ≤ T , provided that the

initial state α0 and the generator Q = (qij)m×m of αt are known (see Yin and Zhang

[26, Chapter 2]).

A sample path of αt, 0 ≤ t ≤ T can be described by a sequence of jump times

0 = t0 < t1 < · · · < tn < tn+1 = T and a sequence of states α0, α1, . . . , αn such that

(4.31) αt = αj , if t ∈ [tj, tj+1), j = 0, 1, . . . , n.

These jump times and states are determined by the following procedure.

Starting at t0 = 0, at any jump time tj, j = 0, 1, . . . , n, the duration ∆tj for αt

staying at state αj (the sojourn time) has an exponential distribution with parameter

−qαjαj
, i.e.,

(4.32) P (∆tj ≤ s) =

∫ s

0

(−qαjαj
) exp(qαjαj

t) dt = 1 − exp(qαjαj
s), s ≥ 0.

Hence, a random sample taken from the exponential distribution for ∆tj determines

the next jump time tj+1 through tj+1 = tj + ∆tj . Subsequently, the chain αt will

switch to a different state immediately after tj+1. Each state α (α = 1, . . . , m, but
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α 6= αj) has a probability qαjα/(−qαjαj
) of being the chain’s next state αj+1. This

post-jump location can be determined by using a random sample U from the uniform

distribution over (0, 1) and is specified by

(4.33) αj+1 =





1, if U ≤ qαj1/(−qαjαj
),

2, if qαj1/(−qαjαj
) ≤ U ≤ (qαj1 + qαj2)/(−qαjαj

),
...

...

m, if
∑

i<m,i6=αj
qαj i/(−qαjαj

) ≤ U.

Next, consider L independent sample paths of αt, 0 ≤ t ≤ T . Let 0 = t
(k)
0 <

t
(k)
1 < · · · < t

(k)
nk < t

(k)
nk+1 = T denote the sequence of jump times of the kth sample

path and α
(k)
0 , α

(k)
1 , . . . , α

(k)
nk the corresponding states. Note that α

(k)
0 = α0 for all

1 ≤ k ≤ L. Let f(αt) be a generic function depending on αt. We use f (k)(t) for the

deterministic function decided by the kth sample path of αt. Then

(4.34) f (k)(t) = f(α
(k)
j ), if t ∈ [t

(k)
j , t

(k)
j+1), j = 0, 1, . . . , nk.

Specifically, we using (4.34) to associate θ(αt), η(αt) and σ(αt) in (2.13) and (2.10) to

their sample path functions θ(k)(t), η(k)(t) and σ(k)(t). Assume g(t) is a deterministic

and continuous function. Then we have

(4.35)

∫ T

0

g(v)f (k)(v) dv =

nk∑

j=0

f(α
(k)
j )

∫ t
(k)
j+1

t
(k)
j

g(v) dv.

We also introduce, for 0 ≤ a < b ≤ T ,

(4.36) Iβ(a, b) :=

∫ b

a

β(v, T ) dv =
1

κ

(
b − a − 1

κ

(
e−κ(T−b) − e−κ(T−a)

))
,

and

(4.37)

Iβ2(a, b) :=

∫ b

a

β2(v, T ) dv

=
1

κ2

(
b − a − 2

κ

(
e−κ(T−b) − e−κ(T−a)

)
+

1

2κ

(
e−2κ(T−b) − e−2κ(T−a)

))
.

Now, for the kth sample path of αt, we identify θ(t), η(t) and σ(t) in (4.21) and

(4.22) with the sample path functions θ(k)(t), η(k)(t) and σ(k)(t), respectively. Let

P (k)(0, r0, T ) denote the corresponding bond value at time zero. Let
(
V (k)(0, T )

)2

denote the corresponding variance. In light of (4.28) and (4.30), using (4.36) and

(4.37), we have:

P (k)(0, r0, T ) = exp

(
−β(0, T )r0(4.38)

+

nk∑

j=0

[
−κθ(α

(k)
j )Iβ(t

(k)
j , t

(k)
j+1) +

1

2
η2(α

(k)
j )Iβ2(t

(k)
j , t

(k)
j+1)

])
,
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and

(
V (k)(0, T )

)2
=

nk∑

j=0

[
σ2(α

(k)
j )[t

(k)
j+1 − t

(k)
j ](4.39)

+ 2ρσ(α
(k)
j )η(α

(k)
j )Iβ(t

(k)
j , t

(k)
j+1) + η2(α

(k)
j )Iβ2(t

(k)
j , t

(k)
j+1)

]
.

