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ABSTRACT. A new criterion is proposed for the global asymptotic stability of the positive periodic

solution to the following delay logistic equation

u
′(t) = u(t)[ r(t) − a(t)u(t) − b(t)u(t − τ)]

with continuous and periodic coefficients. Such condition, given in average form, incorporates some

known pointwise assumptions. The same strategy is applied to study the linear case.
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1. INTRODUCTION

Delay differential equations arise in many applications. In particular, there is

a great variety of processes in the biological world that involve significant delays.

The logistic equations play an important role in models of population growth and

their study provides a basilar contribution in the development of the theory of delay

differential equations. This article discusses the asymptotic behaviour of all positive

solutions to the following delay logistic equation

(1.1) u′(t) = u(t)[ r(t) − a(t)u(t) − b(t)u(t − τ)]

with continuous and T-periodic coefficients. Moreover a(t) > 0, b(t) ≥ 0 and r(t) has

a positive mean value, that is

m[r] =
1

T

∫ T

0

r(s) ds > 0 .

It is known (see [2]) that (1.1) admits a positive periodic solution
◦

u(t). Our aim is

to study its asymptotic stability by a suitable mean condition involving coefficients

a(t), b(t) and
◦

u(t) itself. Freedman and Wu [3] considered the equation

u′(t) = u(t)[ r(t) − a(t)u(t) + b(t)u(t − τ)]
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with r(t), a(t), b(t) continuously differentiable, T-periodic functions, r(t) > 0, a(t) >

0 and b(t) ≥ 0. They proved the existence of a positive periodic solution
◦

u(t) and

they employed the Razumikhin theorem to show that it is globally attractive if

(1.2) a(t) >
b(t)

◦

u(t − τ)
◦

u(t)

for all t ∈ [0, T ] . Their stability argument can be employed in our case, too, therefore

their attractivity result holds also for equation (1.1). An alternative formulation for

a delayed logistic equation is

(1.3) x′(t) = −r(t)(1 + x(t))(c x(t) + x(t − τ)) .

In [8], it is proved that, if c ≥ 1 and
∫ +∞

0
r(s) ds = +∞, then every solution of (1.3),

x(t) > −1, tends to zero as t → ∞, no matter the length of delay τ . For the case

0 < c < 1, to obtain the same result, the author introduces the inequality (depending

on τ)
∫ t

t−τ

r(s) ds ≤
1

2
−

1

c
ln(1 − c) −

c

6
, for large t .

Going back to the logistic equation in form (1.1), introducing a suitable Lyapunov

functional, one can obtain the global attractivity of equation (1.1) under the inequality

a(t) > b(t + τ)

(see [1],[7],[9]), which can be rewritten in the equivalent form

(1.4) a(t)
◦

u(t) > b(t + τ)
◦

u(t) .

A previous contribution to the subject of this paper is given in [6] by means of a

comparison technique.

Another recent result can be found in [7], in which the author proposes the

following assumption for the global attractivity of a periodic solution
◦

u(t)

(1.5) a(t)
◦

u(t) >
b(t)

◦

u(t − τ) + b(t + τ)
◦

u(t)

2
.

Now, a natural question is whether, for equation (1.1), it is possible to introduce a

more general assumption, ensuring the cited stability property, which incorporates

(1.2), (1.4) and (1.5) but takes in a deeper account the periodicity of coefficients. In

Theorem 3.3 we demonstrate that the following average condition

(1.6) m[a(t)
◦

u(t)] > m[b(t)
◦

u(t − τ)]

has the sought requisites, giving an affirmative answer to the conjecture advanced in

[7].
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The basic strategy of Theorem 3.3 can also be applied to the linear case. Indeed,

in Theorem 3.4, we prove that average inequality m[a(t] > m[b(t)] guarantees the

global asymptotic stability of the linear delay equation

x′(t) = −a(t)x(t) − b(t)x(t − τ) .

In this way we extend the relative result proved in [6] in which the relationship

between a(t) and b(t) was the following one

a(t) − b(t)e
R

t

t−τ
γ(s)ds ≥ γ(t) ,

where γ(t) is a T-periodic function with positive average.

2. AN ALTERNATIVE LOGISTIC EQUATION

Let α(t), β(t) be continuous, T-periodic functions, α(t) > 0, β(t) ≥ 0. In this

section we investigate the asymptotic behaviour of solutions x(t), x(t) > −1, to the

following delay equation

(2.1) x′(t) = (1 + x(t))(−α(t) x(t) − β(t) x(t − τ)) ,

starting from the corresponding differential equation without the delay term.

