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EXISTENCE OF THREE POSITIVE SOLUTIONS FOR M-POINT

TIME SCALE BOUNDARY VALUE PROBLEMS
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ABSTRACT. In this paper, by using the Leggett-Williams fixed point theorem and Five Func-

tionals fixed point theorem, we establish the existence of three positive solutions for m-point time

scale boundary value problems on infinite intervals. As an application, we also give some examples

to demonstrate our results.
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1. INTRODUCTION

We consider the following time scale m-point boundary value problem (BVP)

(1.1)

{

(ϕ(x△(t)))∇ + φ(t)f(t, x(t), x△(t)) = 0, t ∈ (0,∞)T

x(0) =
∑m−2

i=1 αix
△(ηi), limt∈T,t→∞ x△(t) = 0,

where T is time scale, f ∈ C([0,∞)T × [0,∞) × [0,∞), [0,∞)), αi ≥ 0 (1 ≤ i ≤

m− 2), 0 < η1 < η2 < · · · < ηm−2 < ∞, ϕ : R → R is an increasing homeomorphism

and positive homomorphism with ϕ(0) = 0. A projection ϕ : R → R is called an

increasing homeomorphism and positive homomorphism if the following conditions

are satisfied:

(i) If x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R;

(ii) ϕ is continuous bijection and its inverse mapping is also continuous;

(iii) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R+, where R+ = [0,∞).

We will assume that the following conditions are satisfied:

(H1) φ ∈ C([0,∞)T, [0,∞)),

∫ ∞

0

φ(s)∇s <∞,

∫ ∞

0

ϕ−1(

∫ ∞

τ

φ(s)∇s)△τ <∞;

(H2) f(t, (1 + t)u, v) ≤ ω(max{|u|, |v|}) with ω ∈ C([0,∞), [0,∞)) nondecreasing;

(H3) 0 < γ(θ1, θ2) = min
(t,u,v)∈[ 1

k
,k]T×[

θ1

k
,θ2]×[0,θ2]

f(t, (1 + t)u, v), for 0 < θ1 < θ2; and

(H4) f(t, (1 + t)u, v) ∈ C([0,∞)T × [0,∞) × [0,∞), [0,∞)), f(t, 0, 0) 6= 0 on any

subinterval of (0,∞).
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Throughout the paper, let T (time scale) be a nonempty closed subset of R. We

assume that T has the topology which inherits from the standard topology on R. For

notation, we shall use the convention that, for each interval J of R, J will denote the

time scale interval, that is, J := J ∩ T.

The study of dynamic equations on time scales goes back to its founder Stefan

Hilger [7] Theoretically, this new theory cannot only unify continuous and discrete

equations, but have also exhibited much more complicated dynamics on time scales.

Moreover, the study of dynamic equations on time scales has led to several impor-

tant applications, e.g., insect population models, neural networks, heat transfer and

epidemic models (see [3, 4] and references therein). Some preliminary definitions and

theorems on time scales also can be found in books [3, 4] which are excellent references

for calculus of time scales.

Much of the theory of time scale dynamic equations on finite intervals have been

presented in [1, 2, 6, 8, 9, 11, 12] and references therein. However there is significantly

less literature available on the basic theory of time scale dynamic equations on infinite

intervals (see [5, 10, 13, 14] and references therein). To the authors’ knowledge, no one

has studied the existence of positive solutions for m-point time scale boundary value

problems for an increasing homeomorphism and positive homomorphism on half-line.

The present work is motivated by recent papers [5, 13].

Guo, Yu and Wang [5] considered the following m-point boundary value problem

on infinite intervals

(1.2)

{

(ϕp(x
′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞

x(0) =
∑m−2

i=1 αix
′(ηi), limt→+∞ x′(t) = 0,

where ϕp(s) = |s|p−2s, p > 1, φ : R+ → R+, f(t, u, v) : R
3
+ → R+ is a continuous

function, R+ = [0,+∞), αi ≥ 0 and 0 < η1 < η2 < · · · < ηm−2 < +∞ are given.

