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ABSTRACT. This paper is concerned with the existence and approximation of solutions for second
order impulsive functional differential equations with boundary value conditions. By establishing
new comparison results and applying the monotone iterative technique, we obtain the sufficient

conditions for the existence of extremal solutions.
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1. INTRODUCTION

The theory of impulsive differential equations has been emerging as an important
area of investigations in recent years since it is a basic tool to study some problems
of biology, medicine, engineering, and physics(see [1], [2]). As an important branch,
boundary value problems have drawn much attention. There are plenty of results on

studying the boundary value problem of impulsive differential equations ([3]-[19]).

In this paper, we study the following boundary value problems

2"(t) = f(t,z(t),z(0(2)), t#tx, teJ=1[0T]
Ax(tk) :]k(l’(tk)), k:1,2,,m,

(1) Az () = Iy (2 (),

2(0) = 2(T) + A1 [ 2(s)ds + a,

2'(0) = A2 (T) + A3 [, @(s)ds + b,

/

0
where f € C(J X Rx R,R),0<0(t) <t,teJ 0=ty <t <ty <--+<t,<
tmer = T. I, I} € C(R,R). Ax(ty) = z(t]) — x(t,), A/ (ty) = 2/(t]) — /() for
E=1,2,....,m. A\, X0, A3,a,b€ R and A, A3 > 0,0 < Ay < 1.

It is important to indicate that (1) includes a number of (impulsive) functional
differential equations, (impulsive) functional differential equations with deviating ar-
guments, (impulsive) functional differential equations with periodic boundary condi-

tions studied by many authors as special cases, such as ([3]-[13]).
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This paper is organized as follows: In section 2, we establish a new comparison
principle. In section 3, after introducing the definitions of upper and lower solutions,
we obtain existence of extremal solutions for (1) by using the method of upper and

lower solutions and monotone iterative technique.

2. PRELIMINARIES AND COMPARISON PRINCIPLES

Let PC(J) = {z: J — R;x(t) is continuous everywhere except for some ¢, at
which z(¢)) and z(t;) exist, and z(t;) = z(tx), k = 1,2,...,m}. PCY(J) ={x €
PC(J):2'(t) is continuous everywhere except for some t) at which 2/(¢) and /()
exist, and 2/(t;) = «'(tx), k = 1,2,...,m}. PC*(J) = {z € PC'(J) : |@tr,1 €
C*(ty, tira], k=0,1,...m}. PC(J) and PC'(J) are Banach spaces with the norms
| # [[po= sup{|z(t)| - t € J} and || 2 ||pcr= max{[| « [|pc, || 2" [[pc}-

A function x € PC?(J) is called a solution of problem(1) if it satisfies (1).

The following comparison results and lemmas play an important role.
Lemma 2.1 ([1], P. 33-35) Suppose that the following conditions are satisfied
(Ap) the sequence {t;} satisfies 0 <ty < t; <ty < ---, with limy_, tx = 0.
(A;) m € PCY(R,, R) and m(t) is left continuous at ¢y, k =1,2....

(Ag) for k=1,2...,t>1

m/(t) < p(t)m(t) +q(t), ¢ #t,
m(t,j) §dkm(tk)—|—bk, k=1,2...,m
where ¢,p € C(Ry, R), d. > 0 and by, are real constants. Then

£) < m(to) ( 1T dk>exp(/ ()d)

to<tp<t

+ > I 4] esp ( /t:p(s)ds) by

to<tp<t \tp<t;<t

/0 < 11 dk) exp ( / plo)do )q(s)ds.

s<tp<t

Lemma 2.2 If m € PC?(J) and

m”(t) < —Mm(t) — Nm(0
Am(ty) < —Lym(ty), k
Am/(ty) < —Lim/(t), k

m'(0) < pm/(T), m(0) <m(T

(t), t#tyiteJ=][0,T),
=1
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where M >0, N >0,0< Ly <1,0<L; <1 (k=1,2,...m),0<p <1, such that

(M+N)T'{p 1—p1_m[(1—L3Z) +<ﬁ(1—LZ)>
(3) /T IT - Ld ﬁl—Lk

Then m(t) <0 for all t € J.
Proof. The idea of the proof comes from [7], where similar comparison results are
given if p = 1. Suppose, to the contrary,that there exists some t € [0, 7] such that

m(t) > 0. It is enough to consider the following two possible cases.

