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ABSTRACT. The authors investigate the limit-point and limit-circle properties of solutions of the

delay differential equation

(

a(t)|y′|p−1y′
)

′

+ r(t)
∣

∣y
(

ϕ(t)
)∣

∣

λ
sgn y

(

ϕ(t)
)

= 0

where p ≥ λ ≥ 1, a(t) > 0, r(t) > 0, ϕ(t) ≤ t on R+, and lim
t→∞

ϕ(t) = ∞. The results generalize

these properties for ordinary (non-delay) differential equations that were initiated by Hermann Weyl

one hundred years ago for linear equations.

AMS (MOS) Subject Classification. 34B20, 34C11, 34C15, 34D05, 34K11, 34K12

1. INTRODUCTION

In this paper, we consider the second order nonlinear delay differential equation

(1.1)
(

a(t)|y′|p−1y′
)′

+ r(t)
∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

= 0

where p ≥ λ ≥ 1, a ∈ C1(R+), r ∈ C1(R+), ϕ ∈ C1(R+), a(t) > 0, r(t) > 0, ϕ(t) ≤ t

on R+, and lim
t→∞

ϕ(t) = ∞. If p = 1, this is the well known Emden-Fowler equation,

while if p = λ, it is known as the half-linear equation. Following the terminology

introduced in [6, 7, 8], if λ > p, we say that equation (1.1) is of the super-half-linear

type, and if λ < p, we will say that it is of the sub-half-linear type.

We begin by defining what is meant by a solution of equation (1.1) as well as

some basic properties of solutions.

Definition 1.1. Let σ = inf
t∈R+

ϕ(t), φ ∈ C0[σ, 0], and y′
0 ∈ R. We say that a function

y is a solution of (1.1) on R+ (with the initial conditions (φ, y′
0)) if y ∈ C0[σ,∞),

y ∈ C1(R+), a|y′|p−1y′ ∈ C1(R+), (1.1) holds on R+, y(t) = φ(t) on [σ, 0], and

y′
+(0) = y′

0.
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We assume that solutions are defined on their maximal interval of existence to the

right. Definition 1.1 is not restrictive since Lemma 7 in [4] ensures that all solutions

are defined on R+.

Equation (1.1) can be written as the equivalent system

(1.2)
y′

1 = a− 1
p (t)|y2|

1
p sgn y2 ,

y′
2 = −r(t)

∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

.

The relationship between a solution y of (1.1) and a solution (y1, y2) of the system

(1.2) is

(1.3) y1(t) = y(t) and y2(t) = a(t)
∣

∣y′(t)
∣

∣

p−1
y′(t) ,

and when discussing a solution y of (1.1), we will often use (1.3) without mention.

Definition 1.2. A solution y is called proper if it is nontrivial in any neighborhood

of ∞. A solution y of (1.1) is oscillatory if there exists a sequence of its zeros tending

to ∞, and it is nonoscillatory otherwise.

Here we are interested in what are called the nonlinear limit-point and limit-circle

properties of solutions as defined below. The study of such solutions began with the

fundamental work of Weyl [16] on second order linear equations and it has generated

a great deal of interest over the last 100 years. Extensions of these ideas to nonlinear

equations began with the papers of Graef and Spikes [13, 14, 15] and a survey of

known results on the linear and nonlinear problems as well as their relationships to

other properties of solutions such as boundedness, oscillation, and convergence to zero

can be found in the monograph by Bartušek, Došlá, and Graef [2] as well as the recent

papers of Bartušek and Graef [5, 6, 10, 11, 12]. The notions of the strong nonlinear

limit-point and strong nonlinear limit-circle types of solutions were first introduced

in [9] and [8], respectively. These notions were first introduced for equations with a

time delay in [4, 3]; the equations in these papers have r(t) < 0.

Definition 1.3. A solution y of (1.1) is said to be of the nonlinear limit-circle type

if

(NLC)

∫ ∞

0

∣

∣y(s)
∣

∣

∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds < ∞,

and it is said to be of the nonlinear limit-point type otherwise, i.e., if

(NLP)

∫ ∞

0

∣

∣y(s)
∣

∣

∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds = ∞ .

Equation (1.1) will be said to be of the nonlinear limit-circle type if every solution y

of (1.1) satisfies (NLC), and it will be said to be of the nonlinear limit-point type if

there is at least one solution y for which (NLP) holds.
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Definition 1.4. A solution y of (1.1) is said to be of the strong nonlinear limit-point

type if
∫ ∞

0

∣

∣y(s)
∣

∣

∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds = ∞ and

∫ ∞

0

a(s)

r(s)

∣

∣y′(s)
∣

∣

p+1
ds = ∞ .

Equation (1.1) is said to be of the strong nonlinear limit-point type if equation (1.1)

has proper solutions and every one of these is of the strong nonlinear limit-point type.

Definition 1.5. A solution y of (1.1) is said to be of the strong nonlinear limit-circle

type if
∫ ∞

0

∣

∣y(s)
∣

∣

∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds < ∞ and

∫ ∞

0

a(s)

r(s)

∣

∣y′(s)
∣

∣

p+1
ds < ∞ .

