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ABSTRACT. In this paper, we study the existence of solutions of initial value problems for first

order fractional differential equations with nonlocal conditions. A variety of new existence results

are presented which are based on known fixed point theorems. Our results extend previous results

in integer and time scales cases to the fractional case.
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1. INTRODUCTION

In this paper, we consider the following first order initial value problem for frac-

tional differential equations with nonlocal initial conditions

(1.1)







cDqx(t) = f(t, x(t)), 0 < t < T, 0 < q ≤ 1,

x(0) +
m
∑

j=1

γjx(tj) = 0,

where cDq denotes the Caputo fractional derivative of order q, f : [0, T ] × R → R,

tj , j = 1, 2, . . . , m are given points with 0 ≤ t1 ≤ · · · ≤ tm < T and γj are real

numbers with

1 +

m
∑

j=1

γj 6= 0.

Fractional calculus (differentiation and integration of arbitrary order) arise natu-

rally in various areas of applied science and engineering such as mechanics, electricity,

chemistry, biology, economics, control theory, signal and image processing, polymer

rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,

aerodynamics, electro-dynamics of complex medium, viscoelasticity and damping,

control theory, wave propagation, percolation, identification, fitting of experimental

data, etc. [13, 17, 18, 19].

Differential equations of fractional order have attracted the attention of several

researchers. For some recent work on fractional differential equations, see [1, 2, 3, 9,

10, 15, 16] and the references therein.
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Nonlocal conditions were initiated in the paper [6]. The nonlocal condition is

more natural in many physical problems than the classical initial condition x(0) = x0.

We refer the reader to [5], [8] and the references therein for a motivation regarding

nonlocal conditions.

In the present paper we prove a variety of existence results for the problem (1.1)

via fixed point theorems. In Section 3 we prove an existence and uniqueness result by

using Banach’s fixed point theorem. Krasnoselskii’s fixed point theorem is used to get

the existence result in Section 4, while Leray-Schauder Alternative is the basic tools

for obtaining the existence results in Section 5. In Section 6 we give some further

existence results using the idea presented in [4], [7] where the growth condition is

splitted into two parts, one for the subinterval containing the points involved by the

nonlocal condition, and an other for the rest of the interval. Finally, a particular case

of the results presented in Section 6, is discussed in Section 7.

2. PRELIMINARIES

In this section, we introduce notations and definitions which are used throughout

this paper. Let X = C([0, T ], R) denote the Banach space of all continuous functions

from [0, T ] into R with the norm

|x| = |x|[0,T ] = max
t∈[0,T ]

|x(t)|.

L1([0, T ], R) denotes the Banach space of measurable functions x : [0, T ] −→ R which

are Lebesgue integrable and normed by

‖x‖L1 =

∫ T

0

|x(t)|dt for all x ∈ L1([0, T ], R).

Let us recall some definitions on fractional calculus [19, 17, 13].

Definition 2.1. For an n times continuously differentiable function g : [0,∞) → R,

the Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n − q)

∫ t

0

(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma

function.

Definition 2.2. The Riemann-Liouville fractional integral of order q for a continuous

function g is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t − s)1−q
ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).
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Definition 2.3. The Riemann-Liouville fractional derivative of order q for a contin-

uous function g is defined by

Dqg(t) =
1

Γ(n − q)

( d

dt

)n
∫ t

0

g(s)

(t − s)q−n+1
ds, n = [q] + 1, q > 0,

provided the right hand side is pointwise defined on (0,∞).

In order to define the solution of the problem (1.1), we consider the following

lemma.

Lemma 2.4. Assume that 1 +
m
∑

j=1

γj 6= 0. For a given ρ ∈ X the unique solution of

the initial value problem

(2.1)







cDqx(t) = ρ(t), 0 < t < T, 0 < q ≤ 1,

x(0) +
m
∑

j=1

γjx(tj) = 0, 0 ≤ t1 ≤ · · · ≤ tm < T,

is given by

(2.2) x(t) =

∫ t

0

(t − s)q−1

Γ(q)
ρ(s)ds −

1

1 +
m
∑

j=1

γj

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
ρ(s) ds.

Proof. For some constant ξ ∈ R, we have

(2.3) x(t) = Iqρ(t) − ξ =

∫ t

0

(t − s)q−1

Γ(q)
ρ(s)ds − ξ.

Then we obtain

x(tj) =

∫ tj

0

(tj − s)q−1

Γ(q − 1)
ρ(s)ds − ξ.