Case 1. There exists a ¢ € J such that m(t) > 0 and m(t) > 0 for all ¢t € [0, T7.
Then by (2) m”(t) <0, for t # t; and m/(¢t;) < (1 — L;)m/(t). Therefore, by lemma
2.1 we get m/(t) <m/(0) [ [y, «o(1 — L) Hence by using (2) again, we have m'(0) <
pm/(T) < pm/(0) [, (1 — Lj). Since 0 < Ly <1 (k=1,2,...m), 0 <p <1,
then m/(0) < 0. So m/(t) < m'(0) [[o.y, o,(1 — Li) < 0, which implies that m(t)
is non-increasing from m(t;) < (1 — Ly)m(tx) < m(t;). Therefore, we can obtain
m(T) < m(0). But by (2) we have m(0) < m(T). So m(t) = m(t) =C > 0,Vt € J.
Hence m”(t) = 0. However from (2) we have m”(t) < —Mm(t) — Nm(0(t)) <
—MC — NC < 0, which is a contradiction.

Case 2. There exist t,, t* € J such that m(t.) < 0 and m(t*) > 0.Let m(t,) =
infeeym(s) ==\, A >0, t, € (t;,t;11]. Set t. #tF (if t. = t;, we may prove in the

same way). In virtue of (2), we get the following inequalities:

m’(t) < —Mm(t) — Nm(0(t)) < (M + N, t # by, t € J,
/() < (1 — Lm/(ty), k=1,2,...,m.

By lemma 2.1 we get

@ wl(t) <m'(0) T (1 - 1) / TT (1= Li)(M + N)Ads.

0<tp<t s<tp<t

Let t =T, we obtain from (2)

3

m'(0) <pm/(T) < pm/(0) | | (1 —L;)+p\(M + N) / H 1— Lj)ds

s<tp<T

B
Il
—

< pm'(0) | [(1 = L) + pA(M + N)T,

s

e
I
—_

which implies

(5) ' (0) < pA(M 4 NI~ p (1 - LD
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By combining (4) and (5), we have

m/'(t) < pA(M+ N)TT[1 —pH(l Lt I a-Ly)

0<trp<t
A(M + N) / IT a-1zpa
s<trp<t
< AM+N) [ @=Lfprit—p]J - Ly
O<tp<t k=1
/ [T a=zpds/ T -1}
s<tp<t 0<trp<t
T m
< A+ Nl - p 0 - L + / T @ - rpas/ T - 20}
k=1 0 s<tp<T k=1
< )\(M+N)T{p1—pH1—L* Hl—Lk
k=1 k=1

Using the inequalities m(t)) < (1 — Ly)m(tx), we obtain for ¢ € [t,, T

m(t) < m(t) Tl <01 = Lie) + A(M + N)T{p[l —plLi (1= L))~
+([Thei (1 = L)) 1}ft* s<tk<t — Ly)ds.

If t* > t,, then we get from the inequality above

(6)

0<m(t) < =x ] (1—Lk)+>\(M+N)T{p[1—Pﬁ(l—LZ)]_l

e <tp <t* k=1
(0 - 1) 1}/ 1 (- Lu)ds
k=1 be gty <t
So
H(l—Lk // H (1—Ly)ds < Hl_Lk// H (1—Ly)d
k=1 s<tp<T k=1 s<tk<T
< J] a-zLyy/ IT (- Lias

Ly <t <t* be sty <t*

< (M MR- P[]0 - I

k=1
H (1—LY))
k=1

which is a contradiction with (3).
If t* < t,, we may assume t, € (t;,t;11], t* € (¢j,t;41], 0 < j <. Like (6), we have
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by lemma 2.1
mt) < m) [[ (10— L)+ M+ N)T{p[ - p[[(1 - L)
([0 - ) / 1 (- Lods