Equation (1.1) is said to be of the strong nonlinear limit-circle type if every solution

is of the strong nonlinear limit-circle type.

When equation (1.1) is linear and ϕ(t) ≡ t, Definition 1.3 reduces to the (linear)

limit-point and limit-circle definitions of Weyl. If ϕ(t) ≡ t, Definitions 1.3, 1.4, and

1.5 agree with the nonlinear versions for equations without delays.

It will be convenient to define the following constants

α =
p + 1

(λ + 2)p + 1
, β =

(λ + 1)p

(λ + 2)p + 1
, γ =

p + 1

p(λ + 1)
,

γ1 = αγ− 1
λ+1 , δ =

p + 1

p
, ω =

(λ + 1)(p + 1)

p − λ
for λ 6= p ,

β1 =
(λ + 2)p + 1

(λ + 1)(p + 1)
, β2 =

p

(λ + 2)p + 1
.

Notice that α = 1 − β. We define the functions R, g : R+ → R and ā : R+ → R+ by

R(t) = a
1
p (t) r(t) , g(t) = −

a
1
p (t) R′(t)

Rα+1(t)

and

ā(t) = min{a(s) : ϕ(t) ≤ s ≤ t, s ≥ 0} , t ∈ R+ ,

and for any continuous function h : R+ → R+, we let h+(t) = max{h(t), 0} and

h−(t) = max{−h(t), 0}, so that h(t) = h+(t) − h−(t). For any solution of (1.1), we

let

F (t) = Rβ(t)
[a(t)

r(t)

∣

∣y′(t)
∣

∣

p+1
+ γ

∣

∣y(t)
∣

∣

λ+1
]

= Rβ(t)
(

R−1(t)
∣

∣y2(t)
∣

∣

p+1
p + γ

∣

∣y(t)
∣

∣

λ+1
)

.

Note that F ≥ 0 on R+ for every solution of (1.1). We will make use of the following

assumption:

(1.4) lim
t→∞

g(t) = 0 and

∫ ∞

0

∣

∣g′(σ)
∣

∣ dσ < ∞ .
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It will be convenient to point out that
∫ ∞

0

a(s)

r(s)

∣

∣y′(s)
∣

∣

p+1
ds =

∫ ∞

0

R−1(s)
∣

∣y2(s)
∣

∣

p+1
p ds .

2. ASYMPTOTIC PROPERTIES OF SOLUTIONS

Our first lemma gives global growth estimates on solutions of equation (1.1).

Lemma 2.1. Let y be a solution of (1.1). Then there exist positive constants C and

C1 such that for all large t:

(i) if p > λ, then

(2.1)
∣

∣y1(t)
∣

∣ ≤ C
[

∫ t

0

a− 1
p (s)

(

∫ s

0

r(σ) dσ
)

1
p

ds
]

p

p−λ

and

(2.2)
∣

∣y2(t)
∣

∣ ≤ C1

[

∫ t

0

r(s)
(

∫ s

0

a− 1
p (σ) dσ

)λ

ds
]

p

p−λ

;

(ii) if p = λ, then

(2.3)
∣

∣y1(t)
∣

∣ ≤ C exp
{

∫ t

0

k(u) du
}

and

(2.4)
∣

∣y2(t)
∣

∣ ≤ C1 exp
{

∫ t

0

k1(u) du
}

,

where k(t) = 2
1
p a− 1

p (t)
( ∫ t

0
r(s) ds

)
1
p and k1(t) = 2pr(t)

( ∫ t

0
a− 1

p (σ) dσ
)p

.

Proof. Let y1 be a solution of (1.1) with the initial conditions (φ, y′
0). First, we prove

that inequality (2.2) holds. If y2 is bounded on R+, then (2.2) holds, so suppose that

y2 is unbounded on R+ and set v(t) = max
0≤s≤t

|y2(s)|. Integrating (1.2), we see that

there exists t0 ≥ 0 such that

(2.5)
∣

∣y1(t)
∣

∣ ≤
∣

∣y1(t0)
∣

∣ +

∫ t

0

a− 1
p (s)

∣

∣y2(s)
∣

∣

1
p ds ≤ 2

∫ t

0

a− 1
p (s) v

1
p (s) ds

for t ≥ t0. If t1 ≥ t0 is such that ϕ(t) ≥ t0 for t ≥ t1, then (1.2) and (2.5) imply

∣

∣y2(t)
∣

∣ ≤
∣

∣y2(t0)
∣

∣ +

∫ t

t0

r(s)
∣

∣y1(ϕ(s))
∣

∣

λ
ds

≤
∣

∣y2(t0)
∣

∣ + 2λ

∫ t

t0

r(s)v
λ
p (s)

(

∫ s

0

a− 1
p (σ) dσ

)λ

ds(2.6)

for t ≥ t1. Since p > λ, v is nondecreasing, and lim
t→∞

v(t) = ∞, (2.6) implies the

existence of t2 ≥ t1 and a constant C2 > 0 such that

∣

∣y2(t)
∣

∣ ≤ C2v
λ
p (t)

∫ t

0

r(s)
(

∫ s

0

a− 1
p (σ) dσ

)λ

ds , t ≥ t2 .
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Hence,

v(t) ≤ C2v
λ
p (t)

∫ t

0

r(s)
(

∫ s

0

a− 1
p (σ) dσ

)λ

ds , t ≥ t2

and (2.2) follows from this and the fact that |y2(t)| ≤ v(t). Inequality (2.1) can

be proved similarly by setting v(t) = max
−σ≤s≤t

|y1(s)| in the first inequality in (2.6) to

obtain

∣

∣y2(t)
∣

∣ ≤ 2vλ(t)

∫ t

0

r(s) ds

for t ≥ t3 for some t3 ≥ t0. Substituting this into the first inequality in (2.5) leads to

(2.1).