Applying the initial conditions for (2.1), we find that

ξ =
1

1 +
m
∑

j=1

γj

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
ρ(s) ds.

Substituting the value of ξ in (2.3), we obtain the unique solution of (2.1) given by

x(t) =

∫ t

0

(t − s)q−1

Γ(q)
ρ(s)ds −

1

1 +
m
∑

j=1

γj

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
ρ(s) ds.

This completes the proof.

We shall assume throughout the remainder of the paper that 1 +
m
∑

j=1

γj 6= 0, and

put, for brevity,

α =

(

1 +
m
∑

j=1

γj

)

−1

, A = 1 + |α|
m
∑

j=1

|γj|.
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3. EXISTENCE RESULTS VIA BANACH’S FIXED POINT

THEOREM

Theorem 3.1. Assume that f : [0, T ] × R → R is a jointly continuous function and

satisfies the assumption:

(A1) ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, T ], L > 0, x, y ∈ R,

with L <
Γ(q + 1)

AT q
.

Then the initial value problem (1.1) has a unique solution.

Proof. In view of Lemma 2.4 solutions of (1.1) are fixed points of the operator F :

X → X, defined by

(3.1) (Fx)(t) =

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds.

Setting supt∈[0,T ] |f(t, 0)| = M and choosing r ≥
AT qM

Γ(q + 1) − AT qL
, we show that

FBr ⊂ Br, where Br = {x ∈ X : ‖x‖ ≤ r}. For x ∈ Br, we have:

‖(Fx)(t)‖ =

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤

∫ t

0

(t − s)q−1

Γ(q)
(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖) ds

+|α|
m
∑

j=1

|γj|

∫ tj

0

(tj − s)q−1

Γ(q)
(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖) ds

≤ (Lr + M)
1

Γ(q)

[

∫ t

0

(t − s)q−1 ds + |α|
m
∑

j=1

|γj|

∫ tj

0

(tj − s)q−1 ds

]

≤ (Lr + M)
1

Γ(q + 1)

[

T q + |α|T q

m
∑

j=1

|γj|

]

=
AT q(Lr + M)

Γ(q + 1)
≤ r.

Now, for x, y ∈ X and for each t ∈ [0, T ], we obtain

‖(Fx)(t) − (Fy)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s)) − f(s, y(s))‖ds

+|α|
m
∑

j=1

|γj|

∫ tj

0

(tj − s)q−1

Γ(q)
‖f(s, x(s)) − f(s, y(s))‖ds

≤ L‖x − y‖
1

Γ(q)

[

∫ t

0

(t − s)q−1 + |α|
m
∑

j=1

|γj|

∫ tj

0

(tj − s)q−1

]
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≤
LT qA

Γ(q + 1)
‖x − y‖.

Since
LT qA

Γ(q + 1)
< 1 it follows that F is a contraction. Thus, the conclusion

of the theorem follows by the contraction mapping principle (Banach fixed point

theorem).

4. EXISTENCE RESULTS VIA KRASNOSELSKII’S FIXED POINT

THEOREM

Our next existence result is based on Krasnoselskii’s fixed point theorem [14].

Theorem 4.1 (Krasnoselskii’s fixed point theorem). Let M be a closed convex and

nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Ax + By ∈ M whenever x, y ∈ M ;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Theorem 4.2. Let f : [0, T ] × R → R be a jointly continuous function, and the

assumption (A1) holds. In addition we assume that

(A2) ‖f(t, x)‖ ≤ µ(t), ∀(t, x) ∈ [0, T ] × R, and µ ∈ L∞(0, T ).

Then the initial value problem (1.1) has at least one solution on [0, T ].

Proof. Letting supt∈[0,T ] |µ(t)| = ‖µ‖, we fix

r ≥
AT q‖µ‖

Γ(q + 1)
,

and consider Br = {x ∈ X : ‖x‖ ≤ r}. We write

(Fx)(t) =

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

as

(Fx)(t) = (Px)(t) + (Qx)(t)

where the operators P and Q are defined on Br by

(Px)(t) =

∫ t

0

(t − s)q−1

Γ(q)
f(s, u(s))ds,

(Qx)(t) = −α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds.
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For x, y ∈ Br, we find that

‖Px + Qy‖ ≤
AT q‖µ‖

Γ(q + 1)

≤ r.