Using P (k)(0, r0, T ) for P (0, r0, T ) and V (k)(0, T ) for V (0, T ) in the option valuing

formula (4.29), we can compute the conditional option value given the kth sample

path of αt. We denote this value by C(k)(S0, r0, K, T ). Finally, in term of (4.20), the

option value C0(S0, r0, K, T ) can be approximated by

(4.40) C0(S0, r0, K, T ) ≈ 1

L

L∑

k=1

C(k)(S0, r0, K, T ).

As a summary of the semi Monte-Carlo simulation method discussed in this

section, we present the following algorithm for its implementation.

Algorithm 1 Let L be the pre-specified number of random samples of the Markov

chain trajectory.

For k = 1, . . . , L,

1. Obtain the kth sample path of αt, 0 ≤ t ≤ T , using the procedure (4.31)-(4.33);

2. Calculate the conditional bond value P (k)(0, r0, T ) and variance
(
V (k)(0, T )

)2
for

the kth sample path, using (4.38) and (4.39);

3. Calculate the conditional option value C(k)(S0, r0, K, T ) for the kth sample path,

using (4.29).

After all L conditional values are obtained, the option value is calculated by taking

their average, i.e.,
1

L

L∑

k=1

C(k)(S0, r0, K, T ).

We now go back to the valuation of the series of N call options embedded in

equation (2.9). Noting that those options have maturities T = 1, . . . , N where N is

the contract term. For each independent sample path of αt, 0 ≤ t ≤ T (= N), the

semi Monte-Carlo simulation algorithm can be used to find the N conditional option

values simultaneously. Thus after L runs of the algorithm, all N option values are

obtained, so is the second summation in (2.9).

5. NUMERICAL EXAMPLE

In this section we study a numerical example of GELLI valuation. The first

summation in (2.9) (i.e., the stream of fixed future payments) is calculated using the

bond valuation formulae presented in Section 3. For the options (i.e., the second

summation in (2.9)), we implement the two approaches proposed in Section 4.
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We first present various specifications of the problem under consideration.

GELLI Contract. We consider a contract with 10-year term and for an 50-aged

insured. Then N = 10, z = 50.

Benefit Paying Probability. Recall that pn denotes the conditional probability

that the insured dies during the period (n − 1, n], given that the person survives at

time t = n − 1 if 1 ≤ n < N , and pN is the probability that either the person dies

during the last year (N − 1, N ] or is still alive at the maturity t = N , given that the

person survives to time t = N − 1. Let λ(z) be the (hazard) death rate function.

Then for an individual with age z, the probability of death before time t is given by

(5.1) P{Tz ≤ t} = 1 − exp

(
−
∫ t

0

λ(z + s) ds

)
,

where Tz denotes the person’s remaining life. A commonly used death rate function

is the Gompertz assumption,

(5.2) λ(z) =
1

b
exp

(
z − m

b

)
,

where the two parameters m and b depend on the age of insured and are usually

estimated by fitting a mortality table to the exponential function. In our numerical

study, we used m = 84.4535 and b = 9.922 which come from Table 4 in Milevsky and

Posner [22] for a male aged 50. Using these values in (5.1) and (5.2), the probabilities

pn, 1 ≤ n ≤ 10 are calculated by

(5.3) pn =

{
P{Tz ≤ n} − P{Tz ≤ n − 1}, if n < 10,

[P{Tz ≤ 10} − P{Tz ≤ 9}] + [1 − P{Tz ≤ 10}], if n = 10.

Those numbers are reported in Table 1 and used in our experiments.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

3.29 3.62 3.99 4.40 4.84 5.32 5.85 6.43 7.07 955.19

Table 1. Benefit Paying Probabilities (Unit: 10−3)

Markov Chain. We consider a two-state Markov chain in the numerical study, i.e.,

αt ∈ {1, 2}. The generator Q of αt is chosen as:

(5.4) Q =

(
−3 3

1 −1

)
.

Recall that the two positive numbers in Q give us the jump rates from one state to

the other. We will report and compare the GELLI solutions for the two different

initial states α0 = 1 and α0 = 2.

Model Specification. Respectively for the two regimes, various model parameters

are chosen as below:

For the interest rate model (2.13), κ = 0.6, θ(1) = 0.1, θ(2) = 0.05, η(1) = 0.03,

η(2) = 0.02, the initial rate r0 = 0.07.
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Figure 1. Yield curve generated using the regime-switching Vasicek

interest rate model.