= m(0) [Tt — L) + A + N)T{p[1 — p (1 — L))
k=1

k=1
+(ﬁ1—L* 1}/ IT -1y
k=1 s<tp<t*

On the other hand, from (2) and (6) with ¢ = 7', we obtain

m(®) < m@ <m(t) ] (- L+ MM+ N1 —p][(1 - L]~

te<tp<T k=1
=) 1}/ [T - Lid
k=1 s s<tp<T
= A [ -0+ AxM+NT{pL-p]J1 - L))
k=i+1 k=1
+([[a - L) 1}/ [T @ -1Lwd
k=1 b s<tp<T

From the two inequalities above, we obtain

J
0<m(t) < —A H (1= L) JJ(1 = L)
k=i+1 k=1

+)\(M+N)T{p1—pH 1— L))" (1— L))~

k=1

o
—_

k=1
+(JJ =Ly 1}/ [T - Lud
k=1 s<tp<t*

So
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< (M+N)T{p1—pH1—Lk +(JJa -z
k=1 k=1
/ I1 1—Lkds+H1—Lk/ I (- Lds). (7)
s<tp<t* b <ty <T

Multiplying both sides of (7) by HijH(I — L), we have

U T
k=1

k=i+1
< (M+N)T{p1—pH1—Lk Hl—Lk
k=1 k=1
(1— L) / IT -1y ds+H (1—Ly) / I] - Lids]
k ]+l s<tp<t* b <ty <T
< (M +N)T{p[1 —pH (=Ll + (e =)™
k=1 k=1
/ 11 1—Lkds+/ [T - Lyds]
s<tp<T 2 s<tp<T
o Tl -0 ol + - L) 1}/ T] (- Lo
k=1 k=1 s<tp<T
Therefore,
[J-Ln)? < (M+N)T{p[1 pH 1-L})]~ H 1-LY)) 1}/ [T a-Lyd
k=1 k=1 s<tp<T

which is a contradiction with (3). Hence m(t) <0, ¢t € [0,T]. The proof is complete.

Let us consider the following linear problem:

2"(t) + Mx(t) + Nx(0(t)) = o(t), t#tg, teJ=][0,T],
Ax(ty) = —Lyx(ty) +a, k=1,2,...,m,
(8) Az (ty) = —Lia'(tg) + bk, k=1,2,...,m
z(0) =z(T) + ¢,
[ 2/(0) = Xo2/(T') + d,
where ay, by, ¢, d, Ay are constants.
Lemma 2.3 z € PC?(J) is a solution of (8) if and only if z € PC'(J) is a solution

of the following impulsive integral equation. Furthermore, the linear problem (8) is

p

uniquely solvable.

(Am) = / G1 t S Nm ( )) — O'(S)]d8+ Z GQ(t, tk)(—ka(tk) +ak)

0<tr<T

— Z Gl(t,tk)(_Lzzl(tk)+bk)a (9)

0<tr<T
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1
q(t) = —(meccosmt + dsinmt — Agmccosm(T —t) + dsinm (T — t)),
mn

m=vM, n=[1+ X — (1+ \y) cosmT],

—sinm(t — s) — 5(1 + Ao)sinm(T — ¢ + s)

Gl(ts)zi —2(1=X)sinm(T —t—s), 0<s<t<T,
7 mn | Agsinm(t — s) — 2(1+ Xo)sinm(T + ¢ — s)
—3(1=Xg)sinm(T —t—3s), 0<t<s<T,

cosm(t —s) — 2(1+ o) cosm(T — ¢ + s)
Gt s):l —3(1—=Xg)cosm(T —t—s), 0<s<t<T,
’ n | —Xycosm(t —s) 4+ 3(1+ Xo) cosm(T +t — s)
—2(1—=X)cosm(T —t—s), 0<t<s<T.