By using Avery- Peterson fixed point theorem, they obtained the existence of at least

three positive solutions under some sufficient conditions.

Zhao and Ge [13] considered the following second-order m-point boundary value

problem on time scales

(1.3)

{

(φp(u
△(t)))∇ + q(t)f(u(t), u△(t)) = 0, t ∈ (0,∞)T

u(0) = βu△(η), limt∈T,t→∞ u△(t) = 0,

where φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq,

1
p

+ 1
q

= 1, η ∈ T, β ∈ R, β > 0, and

f ∈ C([0,∞) × [0,∞), [0,∞)). By using Leggett-Williams fixed point theorem [8],

they obtained the existence of at least three positive solutions under some sufficient

conditions.

Motivated by the above results, in this paper, we obtained the existence of at

least three positive solutions for the BVP (1.1) by using Leggett-Williams fixed point
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theorem [8] and Five Functionals fixed point theorem [2]. As an application, examples

are worked out finally. The remainder of this paper is organized as follows. Section

2 is devoted to some preliminary discussions. We give and prove our main results in

Section 3 and Section 4.

2. PRELIMINARIES

In this section we present some definitions and lemmas, which will be needed in

the proof of the main results.

Definition 2.1. Let B be a real Banach space. A nonempty closed set P ⊂ B is a

cone provided that

(1) u ∈ P and λ ≥ 0 implies λu ∈ P ;

(2) u,−u ∈ P implies u = 0.

Every cone P ⊂ B induces an ordering in B given by x ≤ y if and only if y−x ∈ P .

Definition 2.2. The map α is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space B, provided that α : P → [0,∞) is continuous

and

α(tu+ (1 − t)v) ≥ tα(u) + (1 − t)α(v),

for all u, v ∈ P, 0 ≤ t ≤ 1.

Similarly, we say the map γ a nonnegative continuous convex functional on a

cone P of a real Banach space B provided that

γ(tu+ (1 − t)v) ≤ tγ(u) + (1 − t)γ(v),

for all u, v ∈ P, 0 ≤ t ≤ 1.

Let B be the Banach space defined by

(2.1) B = {x ∈ C△[0,∞) : sup
t∈[0,∞)T

|x(t)|

1 + t
<∞, lim

t∈T,t→∞
x△(t) = 0},

with the norm ‖x‖ = max{‖x‖1, ‖x
△‖∞}, where

‖x‖1 = sup
t∈[0,∞)T

|x(t)|

1 + t
, ‖x△‖∞ = sup

t∈[0,∞)T

|x△(t)|

and let

(2.2) P = {x ∈ B : x is nonnegative, concave, nondecreasing on [0,∞)T}.

Lemma 2.3. Let y ∈ C([0,∞)T, [0,∞)) and

∫ ∞

0

y(t)∇t <∞, then BVP

(2.3)

{

ϕ(x△(t)))∇ + y(t) = 0, t ∈ (0,∞)T

x(0) =
∑m−2

i=1 αix
△(ηi), limt∈T,t→∞ x△(t) = 0,
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has a unique solution

x(t) =

m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

y(s)∇s) +

∫ t

0

ϕ−1(

∫ ∞

s

y(τ)∇τ)△s.

Solving the BVP (1.1) is equivalent to finding fixed points of the operator T : P → B

defined by for t ∈ [0,∞)T

(2.4) (Tx)(t) =

m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

φ(τ)f(τ, x(τ), x△(τ))∇τ)

+

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, x(τ), x△(τ))∇τ)△s.

Lemma 2.4. For x ∈ P, ‖x‖1 ≤ M‖x△‖∞, where M = max{
∑m−2

i=1 αi, 1}.

Proof. Since x ∈ P , it holds

x(t)

1 + t
=

1

1 + t
(

∫ t

0

x△(s)△s+

m−2
∑

i=1

αix
△(ηi)) ≤

t+
∑m−2

i=1 αi

1 + t
‖x△‖∞ ≤M‖x△‖∞.

The result is proved.

Lemma 2.5. If (H1), (H2) and (H4) hold, then T : P → P is completely continuous.

Proof. We divide the proof into four steps.