For the unit price model (2.10), σ(1) = 0.2, σ(2) = 0.3, the correlation coefficient

ρ = −0.6.

We first show in Fig. 1 the yield curves produced from the interest rate model

(2.13) with the specified parameters. In the figure, the x-axis represents the time in

years and y-axis the yield in decimal number. The two curves correspond to the two

different initial Markov states (upper for α0 = 1 and lower for α0 = 2, respectively).

It is apparent that for different present regime of economy, the implied yields are

significantly different, particularly for short to moderate maturities (less than four

years). This difference illustrates the impact on interest rates of introducing regime-

switching into the stochastic short rate model.

Next we calculate the “fair” portion δ of the paid initial premium that should be

invested in the reference equity fund for given guaranteed rate g, by solving equation

(2.9). We use equations (3.5)–(3.9) for calculating the bond values and use both

Fourier transform approach and semi Monte-Carlo simulation for determining the

option values. For the Fourier transform, the Runge-Kutta method is used to solve

(4.6) to obtain the discounted characteristic function Φα and the Simpson’s rule is used

for approximating the integrals involved in the inverting Fourier transform formula

(4.17). In the semi Monte-Carlo simulation, 10000 sample paths of the chain αt are

used for each case. In addition, the Newton-Raphson procedure is employed to solve

the one dimensional nonlinear equation (2.9) for δ value.

Table 2 reports our calculated values of δ for different g ranging from −4% to

6%. Whereas positive g is practical, we include some negative numbers for g to bet-

ter reveal the relationship between the guaranteed rate and the corresponding fair

equity investment portion. In the table, the first column lists a range of g values (in

percentage), the second and third columns are the δ values (also in percentage) ob-

tained using the Fourier transform (FTR) and semi Monte-Carlo simulation (SMC),

respectively, for α0 = 1; the fourth and fifth columns are the results for α0 = 2. We
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can see from the table that both approaches produce very close values for δ. For

example, if an 3% annual increase is ensured and the initial state is α0 = 1, then

80.04% (Fourier transform) and 79.98% (semi Monte-Carlo simulation) of the pre-

mium should be invested (or deemed to be invested) in the equity fund by the insurer

in order to keep even. Also noting that for equation (2.9) to have a solution δ, nec-

essarily
∑N

n=1 pnG0(g, n) ≤ 1. We can therefore calculate the maximum (financially)

permissible value for g by solving the equation
∑N

n=1 pnG0(g, n) = 1. For the example

considered, we found that g < 6.41% (α0 = 1) and g < 6.28% (α0 = 2).

g FTR (α0 = 1) SMC (α0 = 1) FTR (α0 = 2) SMC (α0 = 2)

6.0 41.74 41.70 36.90 36.82

5.0 61.96 62.01 59.81 59.86

4.0 72.82 72.75 71.37 71.39

3.0 80.04 79.98 78.97 79.00

2.0 85.16 85.25 84.36 84.28

1.0 88.92 88.96 88.30 88.38

0.0 91.72 91.70 91.23 91.31

-1.0 93.83 93.85 93.44 93.46

-2.0 95.40 95.41 95.11 95.02

-3.0 96.60 96.58 96.36 96.39

-4.0 97.49 97.56 97.31 97.36

Table 2. Calculated δ values for different g and for different α0

Fig. 2 displays the δ curve as a function of g using numbers calculated by Fourier

transform (numbers from semi Monte-Carlo simulation would produce a very similar

picture). In the figure, the x-axis is for g and y-axis is for δ, both in decimal number.

The two curves correspond to the two different states (upper curve for α0 = 1 and

lower curve for α0 = 2, respectively). We see clearly that both curves indicate that δ

is a decreasing function of g. A large g value implies that the insurer would promise

more for the guaranteed benefit and hence would require to set off more premium

to cover the guarantee. As a consequence, less premium would be put into equity

investment. On the other hand, for small g values, the insurer would not take a big

obligation for the promised guarantees and most of the premium could go to the equity

account. This observation agrees with our intuitive understanding of the contracts.

We also noticed from the figure that as g becomes bigger, the difference between the

δ values corresponding to the two regimes becomes renowned. This is because the

larger g values result in larger strike prices in the call options embedded in the GELLI

(see (2.6)) and the regime-switching has a bigger impact on these option values.
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Figure 2. δ curve as a function of the guaranteed rate.