Thus, Px + Qy ∈ Br. It follows from the assumption (A1) that Q is a contraction

mapping. Note that condition (A1) implies
LT q

Γ(q + 1)
< 1 because A ≥ 1. The conti-

nuity of f implies that the operator P is continuous. Also, P is uniformly bounded

on Br as

‖Px‖ ≤
T q‖µ‖

Γ(q + 1)
.

Now we prove the compactness of the operator P.

We define sup(t,x)∈[0,1]×Br
|f(t, x)| = f, and consequently we have

‖(Px)(t1) − (Px)(t2)‖ =

∥

∥

∥

∥

1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds

∥

∥

∥

∥

≤
f

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,

which is independent of x. Thus, P is equicontinuous. Hence, by the Arzelá-Ascoli

Theorem, P is compact on Br. Thus all the assumptions of Theorem 4.1 are satisfied.

So the conclusion of Theorem 4.1 implies that the initial value problem (1.1) has at

least one solution on [0, T ].

5. EXISTENCE RESULTS VIA LERAY-SCHAUDER ALTERNATIVE

Theorem 5.1. Let f : [0, T ]×R → R be a jointly continuous function. Assume that:

(A3) There exist a function p ∈ L1([0, T ], R+), and Ω : R
+ → R

+ nondecreasing such

that ‖f(t, x)‖ ≤ p(t)Ω(‖x‖), ∀(t, x) ∈ [0, T ] × R.

(A4) There exists a constant K > 0 such that

K

AΩ(K)

∫ T

0

(T − s)q−1

Γ(q)
p(s) ds

> 1.

Then the initial value problem (1.1) has at least one solution on [0, T ].

Proof. We show the boundendness of the set of all solutions to equations x = λFx

for λ ∈ [0, 1]. For, let x be a solution of x = λFx for λ ∈ [0, 1]. Then for t ∈ [0, T ]

we have

|x(t)| = |λ(Fx)(t)|
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≤

∫ t

0

(t − s)q−1

Γ(q)
|f(s, x(s))|ds + |α|

m
∑

j=1

|γj|

∫ tj

0

(tj − s)q−1

Γ(q)
|f(s, x(s))| ds

≤

∫ T

0

(T − s)q−1

Γ(q)
p(s)Ω(‖x‖) ds + |α|

m
∑

j=1

|γj|

∫ T

0

(T − s)q−1

Γ(q)
p(s)Ω(‖x‖) ds

= AΩ(‖x‖)

∫ T

0

(T − s)q−1

Γ(q)
p(s) ds,

and consequently
‖x‖

AΩ(‖x‖)

∫ T

0

(T − s)q−1

Γ(q)
p(s) ds

≤ 1.

In view of (A4), there is no solution x such that ‖x‖ = K. Let us set

U = {x ∈ X : ‖x‖ < K}.

Arguments similar to those used to show that the operator P, in the previous result,

is continuous and completely continuous will show that the operator F : U → X,

defined by (3.1) is continuous and completely continuous. From the choice of U , there

is no u ∈ ∂U such that u = λF(u) for some λ ∈ (0, 1). Consequently, by the nonlinear

alternative of Leray-Schauder type [11], we deduce that F has a fixed point u ∈ U

which is a solution of the problem (1.1). This completes the proof.

In the special case when p(t) = 1 and Ω(|x|) = k|x| + N we have the following

corollary.

Corollary 5.2. Let f : [0, T ]×R → R be a jointly continuous function. Assume that

(A5) There exist constants 0 ≤ κ <
Γ(q + 1)

AT q
, and N > 0 such that

|f(t, x)| ≤ κ|x| + N for all t ∈ [0, T ], x ∈ R.

Then the initial value problem (1.1) has at least one solution.

6. SOME FURTHER EXISTENCE RESULTS

In this section we assume that f : [0, T ] × R → R is a Carathéodory function.

We recall that

Definition 6.1. The map f : [0, T ] × R −→ R is said to be L1-Carathéodory if

(i) t 7−→ f(t, x) is measurable for each x ∈ R;

(ii) x 7−→ f(t, x) is continuous for almost all t ∈ [0, T ];

(iii) For each q > 0, there exists φq ∈ L1([0, T ], R+) such that

|f(t, x)| ≤ φq(t) for all |x| ≤ q and for almost t ∈ [0, T ].
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In Theorem 5.1 we proved an existence theorem assuming a growth condition on

f on whole interval. The problem (1.1) was studied in [7] for q = 1 and in [4] in

time scales setting, where the growth condition is splitted into two parts, one for the

subinterval containing the points involved by the nonlocal condition, and an other for

the rest of the interval. Here we extend the results of [4], [7] to the fractional case,

by splitting the growth condition into two parts.