Lemma 2.1. Let q(t) be a continuous, T-periodic function with

m[q(t)] =
1

T

∫ T

0

q(s) ds > 0

and let y(t) be a solution of equation

(2.2) y′(t) = −(1 + y(t))q(t) y(t)

such that y(t) > −1. Then one has

lim
t→+∞

y(t) = 0 .

Proof. Note that, making the substitution

z(t) =
y(t)

1 + y(t)

equation (2.2) turns into the linear differential equation

z′(t) = −q(t) z(t)

whose solutions vanish at infinity, because m[q(t)] > 0. As a consequence, our state-

ment easily follows. �

Owing to the presence of delay τ , previous argument cannot extend to related

delay equations (2.1). First observe that, at the values of t for which a solution x(t)

satisfies x(t) = −x(t − τ), one gets

x′(t) = (1 + x(t))(−α(t) x(t) + β(t) x(t))
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which has the form of equation (2.2) with

q(t) = α(t) − β(t) .

Then Lemma 2.1 may suggest that

(2.3) m[α(t)] > m[β(t)]

could be a possible sufficient condition for the asymptotic stability of equation (2.1).

On the other hand, delay equation (2.1) can be rewritten as

x′(t) = (1 + x(t))[−(α(t) + β(t)) x(t) + β(t) (x(t) − x(t − τ))] .

In this way, one regards equation (2.1) as a perturbed equation of a nondelayed

equation of type (2.2). If time lag τ is small enough, it is reasonable to suppose that

perturbated equation (2.1) has a similar asymptotic behaviour as equation

x′(t) = (1 + x(t))[−(α(t) + β(t)) x(t)]

since addendum β(t) (x(t) − x(t − τ)) is small. On the contrary, our strategy is to

find a delay independent result, so that we have to require that coefficient β(t) is

small, in some sense, with respect to α(t). Some pointwise conditions are already

known ([1],[3],[4],[5],[6],[7],[9]). We are going to prove, in Theorem 2.1, that average

inequality (2.3) is sufficient for our object.

Definition 2.1. A nontrivial solution x(t) to a delay differential equation is said to

be oscillatory iff there exists a sequence {tn} of its zeroes such that limn→∞ tn = +∞.

The result described in the next theorem plays a central role in reaching our

target.

Theorem 2.1. Assume that inequality (2.3)

m[α(t)] > m[β(t)]

holds. Then, for every solution x(t), x(t) > −1 of equation (2.1), we have

(2.4) lim
t→+∞

x(t) = 0 .

Proof. Let x(t) be a solution of delay equation (2.1), greater than −1, and

assume that x(t) is oscillatory. Otherwise, since x(t) is positive (or negative), for t

great enough, property (2.4) easily follows from Lemma 2.1 and comparison results

for differential equations.

Consider the Lyapunov function

V (t) = x(t) − ln(1 + x(t)) +
1

2

∫ t

t−τ

β(s + τ) x2(s) ds .

Note the dependence of V (t) on delay τ and the values of x(s), t − τ ≤ s ≤ t,

accordingly to what usually happens for delayed equations.
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Easy calculations lead to

V ′(t) = −α(t) x2(t) − β(t) x(t − τ)x(t) +
1

2
β(t + τ) x2(t) −

1

2
β(t) x2(t − τ) .

Adding and subtracting term
β(t)

2
x2(t), we deduce

V ′(t) = −α(t) x2(t)+
β(t) + β(t + τ)

2
x2(t)−

β(t)

2
x2(t)−

β(t)

2
x2(t−τ)−β(t) x(t−τ)x(t) .

Setting

λ(t) = α(t) −
β(t) + β(t + τ)

2
.

we obtain the following simple expression for the derivative of V (t)

(2.5) V ′(t) = −λ(t) x2(t) −
β(t)

2
(x(t) + x(t − τ))2

where, by hypothesis (2.3),

(2.6) m[λ(t)] > 0 .

By contradiction, suppose that x(t) does not vanish at infinity and let {t0, t1, t2, . . . }

be the sequence of its zeroes.

Integrating both sides of (2.5) between t0 and t, one gets

(2.7)

∫ t

t0

(

λ(s) x2(s) +
β(s)

2
(x(s) + x(s − τ))2

)

ds = V (t0) − V (t) .

From the contradiction hypothesis on x(t), it follows

(2.8) lim
t→+∞

∫ t

t0

β(s)

2
(x(s) + x(s − τ))2 ds = +∞ .