Let p = λ. Then (2.5) and (2.6) imply

∣

∣y2(t)
∣

∣ ≤
∣

∣y2(t0)
∣

∣ +

∫ t

t0

k1(s) v(s) ds , t ≥ t0,

or

∣

∣v(t)
∣

∣ ≤
∣

∣y2(t0)
∣

∣ +

∫ t

t0

k1(s) v(s) ds , t ≥ t0.

Hence, Gronwall’s inequality implies (2.4). Inequality (2.3) can be proved in the same

way as (2.1) in the case λ < p.

The following lemma gives a better estimate in case R is nondecreasing.

Lemma 2.2. Let R′(t) ≥ 0 on R+ and let

(2.7)

∫ ∞

0

ā− 2
p (s)R

2
p+1 (s)

(

s − ϕ(s)
)

ds < ∞ .

Then every solution y of (1.1) is bounded on R+ and there exists a constant K =

K(y) > 0 such that
∣

∣y′(t)
∣

∣ ≤ Ka− 1
p (t)R

1
p+1 (t)

on R+.

Proof. Let y be a solution of (1.1) and let t0 ≥ 0 be such that ϕ(t) ≥ 0 on [t0,∞) and

(2.8) λδγ−
λ−1
λ+1

∫ ∞

t0

ā− 2
p (s)R

2
p+1 (s)

(

s − ϕ(s)
)

ds ≤
1

2
.

If

(2.9) E(t) = R−1(t)
∣

∣y2(t)
∣

∣

δ
+ γ

∣

∣y(t)
∣

∣

λ+1
≥ 0 , t ≥ 0 ,
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then

E ′(t) = −
R′(t)

R2(t)

∣

∣y2(t)
∣

∣

δ
−

δ

R(t)

∣

∣y2(t)
∣

∣

1
p sgn y2(t) r(t)

∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y(ϕ(t))

+ δ
∣

∣y(t)
∣

∣

λ
y′(t) sgn y(t)

≤ −
R′(t)

R2(t)

∣

∣y2(t)
∣

∣

δ
+ δ

∣

∣y′(t)
∣

∣

∣

∣

∣

∣

∣y(t)
∣

∣

λ
sgn y(t) −

∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

∣

∣

∣

≤ −
R′(t)

R2(t)

∣

∣y2(t)
∣

∣

δ
+ λδ

∣

∣y′(t)
∣

∣

∣

∣y(ξ)
∣

∣

λ−1 ∣

∣y′(ξ)
∣

∣

(

t − ϕ(t)
)

(2.10)

where ξ ∈
[

ϕ(t), t
]

, t ≥ t0. Define Z by

Z(t) = max
0≤s≤t

E(s) + 1 .

Then (2.9) implies

∣

∣y1(t)
∣

∣ ≤
(Z(t)

γ

)
1

λ+1

,
∣

∣y2(t)
∣

∣ ≤
(

R(t) Z(t)
)

p

p+1 ,(2.11)

and

∣

∣y′(t)
∣

∣ ≤ a− 1
p (t)

(

R(t) Z(t)
)

1
p+1(2.12)

for t ≥ t0. From this, (2.11), and (2.10), we have

E ′(t) ≤ λδa− 1
p (t)

(

R(t) Z(t)
)

1
p+1

(Z(ξ)

γ

)
λ−1
λ+1

× a− 1
p (ξ)

(

R(ξ) Z(ξ)
)

1
p+1

(

t − ϕ(t)
)

≤ C1ā
− 2

p (t) R
2

p+1 (t)
(

t − ϕ(t)
)

Z(t)

for t ≥ t0 with C1 = λδγ−
λ−1
λ+1 . Hence, applying (2.8), we obtain

E(t) ≤ E(t0) + C1Z(t)

∫ t

t0

ā− 2
p (s) R

2
p+1 (s)

(

s − ϕ(s)
)

ds

and so Z(t) ≤ E(t0) + 1 + Z(t)/2 for t ≥ t0. This implies Z(t) ≤ 2E(t0) + 2 so Z is

bounded on R+. The conclusions of the lemma follow from this and (2.12).

Our next lemma is concerned with both the limit-point and limit-circle properties.

Lemma 2.3. Let y be a solution of (1.1).

(i) If there exists ε > 0 such that

(2.13) ϕ′(t) ≥ ε for large t

and
∞

∫

0

|y(t)|λ+1dt < ∞,
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then

(2.14)

∫ ∞

0

∣

∣y(t)
∣

∣

∣

∣y
(

ϕ(t)
)
∣

∣

λ
dt < ∞ .