Step 1: We show that TP ⊂ P .

For x ∈ P , we have

(Tx)△(∞) = 0,

(ϕ(Tx△(t)))∇ = −φ(t)f(t, x(t), x△(t)) ≤ 0,

(Tx)△(t) = ϕ−1(

∫ ∞

t

φ(τ)f(τ, x(τ), x△(τ))∇τ) ≥ 0

(Tx)(0) =
∑m−2

i=1 αiϕ
−1(

∫ ∞

ηi

φ(τ)f(τ, x(τ), x△(τ))∇τ) =
m−2
∑

i=1

αi(Tx)
△(ηi) ≥ 0

Hence Tx is nonnegative, concave, and nondecreasing on [0,∞)T, i.e., TP ⊂ P .

Step 2 : We show that T : P → P is continuous.

Let xn → x as n→ +∞ in P , then there exists r0 such that supn∈N\{0} ‖xn‖ < r0.

By (H2), we get that f(t, (1 + t)u, v) ≤ ω(r0), and we have
∫ ∞

0

φ(τ)|f(τ, xn, x
△
n ) − f(τ, x, x△)|∇τ ≤ 2ω(r0)

∫ ∞

0

φ(τ)∇τ.

Therefore by the Lebesgue dominated convergence theorem, we have

|ϕ((Txn)
△(t)) − ϕ((Tx)△(t))| = |

∫ ∞

t

φ(τ)f(τ, xn, x
△
n ) − f(τ, x, x△)∇τ |

≤

∫ ∞

0

φ(τ)|f(τ, xn, x
△
n ) − f(τ, x, x△)|∇τ
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→ 0, n→ ∞.

Furthermore ‖Txn − Tx‖ ≤ M‖(Txn)△ − (Tx)△‖∞ → 0, as n → ∞. So T is

continuous.

Step 3 : We show that T : P → P is relatively compact.

Let Ω be any bounded subset of P , then there exists K > 0 such that ‖x‖ ≤ K.

By (H1), for ∀x ∈ Ω, we have

‖(Tx)△‖∞ = ϕ−1(

∫ ∞

0

φ(τ)f(τ, x(τ), x△(τ))∇τ) ≤ ω(K)ϕ−1(

∫ ∞

0

φ(τ)∇τ) <∞.

Therefore, ‖TΩ‖ ≤M‖(TΩ)△‖∞ <∞. So TΩ is uniformly bounded.

Now we show that (TΩ) is equicontinuous on [0,∞)T. For any R > 0, t1, t2 ∈

[0, R]T, and for all x ∈ Ω, without loss of generality we may assume that t2 > t1.

|
(Tx)(t1)

1 + t1
−

(Tx)(t2)

1 + t2
|

≤
m−2
∑

i=1

αiϕ
−1(

∫ ∞

0

φ(τ)f(τ, x(τ), x△(τ))∇τ)|
1

1 + t1
−

1

1 + t2
|

∫ t1

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, x(τ), x△(τ))∇τ)△s|
1

1 + t1
−

1

1 + t2
|

+
1

1 + t2

∫ t2

t1

ϕ−1(

∫ ∞

s

φ(τ)f(τ, x(τ), x△(τ))∇τ)△s

≤
m−2
∑

i=1

αiϕ
−1(ω(K))ϕ−1(

∫ ∞

0

φ(τ)∇τ)|
1

1 + t1
−

1

1 + t2
|

+ ϕ−1(ω(K))

∫ t1

0

ϕ−1(

∫ ∞

s

φ(τ)∇τ)△s|
1

1 + t1
−

1

1 + t2
|

+ +
1

1 + t2
ϕ−1(ω(K))

∫ t2

t1

ϕ−1(

∫ ∞

s

φ(τ)∇τ)△s

→ 0, uniformly as t1 → t2,

|ϕ((Tx)△(t1)) − ϕ((Tx)△(t2))| = |

∫ t2

t1

φ(τ)f(τ, x(τ), x△(τ))∇τ |

≤ ω(K)|

∫ t2

t1

φ(τ)∇τ |

→ 0, uniformly as t1 → t2.