For simplicity, set h(t) = x2(t). The next step of our proof consists in showing the

following claim:

(C) There exists a positive integer k such that, for each n ≥ k, we have
∫ tn

tn−1

λ(s)h(s) ds > 0 .

Set

Λ(t) =

∫ t

0

λ(s) ds .

It easy to check that it is possible to write λ(t) and Λ(t) in the form

λ(t) = m[λ(t)] + q(t), m[q(t)] = 0,

Λ(t) = m[λ(t)] t + p(t), p(t) T-periodic.

Let us denote by {σn} the sequence of the maximum and minimum points of x(t),

tn−1 < σn < tn, for every n. Each σn is a maximum point for h(t), then

h′(s) ≥ 0 in [tn−1, σn], h′(s) ≤ 0 in [σn, tn] .
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Fix a positive integer n. Applying the mean value theorem, we can find ξn ∈ [tn−1, tn]

such that
∫ tn

tn−1

λ(s) h(s) ds = λ(ξ)

∫ tn

tn−1

h(s) ds = m[λ(t)]

∫ tn

tn−1

h(s) ds + q(ξn)

∫ tn

tn−1

h(s) ds .

Since
∫ tn

tn−1

h(s) ds =

∫ tn

tn−1

(−sh′(s)) ds

it follows

(2.9)

∫ tn

tn−1

λ(s) h(s) ds =

m[λ(t)]

∫ tn

tn−1

h(s) ds + q(ξn)

∫ σn

tn−1

(−sh′(s)) ds + q(ξn)

∫ tn

σn

(−sh′(s)) ds .

On the other hand, integrating by parts
∫ tn

tn−1

λ(s) h(s) ds =

∫ tn

tn−1

Λ(s)

s
(−sh′(s)) ds .

Using again the mean value theorem, there exist αn ∈ [tn−1, σn] and βn ∈ [σn, tn] such

that

(2.10)

∫ tn

tn−1

Λ(s)

s
(−sh′(s)) ds =

m[λ(t)]

∫ tn

tn−1

h(s) ds +
p(αn)

αn

∫ σn

tn−1

(−sh′(s)) ds +
p(βn)

βn

∫ tn

σn

(−sh′(s)) ds .

Comparing (2.9) and (2.10), one deduces

p(αn)

αn

=
p(βn)

βn

= q(ξn)

which implies that

lim
n→+∞

q(ξn) = 0 = m[q(t)] .

From (2.9), (2.6) and previous property, we obtain claim (C). As a consequence, for

n great enough
∫ tn

t0

λ(s)x2(s) ds > 0 .

Taking into account (2.8), previous inequality implies

lim
n→∞

∫ tn

t0

(

λ(s) x2(s) +
β(s)

2
(x(s) + x(s − τ))2

)

ds = +∞ .

On the contrary, using (2.7)

lim
n→∞

∫ tn

t0

(

λ(s) x2(s) +
β(s)

2
(x(s) + x(s − τ))2

)

ds ≤ V (t0) .

We conclude that x(t) has to vanish as t goes to infinity, that is (2.4) is proved. �
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3. MAIN RESULTS

It is well known that, for any continuous, initial condition φ(t), there exists a

unique solution u(t) of

u′(t) = u(t)[ r(t) − a(t)u(t) − b(t)u(t − τ)] .

If φ(t) ≥ 0 and φ(0) > 0 then u(t) > 0 for t > 0. We will call positive such type of

solutions.

Next, let us verify that all positive solutions to (1.1) are bounded from above. We

assume that r(t), a(t), b(t) are continuous, T-periodic functions, m[r] > 0, a(t) > 0,

b(t) ≥ 0.

Theorem 3.1. Denote by M = maxt∈[0,T ]
r(t)

a(t)
> 0, then, for any positive solution

u(t) to equation (1.1), there exists t0 > 0 such that

0 < u(t) ≤ M + 1, t ≥ t0 .

Proof. Let
◦

v(t) be the positive periodic solution to the logistic equation

(3.1) v′(t) = v(t) (r(t) − a(t) v(t)) .

whose existence is well known.

Consider t̄ > 0, a maximum point for
◦

v(t), hence

◦

v(t̄) =
r(t̄)

a(t̄)
≤ M .