(ii) Let A and B be positive functions, B be nondecreasing, and M > 0 be a constant

such that

(2.15) 0 < ϕ′(t) ≤ M for large t,

∣

∣y(t)
∣

∣ ≤ A(t) and
∣

∣y′(t)
∣

∣ ≤ B(t) on R+ ,(2.16)

∫ ∞

0

Aλ(ϕ(t)) B(t)
(

t − ϕ(t)
)

dt < ∞ ,(2.17)

and
∞

∫

0

|y(t)|λ+1dt = ∞.

Then

(2.18)

∫ ∞

0

∣

∣y(t)
∣

∣

∣

∣y
(

ϕ(t)
)
∣

∣

λ
dt = ∞ .

Proof. Let y be a solution of (1.1) and τ ≥ 0 be such that ϕ′(t) ≥ ε and ϕ′(t) ≤ M

hold for t ≥ τ in cases (i) and (ii), respectively.

(i) By Hölder’s inequality
∫ ∞

τ

∣

∣y(t)
∣

∣

∣

∣y
(

ϕ(t)
)
∣

∣

λ
dt ≤

(

∫ ∞

τ

∣

∣y
(

ϕ(t)
)
∣

∣

λ+1
dt

)
λ

λ+1

×
(

∫ ∞

τ

∣

∣y(t)
∣

∣

λ+1
dt

)
1

λ+1

≤ ε−
λ

λ+1

(

∫ ∞

τ

∣

∣y
(

ϕ(t)
)∣

∣

λ+1
ϕ′(t) dt

)
λ

λ+1
(

∫ ∞

τ

∣

∣y(t)
∣

∣

λ+1
dt

)
1

λ+1

≤ ε−
λ

λ+1

∫ ∞

ϕ(τ)

∣

∣y(t)
∣

∣

λ+1
dt < ∞ .

Thus, (2.14) holds.

(ii) First note that

y(t) = y
(

ϕ(t)
)

+ y′(ξ)
(

t − ϕ(t)
)

= y
(

ϕ(t)
)

+ h(t)

for t ≥ τ where ξ ∈ [ϕ(t), t] and h(t) = y′(ξ)(t − ϕ(t)). Then (2.16) implies

∣

∣h(t)
∣

∣ ≤ B(t)
(

t − ϕ(t)
)

.

Since lim
t→∞

ϕ(t) = ∞, we see that

∫ t

τ

∣

∣y(s)
∣

∣

∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds ≥

∫ t

τ

∣

∣y
(

ϕ(s)
)
∣

∣

λ+1
ds − J(t)
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where, by (2.17),

J(t) =

t
∫

τ

|h(s)| |y(ϕ(s))|λ ds ≤

∞
∫

τ

Aλ(ϕ(s)) B(s)(s − ϕ(s)) ds < ∞.

Hence, (2.18) holds.

The following lemma gives a sufficient condition for all solutions of (1.1) to be

oscillatory.

Lemma 2.4. ( [1, Theorem 3.1]) Let λ < p,
∫ ∞

0

a− 1
p (t) dt = ∞ and

∫ ∞

0

(

∫ ϕ(t)

0

a− 1
p (s) ds

)λ

r(t) dt = ∞ .

Then every solution of (1.1) is oscillatory.

Remark 2.5. Note that Lemmas 2.1, 2.3, and 2.4 hold without the assumption λ ≥ 1.

Also, Lemma 2.3 holds without assuming p ≥ λ.

3. LIMIT-CIRCLE PROBLEM

The following lemma is concerned with an equation of the form of equation (1.1)

but without a delay, namely,

(3.1)
(

a(t)|Z ′|p−1Z ′
)′

+ r(t) |Z|λ sgn Z = e(t) ,

where e ∈ C0(R+). At times, we will need the assumption

(3.2)

∫ ∞

t

R−β2(σ)
∣

∣e(σ)
∣

∣ dσ ≤ K

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ

for large t, where K > 0 is a constant.

Lemma 3.1 (See Theorem 2.11 in [7]). Let (1.4) and (3.2) hold and either (i) λ = p,

or (ii) λ < p,
∫ ∞

0

|e(σ)|

a(σ)
dσ < ∞ ,

∫ ∞

0

|e(σ)|

r(σ)
< ∞,(3.3)

and

lim inf
t→∞

Rβ(t)
(

∫ ∞

t

∣

∣g′(s)
∣

∣ ds
)ω

exp
{

∫ t

0

(

R−1(σ)
)′

+
R(σ) dσ

}

= 0 .(3.4)

If
∫ ∞

0

R−β(σ) dσ < ∞ ,

then for every solution Z of (3.1),
∫ ∞

0

∣

∣Z(s)
∣

∣

λ+1
ds < ∞ and

∫ ∞

0

a(s)

r(s)

∣

∣Z ′(s)
∣

∣

p+1
ds < ∞ .
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Our first theorem gives a sufficient condition for equation (1.1) to be of the strong

nonlinear limit-circle type.