Notice that the operator F, given by (3.1), appears as a sum of two integral

operators, one SF , say of Fredholm type, whose values depend on the restrictions of

functions on [0, tm],

SF x(t) =























∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds, t < tm

∫ tm

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds, t ≥ tm

and the other one SV , a Volterra type operator,

SV x(t) =







0, t < tm
∫ t

tm

(t − s)q−1

Γ(q)
f(s, x(s))ds, t ≥ tm

depending on the restriction of functions to [tm, T ]. This allow us to split the growth

condition on the nonlinear term f(t, x) into two parts, one for t∈ [0, tm] and another

one for t ∈ [tm, T ].

Theorem 6.2. Assume that

(H1) f : [0, T ] × R → R is an L1-Carathéodory function.

(H2) There exist a continuous function ω nondecreasing in its second argument, p ∈

L1[tm, T ] and a function Ψ : R
+ → R

+ nondecreasing such that

|f(t, x)| ≤

{

ω(t, |x|) t ∈ [0, tm]

p(t)Ψ(|x|), t ∈ [tm, T ].

(H3) There exists R0 > 0 such that

ρ > R0 ⇒
1

ρ

∫ tm

0

(tm − s)q−1

Γ(q)
ω(t, ρ) dt <

1

A
.

(H4) lim sup
R→∞

R

A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds + Ψ(R)

∫ T

tm

(T − s)q−1

Γ(q)
p(s) ds

> 1.

Then the initial value problem (1.1) has at least one solution.
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Proof. We show that solutions of (1.1) are a priori bounded. Let x be a solution.

Then for t ∈ [0, tm] we have

|x(t)| = λ

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤

∫ tm

0

(tm − s)q−1

Γ(q)
|f(s, x(s))|ds + |α|

m
∑

j=1

|γj|

∫ tm

0

(tj − s)q−1

Γ(q)
|f(s, x(s))| ds

≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, |x(s)|) ds.

Now we take the supremum over t ∈ [0, tm] to obtain

|x|[0,tm] ≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, |x|[0,tm]) ds.

This, according to (H3) guarantees that

|x|[0,tm] ≤ R0.

Next, we let t ∈ [tm, T ]. Then

|x(t)| = λ

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤

∫ tm

0

(t − s)q−1

Γ(q)
ω(s, R0)ds + |α|

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
ω(s, R0) ds

+

∫ t

tm

(t − s)q−1

Γ(q)
p(s)Ψ(|x(s)|) ds

≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds +

∫ t

tm

(t − s)q−1

Γ(q)
p(s)Ψ(|x(s)|) ds

≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds + Ψ(‖x‖[tm,T ])

∫ t

tm

(t − s)q−1

Γ(q)
p(s) ds

≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds + Ψ(‖x‖[tm,T ])

∫ T

tm

(t − s)q−1

Γ(q)
p(s) ds.

Consequently, we have

(6.1)
‖x‖[tm,T ]

A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds + Ψ(‖x‖[tm,T ])

∫ T

tm

(T − s)q−1

Γ(q)
p(s) ds

≤ 1.

Now (H4) implies that there exists R∗ > 0 such that for all R > R∗ we have

(6.2)
R

A

∫ tm

0

(tm − s)q−1

Γ(q)
ω(s, R0)ds + Ψ(R)

∫ T

tm

(T − s)q−1

Γ(q)
p(s) ds

> 1.
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Comparing the inequalities (6.1) and (6.2) we see that

‖x‖[tm,T ] ≤ R∗.

Let γ = max{R0, R
∗}. Then we have |x|[0,T ] ≤ γ. It follows from (H1) that there exists

φγ ∈ L1 ([0, T ], R+) such that

|f(t, x (t))| ≤ φγ (t) for almost every t ∈ [0, T ] .