Proof. Suppose that z(t) is a solution of (9), then

Z'(t) = q’(t)_q_/o Gu(t,s)[Nx(6(s)) — o(s)]ds + Z Gou(t, tr)(—Lrx(ty) + ag)

0<tp<T

= > Gult,t)(~Lia'(t) + b)),

0<tr<T
where
cosm(t —s) — 2(1+ Ao) cosm(T — ¢ + s)
Gults) = 1 —5(1=X)cosm(T —t—s), 0<s<t<T,
S - on —Xycosm(t —s) + (14 Xo) cosm(T +t — s)
—s(I=X)cosm(T —t—s), 0<t<s<T
= _GQ(t,S),
—sinm(t — s) — 3(1 + Ao)sinm(T — ¢ + s)
m | —3(1=X)sinm(T —t—s), 0<s<t<T,
th(t,S) = — . 1 .
no| Aesinm(t —s) — 3(1+ Ag)sinm(T +t — s)
—3s(1=Xg)sinm(T —t—s), 0<t<s<T
= MGl(t,S).

Therefore, we have

2'(t) = q”(t)+/0 Giu(t, s)[Nz(0(s)) — o(s)]ds

+ Z tht(t,tk)(—ka(tk)jLak)

0<tr<T

— Y Guult, ) (—Lia' (te) + b)) — Nz (6()) + o (1),

0<tp<T
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where
Gltt(ta S) = —th(t, 8) = —MGl(t, S),
GQtt(t, S) = MGlt(t, 8) = —MGg(t, 8),
m2e dm 2c dm
q"(t) = ——— cosmt — — sinmt + sinm(T —t) — — cosm(T —t) = —Mq(t).
n n n n
Hence

2"(t) + Mxz(t) + Nz (0(t)) = o(t).
By directly computing, we get
Al’(tk) = A Z [Gg(t, tk)(—LkLL’(tk) -+ ak) — G1 (t, tk)(—LZSL’/(tk) + bk)”t:tk

0<tr<T
= —Lkl’(tk) + ag,

Ax/(tk) = A Z [th(t, tk)(—Lkl’(tk) + CLk) - Glt(t, tk)(—sz/(tk) + bk)”t:tk

0<tr<T
= —szl(tk) + bg.
It also easy to see G1(0,s) = G1(T, s), G2(0,s) = Go(T,s), q(0) = q(T)+¢, ¢'(0) =
Aaq'(T) +d. So z(0) = z(T) + ¢, 2'(0) = Xo2'(T) + d.
Now, we prove existence of solution for problem (9), Consider the operators

A: PCY(J) — PCY(J)

z(t) = q(t)—i—/o G1(t, s)[Nz(0(s)) — o(s)]ds + Z Go(t, tp)(—Lyx(ty) + ag)

0<tr<T

= ) Giltte)(—Lia!(t) + by)-

0<tr<T
Similar to the proof of Lemma 3.2 in [8], we can prove that operator A is continuous
and compact. Applying the Schauder fixed-point theorem, we obtain existence of a
fixed point x € PC'(J) for A, so x € PC'(J) is a solution of (8).

Next, we show that the solution of (8) is unique. Suppose that z(t), xs(t) €
PC?(J) are two solutions of (8). Let m(t) = z1(t) — x5(t), then
m'(t) = [o(t) = Mai(t) = N1 (0(1))] — [o(t) — Ma(t) — Na2(6(1))]
= — Ml (t) = 2(t)] = N[z1(0(2)) — 22(0(2))]
= —Mm(t) — Nm(6(1)),

Am(tk) = [_kal(tk) + ak] — [—Lkl’g(tk) + ak]
= —Li[z1(tr) — 22(t)] = —Lem(te),

Am(ty) = [—Lpzy(te) + ] — [—Liah(te) + bi)
= —Li[2i(tk) — 25(te)] = —Lim/(t),
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m(0) = x1(0) — 22(0) = 21 (T) + ¢ — (22(T") + ¢) = 21(T) — 2o(T) = m(T),
m'(0) = 21 (0) —25(0) = A2 (T') +d — (Ax5(T) +d) = Xa(21(T') — 25(T)) = Agm'(T).

By lemma 2.2, we have m(t) < 0, that is x;(t) < x9(t) on J. Analogously, we can
show that xo(t) < x1(t) on J. Therefore x1(t) = x2(t) on J. It means that (8) has

a unique solution. The proof is complete.