Theorem 3.2. Assume that (1.4), (2.13), and (3.2) hold. In addition, assume that

one of the following conditions holds:

(i) λ < p, (3.4) holds,
∫ ∞

0

e(σ)

a(σ)
dσ < ∞, and

∫ ∞

0

e(σ)

r(σ)
< ∞,

where

e(t) = ā− 1
p (t) r(t)

[

∫ t

0

a− 1
p (s)

(

∫ s

0

r(σ) dσ
)

1
p

ds
]

(λ−1)p
p−λ

×
[

∫ t

0

r(s)
(

∫ s

0

a− 1
p (σ) dσ

)λ

ds
]

1
p−λ (

t − ϕ(t)
)

;(3.5)

(ii) λ = p and

e(t) = ā− 1
p (t)r(t) exp

{

(λ − 1)

∫ t

0

k(u) du

}

× exp

{

1

p

∫ t

0

k1(u) du

}

(

t − ϕ(t)
)

,(3.6)

where

k(t) = 2
1
p a− 1

p (t)
(

∫ t

0

r(s) ds
)

1
p

and k1(t) = 2pr(t)
(

∫ t

0

a− 1
p (σ) dσ

)p

.

If
∫ ∞

0

R−β(σ) dσ < ∞,

then (1.1) is of the strong nonlinear limit-circle type.

Proof. Let y be a solution of (1.1). Then y is also a solution of equation (3.1) with

(3.7) e(t) = r(t)
[∣

∣y(t)
∣

∣

λ
sgn y(t) −

∣

∣y
(

ϕ(t)
)∣

∣

λ
sgn y

(

ϕ(t)
)]

, t ∈ R+ .

Thus,

(3.8) e(t) = λr(t)
∣

∣y(ξ)
∣

∣

λ−1
y′(ξ)

(

t − ϕ(t)
)

for some ξ ∈ [ϕ(t), t].

For t ≥ 1, define

A(t)
def
=

[

∫ t

0

a− 1
p (s)

(

∫ s

0

r(σ) dσ
)

1
p

ds
]

p

p−λ

,

B(t)
def
= ā− 1

p (t)
[

∫ t

0

r(s)
(

∫ s

0

a− 1
p (σ) dσ

)λ

ds
]

1
p−λ



270 M. BARTUŠEK AND J. R. GRAEF

if λ < p, and

A(t)
def
= exp

{
∫ t

0

k(u) du

}

,

B(t)
def
= ā− 1

p (t) exp

{

1

p

∫ t

0

k1(u) du

}

if λ = p.

Since the hypotheses of Lemma 2.1 are satisfied, the estimates (2.1)–(2.4) and

(3.8) imply
∣

∣y(t)
∣

∣ ≤ CA(t) ,
∣

∣y′
1(t)

∣

∣ ≤ C1B(t),(3.9)

and

∣

∣e(t)
∣

∣ ≤ C2A
λ−1(t) B(t) r(t)

(

t − ϕ(t)
)

(3.10)

for some positive constants C, C1, and C2. By Lemma 3.1, we have
∫ ∞

0

∣

∣y(s)
∣

∣

λ+1
ds < ∞ and

∫ ∞

0

a(s)

r(s)

∣

∣y′(s)
∣

∣

p+1
ds < ∞ .

The hypotheses of Lemma 2.3(i) hold, so the conclusion follows from (2.14).

Our next theorem is another strong nonlinear limit-circle result; it allows for a

larger class of delays but requires R′(t) ≥ 0.

Theorem 3.3. Assume that (1.4) and (2.13) hold, R′(t) ≥ 0 on R+,
∫ ∞

0

ā− 2
p (s)R

2
p+1 (s)

(

s − ϕ(s)
)

ds < ∞,

and (3.2) holds with

e(t) = ā−
1
p (t) r(t) R

1
p+1 (t)

(

t − ϕ(t)
)

.

In addition, assume that either (i) λ = p, or (ii) λ < p, (3.3) holds, and

lim inf
t→∞

Rβ(t)
(

∫ ∞

t

∣

∣g′(s)
∣

∣ ds
)ω

= 0 .

Then if
∫ ∞

0

R−β(t) dt < ∞,

equation (1.1) is of the strong nonlinear limit-circle type.

Proof. The proof is similar to that of Theorem 3.2 except that we apply Lemma 2.2

instead of Lemma 2.1. Note that
∣

∣y1(t)
∣

∣ ≤ CA(t) = const. and
∣

∣y′
1(t)

∣

∣ ≤ C1B(t) = C1ā
− 1

p (t) R
1

p+1 (t)

for some positive constants C and C1.
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4. LIMIT-POINT PROBLEM

In this section we develop some nonlinear limit-point criteria for equation (1.1).

For any solution Z of (3.1), we let

Z2(t) = a(t)
∣

∣Z ′(t)
∣

∣

p−1
Z ′(t) and G(t) = Rβ

[ |Z2(t)|
δ

R(t)
+ γ

∣

∣Z(t)
∣

∣

λ+1
]

.

Lemma 4.1. Let λ < p, (1.4) hold, and let A and B be nondecreasing positive

functions such that, for any solution y of (1.1), we have
∣

∣y(t)
∣

∣ ≤ CA(t) and
∣

∣y′(t)
∣

∣ ≤ C1B(t)

on R+ with constants C and C1 depending on y. If

(4.1)

∫ ∞

0

R−β2(t) r(t) Aλ−1(t) B(t)
(

t − ϕ(t)
)

dt < ∞ ,

then equation (1.1) has a solution y for which F is bounded from below by a positive

constant on R+.