6. CONCLUDING REMARKS

We have studied the risk-neutral valuation of guaranteed equity-linked life insur-

ance in this paper using both regime-switching unit price model and regime-switching

stochastic interest rate model. The study helps us better understand some important

features of the life insurance contracts.

We have examined two approaches for valuing European options based on the

regime-switching models, which are then used to determine the fair values of the

GELLI contracts. Both approaches (namely, inverting Fourier Transform and semi

Monte-Carlo simulation) are a combination of analytical formula with numerical ap-

proximation. We believe this is a good methodology to use when dealing with large

and complex problems similar to GELLI.

Whereas the current paper focuses on the single premium contracts, our next step

will be to look into the periodic premium case in the context of regime-switching mod-

els. Another interesting topic for future research will be to consider early surrender

conditions as well in the valuation.

7. APPENDIX

7.1. Analytical Solution of (4.6) for Two-State (m = 2) Case. In this case,

the underlying Markov chain αt takes two values, i.e., αt ∈ {1, 2}. Let its generator

be given by the following 2 × 2 matrix:

(7.1) Q =

(
−λ1 λ1

λ2 −λ2

)
, λ1, λ2 > 0,

where λ1 is the jump rate from state 1 to state 2 and λ2 is the jump rate from state

2 to state 1. Moreover, we assume that in (2.13), η(1) = η(2) = η, where η > 0 is a
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constant. Then system (4.6) can be explicitly written as a pair of scalar differential

equations as below:

dV 1(τ)

dτ
=

(
−λ1 −

1

2
σ2(1)(u − u2) + [κθ(1) + ρησ(1)u]D(u, τ)(7.2)

+
1

2
η2D2(u, τ)

)
V 1(τ) + λ1V

2(τ),

dV 2(τ)

dτ
=

(
−λ2 −

1

2
σ2(2)(u − u2) + [κθ(2) + ρησ(2)u]D(u, τ)

+
1

2
η2D2(u, τ)

)
V 2(τ) + λ2V

1(τ),

with initial conditions

(7.3) V 1(0) = V 2(0) = 1,

where V 1(τ) = eC1(u,τ) and V 2(τ) = eC2(u,τ) are the two components of vector V(τ).

Let G(τ) := V 1(τ)/V 2(τ). Then G(τ) satisfies the following Riccati equation:

(7.4)
dG(τ)

dτ
= λ1 + [q(u) + p(u)D(u, τ)]G(τ) − λ2(G(τ))2, G(0) = 1,

where

(7.5)
p(u) : = κ(θ(1) − θ(2)) + ρη(σ(1) − σ(2))u,

q(u) : = −λ1 + λ2 −
1

2
(σ2(1) − σ2(2))(u − u2).

Introducing a new function ζ(τ) such that

(7.6)
1

ζ(τ)
· dζ(τ)

dτ
= λ2G(τ),

then we have the following equation for ζ :

(7.7)





d2ζ(τ)

dτ 2
= [q(u) + p(u)D(u, τ)]

dζ(τ)

dτ
+ λ1λ2ζ(τ),

ζ(0) = 1,

ζ ′(0) = λ2.

Let s := e−κτ and Z(s) := ζ(τ). In view of (4.5) for function D(u, τ), we obtain:

(7.8)





s2d2Z(s)

ds2
= [l(u)s + n(u)s2]

dZ(s)

ds
+

λ1λ2

κ2
Z(s),

Z(1) = 1,

Z ′(1) = λ2,

where

(7.9) l(u) := −q(u)

κ
− p(u)(u− 1)

κ2
− 1 and n(u) :=

p(u)(u − 1)

κ2
.
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Next, let χ(s) be given by the equation

(7.10)
dχ(s)

ds
=

l(u)

2s
+

n(u)

2
, χ(1) = 0,

which yields,

χ(s) =
1

2
[l(u) ln s + n(u)s − n(u)] .

Let Y (s) = e−χ(s)Z(s). Then Y (s) satisfies the equation:

(7.11)





d2Y (s)

ds2
=

(
n2(u)

4
+

l(u)n(u)

2s
+

[
l(u)

2
+

l2(u)

4
+

λ1λ2

κ2

]
1

s2

)
Y (s),

Y (1) = 1,

Y ′(1) = y1,

where

(7.12) y1 := λ2 −
l(u) + n(u)

2
=

(2κ + 1)λ2 − λ1 + κ − 1
2
(σ2(1) − σ2(2))(u − u2)

2κ

in which (7.9) is used for substituting l(u) and n(u).