The operator F : Bγ → X, defined by (3.1), is continuous and completely con-

tinuous. Indeed, from (H1) the continuity is obvious (see [12]), and for completely

continuous we remark that it is uniformly bounded, since

|Fx(t)| =

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤
T q

Γ(q + 1)

∫ T

0

φγ(t) dt + |α|

m
∑

j=1

|γj|
T q

Γ(q + 1)

∫ T

0

φγ(t) dt

=
AT q

Γ(q + 1)

∫ T

0

φγ(t) dt,

and equicontinuous, since

|Fx(t2) − Fx(t1)| ≤
1

Γ(q)

∫ t1

0

|(t2 − s)q−1 − (t1 − s)q−1||f(s, x(s))| ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1|f(s, x(s))| ds

≤
1

Γ(q)

∫ t1

0

|(t2 − s)q−1 − (t1 − s)q−1|

∫ T

0

φγ(t) dt

+
T

Γ(q)
(t2 − t1)

∫ T

0

φγ(t) dt.

Hence by the Leray-Schauder Alternative we deduce that F has a fixed point in Bγ ,

which is a solution of the problem (1.1).

7. A PARTICULAR CASE

If f has at most a linear growth, i.e

|f(t, x)| ≤

{

b|x| + d t ∈ [0, tm]

c|x| + d, t ∈ [tm, T ],

for some positive constants b, c, d, then the existence of solutions to problem (1.1)

follows directly from the Schauder fixed point theorem if f satisfies (H1), (H2) and

(H3) provided

Ab
tqm

Γ(q + 1)
< 1.
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In order to apply Schauder fixed point theorem we look for a nonempty, bounded,

closed and convex subset B of X with F(B) ⊂ B.

Let x be any element of X. For t ∈ [0, tm] we have

|Fx(t)| =

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤ A

∫ tm

0

(tm − s)q−1

Γ(q)
(b|x(s)| + d) ds

≤ Ab

∫ tm

0

(tm − s)q−1

Γ(q)
|x|[0,tm] ds + Ad

∫ tm

0

(tm − s)q−1

Γ(q)

= Ab
tqm

Γ(q + 1)
|x|[0,tm] + Ad

tqm
Γ(q + 1)

Fot t ∈ [tm, T ] we have

|Fx(t)| =

∣

∣

∣

∣

∣

∫ t

0

(t − s)q−1

Γ(q)
f(s, x(s))ds − α

m
∑

j=1

γj

∫ tj

0

(tj − s)q−1

Γ(q)
f(s, x(s)) ds

∣

∣

∣

∣

∣

≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] + Ad

tqm
Γ(q + 1)

+

∫ t

tm

(t − s)q−1

Γ(q)
(c|x(s)| + d) ds

≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] + Ad

tqm
Γ(q + 1)

+ d
(T − tm)q

Γ(q + 1)

+c

∫ t

tm

(t − s)q−1

Γ(q)
|x(s)| ds

≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] + c0 +

cT q

Γ(q + 1)

∫ t

tm

|x(s)| ds

where

c0 = Ad
tqm

Γ(q + 1)
+ d

(T − tm)q

Γ(q + 1)
.

For θ > 0 we put

‖x‖θ = sup
t∈[tm,T ]

e−θk(t−tm)|x(t)|,

where k =
cT q

Γ(q + 1)
. Then

|Fx(t)| = Ab
tqm

Γ(q + 1)
|x|[0,tm] + c0 + k

∫ t

tm

e−θk(s−tm)|x(s)| eθk(s−tm)ds

≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] + c0 + k

[

1

kθ

(

ekθ(t−tm) − 1
)

]

‖x‖θ

≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] + c0 +

1

θ
ekθ(t−tm)‖x‖θ.

Dividing by ekθ(t−tm) and taking the supremum we obtain

‖Fx‖θ ≤ Ab
tqm

Γ(q + 1)
|x|[0,tm] +

1

θ
‖x‖θ + c0.
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Now we consider an equivalent norm on X defined by

‖x‖ = max
{

|x|[0,tm], ‖x‖θ

}

.

Then we have

‖Fx‖ ≤

(

Ab
tqm

Γ(q + 1)
+

1

θ

)

‖x‖ + c1

where c1 = max
{

Ad t
q
m

Γ(q+1)
, c0

}

. Since Ab
tqm

Γ(q + 1)
< 1, we may find a θ > 0 such

that Ab
tqm

Γ(q + 1)
+

1

θ
< 1. Then there exists a number ρ > 0 with

(

Ab
tqm

Γ(q + 1)
+

1

θ

)

ρ + c1 ≤ ρ.

Now we let Bρ = {x ∈ X : ‖x‖ ≤ ρ}. The previous inequalities imply that F

(Bρ) ⊂ Bρ and thus Schauder fixed point theorem can be applied.
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