Proof. Let K1 = δ + γ1 sup
t∈R+

∣

∣g(t)
∣

∣ , N = 1
12

[(

3
2

)β1
γ1 + K1

]−1
, and choose T ∈ (0,∞)

such that
∫ ∞

T

∣

∣g′(σ)
∣

∣ dσ ≤ N ,

∫ ∞

T

R−β2(t) r(t) Aλ−1(t) B(t)
(

t − ϕ(t)
)

dt ≤ N,

and
∣

∣g(t)
∣

∣ ≤ N for t ≥ T .

Let y be a solution of (1.1) satisfying

y(t) ≡ D on [σ, 0] and y′(0) = 0,

where D is defined by C =
T
∫

0

a− 1
p (s)

( ∫ s

0
r(σ) dσ

)
1
p ds,

(4.2) D − C(2D)
λ
p >

[

γ−1 min
0≤s≤T

R−β(s)
]

1
λ+1 , and D ≥

1

2
(2C)

p

p−λ .

Set v(t) = max
0≤σ≤t

∣

∣y(σ)
∣

∣. Then, from (1.2) we obtain

∣

∣y2(t)
∣

∣ ≤

∫ t

0

r(s)
∣

∣y
(

ϕ(s)
)
∣

∣

λ
ds ≤ vλ(t)

∫ t

0

r(s) ds ,

and
∣

∣y(t) − D
∣

∣ ≤

∫ t

0

a− 1
p (s)

∣

∣y2(s)
∣

∣

1
p ds ≤ Cv

λ
p (t)

on [0, T ]. This implies

(4.3) D − Cv
λ
p (t) ≤ y(t) ≤ D + Cv

λ
p (t) , t ∈ [0, T ],

or

v(t) ≤ D + Cv
λ
p (t) , t ∈ [0, T ] .
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From this and (4.2), we have v(t) ≤ max
(

2D, (2C)
p

p−λ

)

= 2D. Hence, the first

inequality in (4.2) and (4.3) imply

y(t) ≥ D − C(2D)
λ
p >

[

γ−1 min
0≤s≤T

R−β(s)
]

1
λ+1

on [0, T ]. Thus, F (t) > 1 on [0, T ], and either

(4.4) F (t) > 1 on R+ ,

or there exists t0 ∈ (T,∞) such that

(4.5) F (t0) = 1 and F (t) > 1 on [T, t0) .

If (4.4) holds, we are done, so suppose (4.5) holds. If e is given by (3.7), then y is a

solution of (3.1) with G(t0) = 1, and from (3.8) and (3.9),

∣

∣e(t)
∣

∣ ≤ λr(t)
∣

∣y(ξ)
∣

∣

λ−1∣
∣y′(ξ)

∣

∣

(

t − ϕ(t)
)

≤ λCλ−1C1r(t) Aλ−1(t) B(t)
(

t − ϕ(t)
)

.

From this and (4.1) we have

(4.6)

∫ ∞

0

R−β2(t)
∣

∣e(t)
∣

∣ dt < ∞ .

Furthermore, it follows from [7, Lemma 2.15] and its proof (with t0 = t0 and N = N)

that

(4.7) F (t) = G(t) ≥
1

2
for t ≥ t0 ;

notice that all the assumptions on t0 and N are satisfied, (1.7) in [7] holds by (4.6),

and (1.8) in [7] is not needed to prove (4.7) (it is used to show lim
t→∞

F (t) ∈ (0,∞)).

The conclusion of the lemma now follows from (4.4), (4.5), and (4.7).

Our next three lemmas contain results concerning the auxiliary equation (3.1).

Lemma 4.2. Let the hypotheses of Lemma 4.1 hold, R′(t) ≥ 0 on R+,
∫ ∞

0

[

r(t)

a(t)
+ 1

]

Aλ−1(t)B(t)(t − ϕ(t)) dt < ∞ ,

and

(4.8)

∫ ∞

0

|r′(t)|a
1

p+1 (t)dt

r
p+2
p+1 (t)

< ∞ .

If

(4.9)

∫ ∞

0

R−β(t) dt = ∞

and e is given by (3.7), then there exists a solution Z of equation (3.1) satisfying
∫ ∞

0
|Z(t)|λ+1 dt = ∞.
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Proof. Let y be a solution of (1.1) as given in Lemma 4.1. Then Z = y is a solution

of (3.1) and G is bounded from below by a positive constant. Condition (4.9) then

implies
∫ ∞

0

|Z2(t)|
δ

R(t)
dt + γ

∫ ∞

0

∣

∣Z(t)
∣

∣

λ+1
dt =

∫ ∞

0

G(t)

Rβ(t)
dt = ∞ .

If Z is oscillatory, then the result follows from this and Theorem 4 in [10] since
∫ ∞

0

∣

∣Z(t)
∣

∣

λ+1
dt = ∞ if and only if

∫ ∞

0

∣

∣Z2(t)
∣

∣

δ
R−1(t) dt = ∞ .