3. MAIN RESULTS

In this section, we shall use monotone iterative technique to obtain the existence
of extremal solutions of (1).
Definition 3.1 A function « € PC?(J) is called a lower solution of (1) if

p

a’(t) < ft, a(t), a(0(t)), t # tw, t € J =1[0,T],
Aa(ty) < In(a(ty), k=1,2,...,m,

A (ty) < T/ (t), k=1,2,....,m,

a(0) < a(T) + M f) a(s)ds + a,

| @/(0) < \aa/(T) + A3 [ a(s)ds +b.

Analogously, 3 € PC?(J) is called an upper solution of (1) if

([ 3"(t) > f(t,B(1), BO1))), t # e, t € T =10,T],
AB(ty) > Ln(B(te)), k=1,2,...,m,
AP (t) > LB (tr)), k=1,2,...,m,
B(0) = B(T) + M [ B(s)ds +a,

| B(0) > XoB/(T) + N [y B(s)ds +b.

In the sequel, we need the following assumptions.
(H1) «, # are lower and upper solutions of (1) such that o < g.
(H2) There exist constants M > 0 and N > 0, such that

f(t,%,y) - f(t7j7g> > —M(LL’ _j> - N(y_g>7
wherever a(t) < z(t) < z(t) < B(¢) a(0(1)) < y(t) < y(t) < B(O(1)).
(H3) There exist constants 0 < Ly <1, 0 < L} < 1 for k =1,2,...m, such that
Le(@(te)) — Le(y(te)) = —Li(z(te) — y(tr)),
Li(@'(tr)) = 15 (y'(te)) = —Li (@' (k) — ¥' (),
wherever af(ty) < y(tp) < x(ty) < B(tx), k=1,2,...m.
Let [a(t),B(t)] ={z e PCYJ): a(t) <z(t) < B(t)} forallte J.

Now we are in the position to establish the main results of this paper.
Lemma 3.1 Let (H1), (H2), (H3) and inequality (3) hold. Then there exist y(t), z(t)
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satisfying the following two linear impulsive functional differential equations,respectively,
( /(1) + My(t) + Ny(8(1)) = f(t, a(t), a(0(2)) + Ma(t) + Na(6(1)),

Ay(te) = —Liy(te) + Le(alte)) + Lea(te), k=1,2,....m,

AyY'(ty) = =Ly (tr) + L/ (tg)) + L/ (ty), k=1,2,...,m

y(0) =y(T) + M\ fo ds+a

L y’(O) = >\2y ( -+ >\3 fO dS + b

and
2'(t) + Mz(t) + N2(0(t)) = f(t, B(t), B(0(t)) + MB(t) + NB(O()),
Az(tk) = —Lkz(tk) + Ik(ﬁ(tk)) + Lkﬁ(tk), k=
AZ(ty) = =Ly (t) + fk(ﬂ'(tk)) + LiB' (), k
2(0) =2(T) + M fo ds + a,

[ 2/(0) = A\2(T +)\3f0 s)ds + b,

such that a(t) < y(t) < z2(t) < B(t ), t € J, and y(t), z(t) are also lower and upper

solutions of (1), respectively.
Proof. Let m(t) = a(t) — y(t), then

m"(t) < f(t,at),a(0(t))) — [t alt), a(0(t)))
+Moa(t) + Na(6(t) — My(t) — Ny(6(t))]
= —M(aft) —y(t)) — N(a(0(t)) —y(0(t)) = —Mm(t) — Nm(6(t)),
Am(ty) < I(a(ty)) — [=Lry(te) + L(a(ty)) + Lra(ty)]
= —Lla(ty) — y(tx)] = —Lem(ty),

Am/(ty) < Li(o/(th) — [=Lpy'(tk) + I (o' (t)) + Lo/ ()]
= —Li[a/(t) — y'(tr)] = —Lym/(ty),

m(0) < o(T)+ M\ / a(s)ds+a— (y(T)+ N\ /0 a(s)ds+a)
)

(
= o(T) —y(T) =m(T),
m'(0) < Xd/(T) + A3 /T a(s)ds+b— My (T) + A3 /T a(s)ds + b)
= )\QO/(T) — )\gy/(T) = )\Qm/(T)

By lemma 2.2, we get m(t) <0 for ¢t € J, that is, a(t) < y(t).