So TΩ is equicontinuous on any compact interval of [0,∞)T.

Step 4 : We show that T : P → P is equiconvergent at ∞. For any x ∈ Ω,

lim
t→∞

|
(Tx)(t)

1 + t
| = lim

t→∞

1

1 + t

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, x(τ), x△(τ))∇τ)△s

≤ Mϕ−1(ω(K)) lim
t→∞

(

∫ ∞

t

φ(τ)∇τ) = 0,
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lim
t→∞

|(Tx)△(t)| = lim
t→∞

ϕ−1(

∫ ∞

t

φ(τ)f(τ, x(τ), x△(τ))∇τ)

≤ ϕ−1(ω(K)) lim
t→∞

(

∫ ∞

t

φ(τ)∇τ) = 0.

So TΩ is equiconvergent at infinity. As a consequence of Step 1-4, we get T : P → P

is completely continuous. The proof is complete.

3. MAIN RESULTS

In this section, we prove the existence of at least three positive solutions to the

BVP (1.1) by applying the Leggett-Williams fixed point theorem [8]. Applications of

the Leggett-Williams fixed point theorem can be found in recent papers (see Refs.[12]).

Let B = (B, ‖.‖), P ⊂ B be defined as (2.1) and (2.2), respectively. Let α be a

nonnegative continuous concave functional on P and a, b, c > 0 constants. Define

Pc = {x ∈ P : ‖x‖ < c},

P (α, a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b}.

To prove our results, we need the following fixed point theorem.

Theorem 3.1 (Leggett-Williams [8]). Let B = (B, ‖.‖) be a Banach space, P ⊂ B a

cone of B and c > 0 a constant. Suppose that there exists a nonnegative continuous

concave functional α on P with α(x) ≤ ‖x‖, for x ∈ P c and let T : P c → P c be a

completely continuous map. Assume that there exist a, b, d with 0 < a < b < d ≤ c,

such that:

(S1) {x ∈ P (α, b, d) : α(x) > b} 6= ∅ and α(Tx) > b, for all x ∈ P (α, b, d);

(S2) ‖Tx‖ < a, for all x ∈ P a;

(S3) α(Tx) > b, for all x ∈ P (α, b, c), with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, x3 ∈ P , such that

‖x1‖ < a, α(x2) > b, ‖x3‖ > a and α(x3) < b.

We define the nonnegative continuous concave functional α : P → [0,∞) by

α(u) =
k

k + 1
min

t∈[ 1

k
,∞)T

|u(t)|, ∀u ∈ P,

where 1
k
∈ T be fixed, such that 0 < k <∞. It is easy to see that

α(u) =
k

k + 1
u(

1

k
) ≤ ‖u‖.

For convenience, we define

θ = ϕ−1(

∫ ∞

0

φ(τ)∇τ),
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λ = 1
k+1

ϕ−1(γ(b, c)

∫ k

1

k

φ(τ)∇τ),

µ = supt∈[0,∞)T

1
1+t

(
∑m−2

i=1 αiϕ
−1(

∫ ∞

ηi

φ(τ)∇τ) +

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)∇τ)△s).

Theorem 3.2. Assume that (H1)-(H3) hold. Let 0 < a < b ≤ λ
µω(c)

d < d ≤ c, f

satisfies the following conditions:

(B1) f(t, (1 + t)u, v) < ϕ( a
Mµ

) for all (t, u, v) ∈ [0,∞)T × [0, a] × [0, a];

(B2) f(t, (1 + t)u, v) ≤ ϕ( c
Mµ

) for all (t, u, v) ∈ [0,∞)T × [0, c] × [0, c];

(B3) f(t, (1 + t)u, v) > ϕ( b
λ
) for all (t, u, v) ∈ [ 1

k
, k]T × [ b

k
, d] × [0, d];

(B4) θ ≤ µ.

Then boundary value problem (1.1) has at least three positive solutions u1, u2 and u3

such that

‖u1‖ < a, α(u2) > b, ‖u3‖ > a and α(u3) < b.