Let υ := n(u)s and ω(υ) := Y (s). Then equation (7.11) is transformed into a

Whittaker type differential equation for ω(υ):

(7.13)





d2ω(υ)

dυ2
=

(
1

4
+

l(u)

2υ
+

[
l(u)

2
+

l2(u)

4
+

λ1λ2

κ2

]
1

υ2

)
ω(υ),

ω(n(u)) = 1,

ω′(n(u)) =
y1

n(u)
.

Comparing (7.13) with the following form of Whittaker equation (see Abramowitz

and Stegun [1] and Zwillinger [28]),

(7.14)
d2ω(υ)

dυ2
+

(
−1

4
+

k

υ
+

1
4
− m2

υ2

)
ω(υ) = 0,

we have

(7.15) k = − l(u)

2
, m2 =

1

4
+

l(u)

2
+

l2(u)

4
+

λ1λ2

κ2
.

Note that in (7.15) we suppress the dependence on variable u in k and m for notational

brevity.

The solution to (7.14) (and hence to (7.13)) is given in terms of the Whittaker

functions Mk,m(υ) and Wk,m(υ),

(7.16) ω(υ) = C1Mk,m(υ) + C2Wk,m(υ),

where the two Whittaker functions are given by (see Abramowitz and Stegun [1]),

(7.17)
Mk,m(υ) = e−υ/2υm+1/2F1(

1
2

+ m − k, 1 + 2m; υ),

Wk,m(υ) = e−υ/2υm+1/2U(1
2

+ m − k, 1 + 2m; υ),
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where F1 and U are the confluent hypergeometric function of the first kind and of the

second kind, respectively. The u-dependent coefficients C1 and C2 are determined by

the initial conditions in (7.13); They are given by:

(7.18)

C1 =
W ′

k,m(n(u)) − y1

n(u)
Wk,m(n(u))

Mk,m(n(u))W ′
k,m(n(u)) − Wk,m(n(u))M ′

k,m(n(u))
,

C2 = −
M ′

k,m(n(u)) − y1

n(u)
Mk,m(n(u))

Mk,m(n(u))W ′
k,m(n(u)) − Wk,m(n(u))M ′

k,m(n(u))
.

Now if we work backwards, we can get the following relationship between ω(υ),

the solution to (7.14), and ζ(τ), the solution to (7.7),

(7.19) ζ(τ) = eχ(e−κτ )ω(n(u)e−κτ).

Notice that, in view of that V 2(τ) = eC2(u,τ) and G(τ) = V 1(τ)/V 2(τ),the second

equation in (7.2) can be written for C2(u, τ) as below:

dC2(u, τ)

dτ
= −λ2 −

1

2
σ2(2)(u − u2) + [κθ(2) + ρησ(2)u]D(u, τ)(7.20)

+
1

2
η2D2(u, τ) + λ2G(τ).

This yields, using the initial condition C2(u, 0) = 0,

(7.21)

C2(u, τ) = −
(

λ2 +
1

2
σ2(2)(u − u2)

)
τ

+[κθ(2) + ρησ(2)u]

∫ τ

0

D(u, π) dπ +
1

2
η2

∫ τ

0

D2(u, π) dπ

+λ2

∫ τ

0

G(π) dπ,

where the last integral can be calculated via

(7.22) λ2

∫ τ

0

G(π) dπ =

∫ τ

0

ζ ′(π)

ζ(π)
dπ =

∫ τ

0

d ln ζ(π) = ln ζ(τ),

by using definition (7.6) and the condition ζ(0) = 1. We also have, in view of (4.5),

(7.23)

∫ τ

0

D(u, π) dπ =
u − 1

κ

(
τ − 1

κ
(1 − e−κτ )

)
,

and

(7.24)

∫ τ

0

D2(u, π) dπ =
(u − 1)2

κ2

(
τ − 3

2κ
+

2

κ
e−κτ − 1

2κ
e−2κτ

)
.