Similarly, we can prove that z(t) < G(t).
Now we suppose that m(t) = y(t) — z(¢), then we have
m'(t) = [f(t,at),a(b(t))) + Ma(t) + Na(6(t)) — My(t) — Ny(6(1))]
—[f(t,8(8), 5(0(1))) + MB(E) + NB(6(t)) — M=(t) — Nz(0(t))]
< =My(t) — 2()] = Ny(0(1)) = 2(0(1)] = —Mm(t) — Nm(6(t)),
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Am(ty) = —Li(y(te) — 2(tx)) + Ie(a(tr)) + Lea(tr) — Ie(B(tk)) — LeB(tr)]
< —Li(y(te) — 2(tx)) = —Lim(tx),

Am’(ty) —Li(y'(tx) = 2'(tk)) + 1i (0 (tr)) + Lio! (te) — 12 (B'(t)) — Ly (t)

< —Liy(t) — /() = —Limi (1),

m(0) = (y(T)+ )xl/o a(s)ds +a) — (2(T) + )\1/0 B(s)ds + a)

= y(T)— «T) + A / (a(s)ds — B(s))ds < m(T),

m'(0) = Xy'(T) + )\3/0 a(s)ds+b— (M2 (T) + )\3/0 B(s)ds +b)
= My () = M2 (T) + Mg /0 (als)ds — B(s))ds < Agm/(T).

By lemma 2.2, we get m(t) < 0 for ¢t € J, that is y(t) < z(t). So a(t) < y(t) <
z(t) < B(t), t € J. Now, from (H2) and (H3), we obtain

y'(t) =
<

~ ~
o
—~
o~
N—
o
—~
>
—~
o~
N—
N—
N—
+
o
—~
~
SN—
-
o
—
>
—~
o~
N—
N—
|
<
—~
~
S~—
|
<
—
>
—~
o~
N—
P

Il

kh
—~

~

<

~

~
S—

< o ~
—~

>
—~

~
S—
\_/\_/
SN—

>
<
—~

~
En
SN—

—Lyy(te) + In(a(ty)) + Lra(ty)
< —Lyy(te) + Le(y(te)) + Ley(tr) = Le(y(te)),

y'(tr) = —Liy'(tr) + Li(d/(tr) + Lia' ()
= —Liy'(t) + L' () + Liy'(tk) = (Y (),

y(0) =y(T)+ M\ /0 a(s)ds+a <y(T)+ N\ /0 y(s)ds + a,

T T
y'(0) = Xy (T) + >\3/ as)ds +b < Ay (T) + )\3/ y(s)ds + b.
0 0

So y(t) is a lower solution of (1). Similarly, we can prove that z(¢) is an upper solution
of (1). The proof is complete.

Theorem 3.2 Let (H1), (H2), (H3) and inequality (3) hold. Then there exist mono-
tone sequences {a,}, {6.} C [, (] with a=ay<a; < -0, < <[, <--- <
01 < By = [ such that lim, . o, = x,, lim,_ . (, = " uniformly on J. Moreover,
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T,z are minimal and maximal solution of (1) in |« (], respectively.
Proof. For n =1,2,... we suppose that

p

an(t) + May(t) + Ny (0(1)) = f(E, an-1(t), an-1(0(¢))) + May_1(t) + Nan_1(0(1)),
Aay,(ty) = Lkozn(tk)+fk(ozn 1(tk))+Lk0zn 1(te), k=1,2,...,m,
Ad! (ty) = —Lial, (te) + Li (ol (t) + Lial, (), k=1,2,...,m,
a,(0) = a, ( +)\1f0 Q1 )ds—l—a,
[ 7, (0) = Ao, (T +)\3f0 an,_1(s)ds + b,
and
( ﬂ”(t>+M (1) + NBu(0(t) = f(t, Bua(t), Bu1(0(1))) + MBur(t) + NBu1(6(2)),
ABn(te) = —LiBn(tr) + Te(Buoi1(tr)) + LifBar(ts), k=1,2,...,m,
\ ABL(tk) = —LiBu(te) + L (8- (k) + LB (), k=1,2,...,m,
3(0) = Bu(T) + A1 fi Buei(s)ds +a,
| BL(0) = XaBL(T) + A3 [, Bai(s)ds + 0.