Proof. We first show that T : P c → P c. If (B2) holds, then f(t, (1 + t)u, v) ≤ ϕ( c
Mµ

)

for all (t, u, v) ∈ [0,∞)T × [0, c] × [0, c]. In fact, by Lemma 2.5, we have TP c ⊂ P .

Furthermore, ∀u ∈ P cli, we have 0 ≤ ‖u‖ ≤ c. By Lemma 2.4 and (B4), we have

‖Tu‖ = max{‖Tu‖1, ‖Tu
△‖∞}

≤ M‖Tu△‖∞ = Mϕ−1(

∫ ∞

0

φ(τ)f(τ, u(τ), u△(τ))∇τ)

≤ M
c

Mµ
ϕ−1(

∫ ∞

0

φ(τ)∇τ) =
c

µ
θ ≤

c

µ
µ = c.

Hence TP c ⊂ P c. In the same way, we can show that if (B1) holds, then TP a ⊂ Pa.

Hence ‖Tu‖ < a, ∀u ∈ P a and so (S2) of Theorem 3.1 holds.

Next, we show that (S1) of Theorem 3.1 holds. To check that the condition (S1)

of Theorem 3.1, we choose

u(t) =
b+ d

2
(1 + t), t ∈ [0,∞)T.

It is easy to see that u(t) ∈ P (α, b, d) with α(u) > b. So {u ∈ P (α, b, d) : α(u) > b} 6=

∅. Moreover, ∀u ∈ P (α, b, d), we have b
k
≤ u(t)

1+t
≤ d, t ∈ [ 1

k
, k]T, ‖u‖ ≤ d. By (B3),

we have

α(Tu) =
k

k + 1
min

t∈[ 1

k
,∞)

(Tu)(t) =
k

k + 1
(Tu)(

1

k
)

=
k

k + 1
(
m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

φ(τ)f(τ, u(τ), u△(τ))∇τ)

+

∫ 1

k

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s))
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≥
k

k + 1
(
1

k
ϕ−1(

∫ k

1

k

φ(τ)f(τ, u(τ), u△(τ))∇τ))

>
b

λ

1

k + 1
ϕ−1(

∫ k

1

k

φ(τ)∇τ) = b.

Finally we show that (S3) of Theorem 3.1 holds. For u ∈ P (α, b, c) and ‖Tu‖ > d,

we have

b

k
≤

u(t)

1 + t
≤ c, t ∈ [

1

k
, k]T, ‖u‖ ≤ c.

By (H3) and (B4), we have

α(Tu) =
k

k + 1
(Tu)(

1

k
)

=
k

k + 1
(
m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

φ(τ)f(τ, u(τ), u△(τ))∇τ)

+

∫ 1

k

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s)

≥
k

k + 1

∫ 1

k

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s

≥
1

k + 1
ϕ−1(

∫ k

1

k

φ(τ)f(τ, u(τ), u△(τ))∇τ)

≥
1

k + 1
ϕ−1(γ(b, c)

∫ k

1

k

φ(τ)∇τ)

=

1
k+1

ϕ−1(γ(b, c)

∫ k

1

k

φ(τ)∇τ)

ω(c)(supt∈[0,∞)T

1
1+t

(
∑m−2

i=1 αiϕ−1(

∫ ∞

ηi

φ(τ)∇τ) +

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)∇τ)△s))

× ω(c)( sup
t∈[0,∞)T

1

1 + t
(

m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

φ(τ)∇τ) +

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)∇τ)△s))

≥
λ

µω(c)
sup

t∈[0,∞)T

1

1 + t
(
m−2
∑

i=1

αiϕ
−1(

∫ ∞

ηi

φ(τ)f(τ, u(τ), u△(τ))∇τ)

+

∫ t

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s)

=
λ

µω(c)
‖Tu‖ >

λ

µω(c)
d ≥ b.

To sum up, all the hypotheses of Theorem 3.1 are satisfied. The proof is complete.