Since
◦

v(t) attracts all positive solutions, we have

lim
t→+∞

|v(t) −
◦

v(t)| = 0

for any positive solution v(t) to logistic equation (3.1). Now, taking u(t) positive

solution to (1.1), one yields

u′(t) ≤ u(t) (r(t) − a(t) u(t))

so that, by comparison results, there exists t0 > 0 such that

u(t) ≤ v(t) + 1 ≤ M + 1, t ≥ t0 .

as required. �

Delay equation (1.1) admits a positive periodic solution as a consequence of the

following theorem, proved in [2], using the method of coincidence degree.

Theorem 3.2. Let 0 < p ≤ q and suppose coefficients r(t), a(t) and b(t) are as

above. Then the following differential equation with delays σ and τ

N ′(t) = N(t)[ r(t) − a(t)Np(t − σ) − b(t)N q(t − τ)]

has at least one positive periodic solution.
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At this point, we are in position to formulate our main result.

Theorem 3.3. Let
◦

u(t) be a positive periodic solution to delay equation (1.1)

u′(t) = u(t)[ r(t) − a(t)u(t) − b(t)u(t − τ)]

and assume that inequality (1.6)

m[a(t)
◦

u(t)] > m[b(t)
◦

u(t − τ)]

holds. Then, for every positive solution u(t) of previous equation, we have

lim
t→+∞

|u(t) −
◦

u(t)| = 0 .

Proof. Let u(t) be a positive solution of (1.1) and set

(3.2) x(t) =
u(t)
◦

u(t)
− 1 .

We find that x(t) is a solution, greater than −1, of delay equation (2.1), where new

coefficients α(t) and β(t) are related to a(t) and b(t) by

α(t) = a(t)
◦

u(t), β(t) = b(t)
◦

u(t − τ) .

Indeed

x′(t) =
u(t)
◦

u(t)





u′(t)

u(t)
−

◦

u′(t)
◦

u(t)





=
u(t)
◦

u(t)

[

−a(t) (u(t) −
◦

u(t)) − b(t) (u(t − τ) −
◦

u(t − τ))
]

= (1 + x(t))(−α(t) x(t) − β(t) x(t − τ)) .

From (1.6), the condition

m[α(t)] > m[β(t)]

is verified. Therefore, by Theorem 2.1

lim
t→+∞

|x(t)| = 0

from which, taking into account substitution (3.2),

lim
t→+∞

|u(t) −
◦

u(t)| = 0

according with the statement. �

Example. Consider the delay equation

u′(t) = u(t)

[

(2 +
sin2 t

2
+ cos t) − (

3

2
sin2 t +

1

2
) u(t) − (cos2 t + cos t +

1

2
) u(t − 1)

]

.

Obviously this differential equation has
◦

u(t) = 1 as positive 2π-periodic solution.

Here

a(t) =
3

2
sin2 t +

1

2
, b(t) = cos2 t + cos t +

1

2
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so that none of conditions (1.2), (1.4), (1.5) is satisfied. On the other hand,

3

4
+

1

2
= m[a(t) · 1] > m[b(t) · 1] = 1

that is assumption (1.6) is verified. We conclude that

lim
t→∞

u(t) = 1

for each positive solution u(t).

Our last result concerns the linear case.

Theorem 3.4. Consider the delay differential equation

(3.3) x′(t) = −a(t)x(t) − b(t)x(t − τ) ,

with coefficients a(t) and b(t) continuous, T-periodic, a(t) > 0, b(t) ≥ 0. If

(3.4) m[a(t)] > m[b(t)]

then any solution of (3.3) goes to zero as t → ∞.

Proof. For nonoscillatory solutions the statement easily follows. Now take x(t),

oscillatory solution of (3.3) and introduce the Lyapunov function

V (t) =
x2(t)

2
+

1

2

∫ t

t−τ

b(s + τ) x2(s) ds .

Repeating calculations analogous to those in the proof of Theorem 2.1, one yields

V ′(t) = −λ(t)x2(t) −
b(t)

2
(x(t) + x(t − τ))2

where

λ(t) = a(t) −
b(t) + b(t + τ)

2
.

Owing to hypothesis (3.4), λ(t) has positive mean value.

Let {t0, t1, t2, . . . } be the sequence of the zeroes of x(t). If x(t) doesn’t vanish at

infinity, using again the arguments of Theorem 2.1, for each n, one gets
∫ tn

t0

(

λ(s)x2(s) +
b(s)

2
(x(s) + x(s − τ)2)

)

ds < V (t0),

together with the property

lim
t→∞

∫ tn

t0

(

λ(s)x2(s) +
b(s)

2
(x(s) + x(s − τ)2

)

ds = +∞.

We conclude that

lim
t→∞

x(t) = 0 .

so that the proof is complete. �
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