Therefore (7.21), in conjunction with (7.22), (7.23) and (7.24) solves C2(u, τ). For

C1(u, τ), we have

C1(u, τ) = C2(u, τ) + ln G(τ) = C2(u, τ) + ln

(
ζ ′(τ)

λ2ζ(τ)

)
.
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7.2. Derivation of the Analytical Formula (4.29). Let P̃ denote the risk-neutral

probability measure under which (4.21) and (4.22) are presented. Let P̃T denote

the T -forward measure obtained by using the T maturity bond value P (t, rt, T ) as

numeraire. Then the associated Radon-Nikodym derivative is given by

dP̃T

dP̃
=

exp
(
−
∫ T

0
rs ds

)

P (0, r0, T )
(7.25)

= exp

(
−
∫ T

0

∫ s

0

e−κ(s−v)η(v) dW 1
v ds − 1

2

∫ T

0

η2(s)β2(s, T ) ds

)

in view of (4.24) and (4.28). Define two processes W̃ 1
t and W̃ 2

t through

(7.26) dW̃ 1
t = dW 1

t + η(t)β(t, T )dt and dW̃ 2
t = dW 2

t .

Then from the Girsanov Theorem we know that (W̃ 1
t , W̃ 2

t ) becomes a two-dimensional

standard Brownian motion under the transformed forward measure P̃T . The dynam-

ics for rt and St under P T are now given by

(7.27) drt = [κθ(t) − κrt − η2(t)β(t, T )]dt + η(t)dW̃ 1
t ,

(7.28)
dSt

St
= [rt − ρσ(t)η(t)β(t, T )]dt + σ(t)[ρdW̃ 1

t +
√

1 − ρ2dW̃ 2
t ].

From (7.27) we have

(7.29) rt = r0e
−κt + κ

∫ t

0

e−κ(t−v)[κθ(v) − η2(v)β(v, T )] dv +

∫ t

0

e−κ(t−v)η(v) dW̃ 1
v ,

and then
∫ T

0

rs ds = r0β(0, T ) +

∫ T

0

β(s, T )[κθ(s) − η2(s)β(s, T )] ds(7.30)

+

∫ T

0

∫ s

0

e−κ(s−v)η(v) dW̃ 1
v ds,

where β(t, T ) is given in (4.23).

Using Itô formula for (7.28) and then replacing
∫ T

0
rs ds via (7.30), we have

(7.31) ST = S0e
eXT ,

where

X̃T = r0β(0, T )(7.32)

+

∫ T

0

(
β(s, T )[κθ(s) − η2(s)β(s, T )] − ρσ(s)η(s)β(s, T )− 1

2
σ2(s)

)
ds

+

∫ T

0

∫ s

0

e−κ(s−v)η(v) dW̃ 1
v ds +

∫ T

0

σ(s)[ρdW̃ 1
s +

√
1 − ρ2dW̃ 2

s ].
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It can be shown that X̃T is a Gaussian variable with mean and variance given by

ET [X̃T ] = r0β(0, T )

(7.33)

+

∫ T

0

(
β(s, T )[κθ(s) − η2(s)β(s, T )] − ρσ(s)η(s)β(s, T )− 1

2
σ2(s)

)
ds

and

(7.34) VarT [X̃T ] =

∫ T

0

[σ2(s) + 2ρβ(s, T )σ(s)η(s) + β2(s, T )η2(s)] ds,

where we use ET and VarT for the expectation and variance with respect to the

forward measure P T .

Using the forward probability measure P T , the call option value C(S0, r0, K, T )

is given by

C(S0, r0, K, T ) = P (0, r0, T )ET
{
(ST − K)+

}
(7.35)

= P (0, r0, T )ET

{(
eln S0+ eXT − K

)+
}

,

where P (0, r0, T ) is the discounted bond value at time t = 0 and can be calculated

by (4.28).

The following formula is easy to derive. Let Y be a Gaussian variable with mean

M and Variable V 2, then

(7.36) E
{
(eY − K)+

}
= eM+ 1

2
V 2

N

(
M − ln K + V 2

V

)
− KN

(
M − ln K

V

)
,

where N(·) is the cumulative standard normal distribution function. Substituting

ET [X̃T ] + ln S0 for M and VarT [X̃T ] for V 2, and using (7.33), (7.34) and (4.28) for

ET [X̃T ], VarT [X̃T ] and P (0, r0, T ), respectively, we can get

(7.37) eM+ 1
2
V 2

=
S0

P (0, r0, T )
.

Using (7.37) in (7.36) and then the result in (7.35), we have the option value formula

(4.29) in which we use V 2(0, T ) for the variance VarT [X̃T ].
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