Example 3.3. Let T = {n
2

: n ∈ N0}∪ [2,∞), η1 = 1
2
, η2 = 3

2
, α1 = α2 = 1, M = 2,

φ(t) = e−t and ϕ(x) = x2 in the boundary value problem (1.1). Now we consider the
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following problem

(3.1)

{

(ϕ(u△))∇(t) + e−tf(t, u(t), u△(t)) = 0, t ∈ (0,∞)T

u(0) = u△(1
2
) + u△(3

2
), limt∈T,t→∞ u△(t) = 0

where

(3.2) f(t, (1 + t)u, v) =

{

t
1+t2

(6 × 102u16 + v
2×103 ), u ≤ 1, 0 ≤ v, t ∈ T

t
1+t2

(6 × 102 + v
2×103 ), u > 1, 0 ≤ v, t ∈ T.

Choose a = 1
2
, b = 3, k = 2, d = 1000, c = 2×103. Then by simple calculations,

we can obtain that

γ(b, c) = γ(3, 2×103) = 240, θ = 0.895, λ = 3.11, µ = 0.913, ω(c) = ω(2×103) = 300.5.

0 <
1

2
< 3 < 11.33 < 1000 < 2000.

(1) f(t, (1 + t)u, v) ≤ 0.0045 < ϕ( a
Mµ

), for (t, u, v) ∈ [0,∞)T × [0, 1
2
] × [0, 1

2
];

(2) f(t, (1+t)u, v) ≤ 300.5 ≤ ϕ( c
Mµ

), for (t, u, v) ∈ [0,∞)T× [0, 2×103]× [0, 2×103];

(3) f(t, (1 + t)u, v) ≥ 240 > ϕ( b
λ
), for (t, u, v) ∈ [1

2
, 2]T × [3

2
, 1000] × [0, 1000];

(4) θ = 0.895 ≤ µ = 0.913.

Therefore the conditions of Theorem 3.2 are all satisfied. So BVP (3.1) has at

least three positive solutions u1, u2 and u3 such that

‖u1‖ <
1

2
, 3 < α(u2) =

2

3
u2(

1

2
), ‖u3‖ >

1

2
, α(u3) =

2

3
u3(

1

2
) < 3.

4. MAIN RESULTS

We will use the Five Functionals fixed point theorem due to Avery [2] (which

is the generalization of the Leggett-Williams fixed point theorem [13]) to prove the

existence of at least three positive solutions to the BVP (1.1). An application of

the Five Functionals fixed point theorem can be found in recent paper (see Refs.

[6, 9, 11, 12]).

Let γ, β, θ be nonnegative continuous convex functionals on P and α, ψ be non-

negative continuous concave functionals on P . Then for nonnegative real numbers

l, a, b, d and c we define the convex sets

P (γ, c) = {u ∈ P : γ(u) < c},

P (γ, α, a, c) = {u ∈ P : a ≤ α(u), γ(u) ≤ c},

Q(γ, β, d, c) = {u ∈ P : β(u) ≤ d, γ(u) ≤ c},

P (γ, θ, α, a, b, c) = {u ∈ P : a ≤ α(u), θ(u) ≤ b, γ(u) ≤ c},

Q(γ, β, ψ, l, d, c) = {u ∈ P : l ≤ ψ(u), β(u) ≤ d, γ(u) ≤ c}.
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Theorem 4.1 (Five Functionals Fixed Point Theorem [2]). Suppose there exist c > 0

and r > 0 such that

α(u) ≤ β(u) and ‖u‖ ≤ rγ(u)

for all u ∈ P (γ, c). Suppose further that T : P (γ, c) → P (γ, c) be a completely

continuous operator. If there exist nonnegative real numbers a, b, d and l with 0 <

d < a such that

(i) {u ∈ P (γ, θ, α, a, b, c) : α(u) > a} 6= ∅ and α(Tu) > a for u ∈ P (γ, θ, α, a, b, c);

(ii) {u ∈ Q(γ, β, ψ, l, d, c) : β(u) < d} 6= ∅ and β(Tu) < d for u ∈ Q(γ, β, ψ, l, d, c);

(iii) α(Tu) > a for u ∈ P (γ, α, a, c) with θ(Tu) > b;

(iv) β(Tu) < d for u ∈ Q(γ, β, d, c) with ψ(Tu) < l.