If Z(t) Z ′(t) > 0 eventually, then we are done, so assume that Z(t) Z ′(t) < 0 for large

t. The case
∫ ∞

0

∣

∣Z(t)
∣

∣

λ+1
dt < ∞ and

∫ ∞

0

|Z2(t)|
δ

R(t)
dt = ∞

is impossible due to (20) and (21) in the proof of Theorem 4 in [10].

We will need the condition

(4.10)

∫ ∞

0

R−β2(σ)
∣

∣e(t)
∣

∣ dσ ≤ M
def
=



















[

24
(

3
2

)β1γ1N
]

p(λ+1)
λ−p [8K1N1]

−1, if p > λ,

[8K1N1]
−1, if p = λ,

where N1 =
(

3
2

)
1

p+1 +
(

3
2

)
1

λ+1 , K1 = δ + γ1N , and N is defined by

sup
t∈R+

∣

∣g(t)
∣

∣ ≤ N ,

∫ ∞

0

∣

∣g′(σ)
∣

∣ dσ ≤ N, and



















24Nγ1

(

3
2

)β1 ≤ 1, if p > λ,

N ≤ [36γ1]
−1, if p = λ.

Lemma 4.3. Let (1.4) and (4.10) hold. Then for any solution y of (3.1) satisfying

(4.11) G(0) = C
def
=



















[

24Nγ1

(

3
2

)β1
]

(p+1)(λ+1)
λ−p , if p > λ,

1, if p = λ,

the inequality

(4.12)
3

4
C ≤ G(t) ≤

3

2
C

holds on R+ .

Proof. Let y be a solution of (3.1) satisfying G(0) = C. Then, by Lemma 1 and (14)

in [10], we have

(4.13)
∣

∣y(t)
∣

∣ ≤ γ− 1
λ+1 R−β2(t)G

1
λ+1 (t) ,

∣

∣y2(t)
∣

∣ ≤ Rβ2(t)G
p

p+1 (t)
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on R+, and

G(t) = G(τ) − αg(τ) y(τ) y2(τ) + αg(t) y(t) y2(t)

− α

∫ t

τ

g′(s) y(s) y2(s) ds + D(t, τ)(4.14)

for 0 ≤ τ < t, where D(t, τ) ≤ K1

t
∫

τ

R−β2(s)
(

G
1

p+1 (s) + G
1

λ+1 (s)
)
∣

∣e(s)
∣

∣ ds. First, we

will show that

(4.15) G(t) ≤
3

2
C on R+ .

Suppose that (4.15) does not hold. Then there exist t2 > t1 ≥ t0 such that

G(t2) =
3

2
C , G(t1) = C , and C < G(t) <

3

2
C for t ∈ (t1, t2) .

Then (4.13) and (4.14) with τ = t1 and t = t2 imply

C

2
≤ 3αN max

t1≤σ≤t2

∣

∣y(σ) y2(σ)
∣

∣ + K1N1C
1

p+1

∫ t2

t1

R−β2(σ)
∣

∣e(σ)
∣

∣ dσ

≤ 3Nγ1

(

3
2

)β1
Cβ1 + MK1N1C

1
p+1 ≤

C

8
+

C

8
=

C

4
.

This contradiction proves that (4.15) holds.

Now from (4.15), (4.13) and (4.14) with t = t and τ = 0 we obtain

∣

∣G(t) − C
∣

∣ ≤ 3αN sup
σ∈R+

∣

∣y(σ) y2(σ)
∣

∣ + K1N1C
1

p+1

∫ t

0

R−β2(σ)
∣

∣e(σ)
∣

∣ dσ

≤ 3γ1N
(

3
2

)β1
Cβ1 + MK1N1C

1
p+1 ≤

C

8
+

C

8
=

C

4
.

Hence, 3
4
C ≤ G(t) ≤ 5

4
< 3

2
C on R+.

Lemma 4.4. Let (1.4) and (4.10) hold,

(4.16) lim
t→∞

a′(t)

a1−β/p(t)rα(t)
= 0,

and

(4.17) lim
t→∞

e(t)

r(t)
Rλβ2(t) = 0 .

If

(4.18)

∫ ∞

0

R−β(t) dt = ∞ ,

then any solution Z of (3.1) satisfying (4.11) is proper and

(4.19)

∫ ∞

0

∣

∣Z(t)
∣

∣

λ+1
dt = ∞ .

If, in addition,

r(t) ≥ r0 > 0 for t ∈ R+,
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then

(4.20)

∫ ∞

0

a(t)

r(t)

∣

∣Z ′(t)
∣

∣

p+1
dt = ∞ .

Proof. Note that the hypotheses of Lemma 4.3 hold. Let y be a solution of (1.1)

satisfying (4.11). Then (4.12) holds, y is proper, and properties (4.19) and (4.20)

follow from Theorem 2.16 in [7]. Note that condition (1.8) in Theorem 2.16 in [7]

was used only for the existence of a solution y satisfying (4.12). But here we proved

(4.12) without needing it.

Remark 4.5. Note that (4.11) does not depend on the function e.

Theorem 4.6. Let conditions (1.4), (2.15), (4.10), and (4.16)–(4.18) hold, and let

k(t) = a− 1
p (t)

(

t
∫

0

r(s) ds
)

1
p .