In view of Lemma 3.1, we easily get the two monotone sequences {a,},{8.} C
la, 8] such that « = ap < oy < ---0, < - < 3, < -+ < By < fy = (. And
lim,, o @y = Ty, lim, o (G, = * uniformly on J. Moreover, x,(t), *(t) are solu-
tions of (1) in [a(t), B(t)].

To prove that z.(t), z*(t) are extremal solutions of (1), let z € [«, ] be any
solution of (1),that is,

(1) = F(talt), 2(0(0), ¢ £ b, t € J = [0,7],
Azx(ty) = I(x(ty)), k=1,2,...,m,

S AX(ty) = 15 (2 (tr)), k—12

2(0) = x(T +A1f0 ds+a

2/ (0) = X (T —I—)\gfo s)ds + b.

\

Suppose that there exists a positive integer n such that «,(t) < z < 3,(t) on J.
Then, let m(t) = a,41(t) — x(t), we have,
m"(t) = [f(t, an(t), an(0(1))) + Mo (t) + Naw(0(t))
—Mam i (t) = Nana (0(8)] — f(t, x(t), 2(6(1)))
< —M(ans(t) —x(t) = N(anga (0(1)) — 2(0(t))) = —Mm(t) — Nm(6(t)),

Am(tk) [—Lkan+1(tk) + [k(an(tk)) + Lkan(tk)] — Ik(l'(tk))

— L[ g1 (te) — z(te)] = —Lem(ty),

IA

Am'(ty) = [=Liag (te) + Li(ag(t) + Loy, (t)] — I (2 (t))
—Lifof s (te) — 2/ (t)] = =Ly (t),

IA
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T T
m(0) = au1(T)+ M\ / ap(s)ds +a — (x(T) + N\ / z(s)ds + a)
0 0

:<%H@U—$@U+ANA<ﬂA$—x@D%)§amﬂT%—ﬂT%=mG%

m'(0) = = Xoaj, 1 (T) + s /T an(s)ds +b— (M2’ (T) + A3 /Tx(s)ds +0)

= a1 (T) — A2’ (T) + )\3(/0 (an(s) — x(s))ds) < Xom/(T).

By lemma 2.2, m(t) < 0on J, i.e, a,41(t) < x on J. Similarly we obtain x < 3,,1(t)
on J. Since ag < z(t) < [y on J, by induction we get a,(t) < =z < (,(t) on J
for every n. Therefore, z,(t) < x(t) < z*(t) on J by taking n — oco. The proof is
complete.

We conclude with a simple example which can be treated by the methods devel-
oped above.
Example. Consider the following boundary value problem:

(2(t) = —sa(t) — Se~ta(Lt), te [0,1),t £ 1

(10) < Ax(%): %x )
2(0) = x( +100f0 d5+1_07
( 2'(0) = 32'(1) + 10f0 s)ds + 3
Put
t+1,t (0,1,
t)=0,te|0,1],06(t) = P2

Obviously, a(t) is a lower solution and ((t) is an upper solutions of (10). Let

1 1T, 1 1 5 . 3 1

ft,x,y) = ~T00% " g€ ¥ M = m,N— %,Ll = 6’L1 = 1,)\2 =3
We have
_ 1 _ 1
f(t,x,y)—f(t,x,y)z—m( - >_%€ (y y)
Ia(3)) ~ hly(z) = — (a(3) ~ ()

() - () = ()~ v/(5))

(M +NTP[L =X [T - 201+ (JJa-2in™ [ ] (= Lijds
k=1 k=1 0 s<ty<T
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Hence, (10) satisfies all conditions of Theorem 3.1. It follows that there exist mono-

tone sequences {a,},{3,} uniformly converging to the extremal solutions of (10) in

[, 1.
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