Then T has at least three positive solutions u1, u2 and u3 in P (γ, c) satisfying

β(u1) < d, α(u2) > a, d < β(u3) with α(u3) < a.

Let 0 < k <∞, 1
k
∈ T be fixed, l = 0, r = 1 and define the nonnegative, contin-

uous, concave functionals α, ψ and the nonnegative, continuous, convex functionals

γ, β, θ on P by

(4.1) α(u) =
k

k + 1
min

t∈[ 1

k
,∞)T

u(t), γ(u) = β(u) = θ(u) = ‖u‖, ψ(u) ≡ 0.

In addition to this α(u) ≤ β(u) and ‖u‖ ≤ r γ(u) for u ∈ P .

Set

(4.2) h = ϕ−1(

∫ k

1

k

φ(τ)∇τ), N = [ϕ−1(

∫ ∞

0

φ(τ)∇τ)]−1.

Theorem 4.2. Let 0 <
∑m−2

i=1 αi = ξ < 1. Assume that (H1) and (H4) hold. Suppose

that there exist positive numbers 0 < d < a < c such that

(D1) f(t, (1 + t)u, v) > ϕ( (k+1)a
h

) for all (t, u, v) ∈ [ 1
k
, k]T × [a

k
, c] × [0, c];

(D2) f(t, (1 + t)u, v) < ϕ(dN
M

) for all (t, u, v) ∈ [0,∞)T × [0, d] × [0, d];

(D3) f(t, (1 + t)u, v) ≤ ϕ( cN
M

) for all (t, u, v) ∈ [0,∞)T × [0, c] × [0, c]

Then boundary value problem (1.1) has at least three positive solutions u1, u2 and u3

such that

‖u1‖ < d, α(u2) > a, d < ‖u3‖ with α(u3) < a.

Proof. The conditions of the Five Functionals fixed point theorem (Theorem 4.1) will

be shown to be satisfied. Let B, P and T be defined as in (2.1), (2.2) and (2.4),

respectively. From Lemma 2.5, T : P → P .

Let u ∈ P (γ, c), then γ(u) ≤ c, this implies 0 ≤ u(t)
1+t

≤ c, 0 ≤ u△(t) ≤ c for

t ∈ [0,∞). We obtain by Lemma 2.4 and (D3),

γ(Tu) = ‖Tu‖ = max{‖Tu‖1, ‖Tu
△‖∞}
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= Mϕ−1(

∫ ∞

0

φ(τ)f(τ, u(τ), u△(τ))∇τ) ≤M
cN

M
ϕ−1(

∫ ∞

0

φ(τ)∇τ) = c.

Therefore T : P (γ, c) → P (γ, c). In the following, we shall show that the conditions

of Theorem 4.1 are satisfied with b = c.

We take u(t) = c+a
2

(1 + t), t ∈ [0,∞)T. It is easy to see that u(t) ∈ P, ‖u‖ =
c+a
2
< c, α(u) = c+a

2
> a. That is,

{u ∈ P (γ, θ, α, a, b, c) : α(u) > a} = {u ∈ P :
k

k + 1
min

t∈[ 1

k
,∞)T

u(t) > a, ‖u‖ ≤ c} 6= ∅.

For u ∈ P (γ, θ, α, a, b, c) we have, by condition (D1),

α(Tu) =
k

k + 1
min

t∈[ 1

k
,∞)T

(Tu)(t) =
k

k + 1
(Tu)(

1

k
)

=
k

k + 1
(

m−2
∑

i=1

αiϕ
−1

∫ ∞

ηi

φ(τ)f(τ, u(τ), u△(τ))∇τ)

+

∫ 1

k

0

ϕ−1(

∫ ∞

s

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s)

≥
k

k + 1
(

∫ 1

k

0

ϕ−1(

∫ k

1

k

φ(τ)f(τ, u(τ), u△(τ))∇τ)△s)

=
1

k + 1
ϕ−1(

∫ k

1

k

φ(τ)f(τ, u(τ), u△(τ))∇τ)

>
1

k + 1

(k + 1)a

h
ϕ−1(

∫ k

1

k

φ(τ)∇τ) = a.