(i) For λ < p, let e be given by (3.5) and A(t) =
[

t
∫

0

k(s) ds
]

p

p−λ .

(ii) For λ = p, let e be given by (3.6) and A(t) = exp
{ ∫ t

0
k(s) ds

}

.

Then, if

(4.21)

∫ ∞

0

e(t) A(t)

r(t)
dt < ∞,

then equation (1.1) has a solution y that is of the nonlinear limit-point type, i.e., (1.1)

is of the nonlinear limit-point type. If, moreover, there is a constant r0 > 0 such that

(4.22) r(t) ≥ r0 > 0 for t ∈ R+ ,

then y is of the strong nonlinear limit-point type.

Proof. Let y be a solution of (1.1) satisfying F (0) = C where C is given by (4.11).

Then, in a manner similar to the proof of Theorem 3.2, only now using Lemma 4.4

instead of Lemma 3.1, we can show that

(4.23)

∫ ∞

0

∣

∣y(s)
∣

∣

λ+1
ds = ∞ .

(If (4.22) holds, we can show that
∫ ∞

0
a(s)
r(s)

|y′(s)|p+1 ds = ∞ as well.) Now, part (ii)

of Lemma 2.3 holds since (2.17) follows from (3.9), (3.10) and (4.21). The conclusion

then follows from this and (4.23).

Theorem 4.7. Let λ < p, conditions (1.4), (2.7), (2.15), and (4.8) hold, R′(t) ≥ 0

on R+, and
∫ ∞

0

[

1 + r(t) +
r(t)

a(t)

]

a−
1
p (t)R

1
p+1 (t)(t − ϕ(t)) dt < ∞ .
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If

(4.24)

∫ ∞

0

R−β(t) dt = ∞ ,

then equation (1.1) is of the nonlinear limit-point type.

Proof. In Lemma 4.1, we take the estimates A(t) = const. and B(t) = a− 1
p (t)R

1
p+1 (t)

from Lemma 2.2, and we let y be a solution of (1.1) as given in Lemma 4.1. Then we

see that the hypotheses of Lemma 4.2 hold. As in the proof of Theorem 3.2, if we set

e(t) = r(t)
[
∣

∣y(t)
∣

∣

λ
sgn y(t) −

∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)]

, t ∈ R+,

then y is the solution of (3.1) for which G is bounded from bellow by a positive

constant. The conclusion can be proved similarly to the proofs of Theorems 3.2 and

3.3 using Lemmas 2.2 and 4.2 instead of Lemmas 2.1 and 3.1, respectively.

Since the hypotheses of the previous theorems are rather complicated, we will

apply our results to the case a ≡ 1, i.e., to the equation

(4.25)
(

|y′|p−1y′
)′

+ r(t)
∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

= 0 .

Corollary 4.8. Let λ < p, r′(t) ≥ 0 on R+, condition (2.15) hold,

lim
t→∞

r′(t)

r1+α(t)
= 0,

∫ ∞

0

|r′(t)|

r
p+2
p+1 (t)

< ∞,

∞
∫

0

∣

∣

∣

∣

(

r′(t)

r1+α(t)

)′∣
∣

∣

∣

dt < ∞,

∫ ∞

0

r
p+2
p+1 (t)(t − ϕ(t)) dt < ∞ , and

∫ ∞

0

r−β(t) dt = ∞ .

Then equation (4.25) is of the nonlinear limit-point type.

Proof. This is a special case of Theorem 4.7.

Example 4.9. Consider the equation

(4.26)
(

|y′|p−1y′
)′

+ ts
∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

= 0, t ≥ 1,

where λ < p, ϕ′ > 0, and t− 1
tν

≤ ϕ(t) ≤ t for large t. If 0 ≤ s ≤ 1
β

and ν ≥ 1+ p+2
p+1

s,

then (4.26) is of the nonlinear limit-point type by Theorem 4.7. On the other hand,

if λ ≤ p, ϕ′ ≥ ǫ > 0, 1
β

< s, and ν ≥ 2+
[

p+2
p+1

+ 1
(λ+2)p+1

]

s, then Theorem 3.3 implies

equation (4.26) is of the strong nonlinear limit-circle type.

Example 4.10. Consider the equation

(4.27)
(

|y′|p−1y′
)′

+ Cts
∣

∣y
(

ϕ(t)
)
∣

∣

λ
sgn y

(

ϕ(t)
)

= 0, t ≥ 1,

where C ≥
[

24γ1

(

3
2

)β1
]

1
α

, λ < p, − 1
α
≤ s < 0, 0 < ϕ′ ≤ M , and t − 1

tν
≤ ϕ(t) ≤ t

for large t. If either s ∈ (−1, 0] and ν > 1 + (s+p+2)λ+s+1
p−λ

, or s ∈ [− 1
α
,−1) and

ν > 1 + λp
p−λ

+ max{0, s+λ+1
p−λ

}, then (4.27) is of the nonlinear limit-point type by

Theorem 4.6(i).
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Birkhäuser, Boston, 2004.
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[5] M. Bartušek and J. R. Graef, Strong nonlinear limit-point/limit-circle properties for forced

Thomas-Fermi equations with p-Laplacian, Panamer. Math. J. 18 (2008), 73–88.
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