So,

(4.3) α(Tu) > a.

Hence, condition (i) of Theorem 4.1 holds.

We take u(t) = d
2
. It is easy to see that u(t) ∈ P, 0 = ψ(u), ‖u‖ = d

2
< d. That

is,

{u ∈ Q(γ, β, ψ, l, d, c) : β(u) < d} = {u ∈ P : ‖u‖ < d} 6= ∅.

By condition (D2) and Lemma 2.4, we get for u ∈ Q(γ, β, ψ, l, d, c),

β(Tu) = ‖Tu‖ = max{‖Tu‖1, ‖Tu
△‖∞} ≤M‖Tu△‖∞ = MTu△(0)

= Mϕ−1(

∫ ∞

0

φ(τ)f(τ, u(τ), u△(τ))∇τ) < M
dN

M
ϕ−1(

∫ ∞

0

φ(τ)∇τ) = d

Thus, condition (ii) of Theorem 4.1 is satisfied.

Since

P (γ, α, a, c) = {u ∈ P :
k

k + 1
min

t∈[ 1

k
,∞)T

u(t) ≥ a, ‖u‖ ≤ c},
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we get α(Tu) > a for u ∈ P (γ, α, a, c) according to (4.3). Therefore, condition (iii)

of Theorem 4.1 is satisfied.

Finally, as far as (iv) is concerned, we omit the condition (iv) since ψ(Tu) < l = 0

is impossible. Since all conditions of Theorem 4.1 are verified, the BVP (1.1) has at

least three positive solutions such that

‖u1‖ < d,
k

k + 1
min

t∈[ 1

k
,∞)T

u2(t) > a, d < ‖u3‖,
k

k + 1
min

t∈[ 1

k
,∞)T

u3(t) < a.

Example 4.3. Let T = [0, 5] ∪ {6, 7, 8, 9} ∪ [10,+∞), r = 1, l = 0, η1 = 1
3
, η2 =

2
3
, α1 = α2 = 1

3
, M = 1, φ(t) = e−t, ϕ(x) = x2 in the boundary value problem (1.1).

Now we consider the following problem

(4.4)

{

(ϕ(u△))∇(t) + e−tf(t, u(t), u△(t)) = 0, t ∈ (0,∞)T

u(0) = 1
3
u△(1

3
) + 1

3
u△(2

3
), limt∈T,t→∞ u△(t) = 0

where

(4.5) f(t, (1 + t)u, v) =

{

t
1+t2

(3 × 103u6 + v
2×103 ), u ≤ 1, 0 ≤ v, t ∈ T

t
1+t2

(3 × 103 + v
2×103 ), u > 1, 0 ≤ v, t ∈ T.

Choose a = 5, d = 1
10
, k = 3, c = 2 × 103. Then by simple calculations, we can

obtain that

h = 0.816, N = 1,

0 <
1

10
< 5 < 2 × 103.

(1) f(t, (1 + t)u, v) ≥ 900 > ϕ( (k+1)a
h

) = ϕ( 20
0.816

) = 600, for (t, u, v) ∈ [1
3
, 3]T ×

[5
3
, 2 × 103] × [0, 2 × 103];

(2) f(t, (1+ t)u, v) ≤ 0.0015 < ϕ(dN
M

) = 0.01, for (t, u, v) ∈ [0,∞)T× [0, 1
10

]× [0, 1
10

];

(3) f(t, (1+ t)u, v) ≤ 1500.5 ≤ ϕ( cN
M

) = 4×106, for (t, u, v) ∈ [0,∞)T× [0, 2×103]×

[0, 2 × 103].

Hence, by Theorem 4.2, the BVP (4.3) and (4.4) has at least three positive

solutions u1, u2 and u3 such that

‖u1‖ <
1

10
,

3

4
min

t∈[ 1
3
,∞)T

u2(t) > 5, ‖u3‖ >
1

10
,

3

4
min

t∈[ 1
3
,∞)T

u3(t) < 5.
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