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ABSTRACT. We obtain new sufficient component-wise conditions for the asymptotic equivalence

between bounded solutions of linear and nonlinear systems of differential equations with maxima. A

Lipschitz component-wise and a spectral condition allow us to obtain vectorial asymptotic formulae.

Under a spectral dichotomy condition the equivalences take the form of a homeomorphism which is

also extended to unbounded solutions. We also obtain a vectorial Levinson’s theorem with maximum

about asymptotic integration.
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1. INTRODUCTION

The theory of differential equations with maxima arise naturally when solving

practical problems in the study of systems with automatic regulation which are ac-

tived when the state attains the maximum in a previous interval It = [t − h, t]

y′(t) = Λy(t) + C max
s∈It

y(s) + f(t).

For example, in the case of an electrogenerator, the mechanism becomes actived

when the maximum voltage variation that is permited is reached in an interval of

time It, with h a positive constant. The equation which describes the actioning of

this regulator has the form

V ′(t) = −δV (t) + p max
s∈It

V (s) + F (t),

where δ and p are constants that are determined by the characteristic of the system,

V (t) is the voltage and F (t) is the effect of the perturbation that appears associated to

the change of voltage [7, 12]. Also, there are many processes in Physics, Engineering

or Biology [6, 13, 16, 19] which are modeled by ordinary differential equations of the

type

y′(t) = f

(

t, y(t), max
s∈It

y(s)

)

, t ∈ [0, T ] .
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The most of this study has been done in the scalar case. In this paper we

consider the vectorial case. Recently, there is increasing interest towards equations

which contain maxima. Much work on these equations has been carried out in the

last three decades. We mention the work in [6–8, 12, 15–16, 18–19].

The inequality x ≤ y between two real vectors x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) means that every coordinate of y is not less than the corresponding

coodinate of x, i.e., for each i ∈ {1, 2, . . . , n} the inequality xi ≤ yi is verified. For

all x = (x1, x2, . . . , xn), we define the vectors |x| = (|x1| , |x2| , . . . , |xn|), |x|∞ =

(supt∈I |xi(t)|)
n

i=1. For any n × n matrix A = (aij), we define the matrix |A| = (|aij|)

and ‖x‖ = max1≤i≤n |xi| (see [1, 2]). If h > 0, for all t ∈ R, denote J = [−h,∞),

It = [t − h, t] and we define

max
s∈It

x(s) =

(

max
s∈It

x1(s), max
s∈It

x2(s), . . . , max
s∈It

xn(s)

)

, ỹ(t) = max
s∈It

y(s).

For scalar real function β defined on J = [−h,∞) and e(t) = exp
(

∫ t

0
λ(σ)dσ

)

we denote |β|e = supt∈J |β(t)e(t)−1|. Also, for ϕ = (ϕ1, ϕ2, . . . , ϕn) we define ‖ϕ‖e =

max(|ϕ1|e , |ϕ2|e , . . . , |ϕn|e). Moreover, we consider the Banach space

Be = {ϕ : J = [−h,∞) → R
n / ‖ϕ‖e < ∞}

of the e-bounded real vector functions defined on J , provided of the norm ‖ ‖e.

The spectral radious of a matrix Ω (see [1, 2, 5]) is given by ρ (Ω) = limn→∞ ‖Ωn‖
1

n ,

where ‖ ‖ is any norm on the vector space of the n × n real matrices; this spectral

radious is independent of the norm employed to calculate it.

In this work, we study nonlinear differential systems with maxima of the type

(1.1)







y′(t) = A(t)y(t) + F (t, y(t), ỹ(t)), with t ∈ I and y(t) ∈ Rn

y(t) = χ(t), with t ∈ [−h, 0]

where the n × n matrix A(t) is continuous in the interval I = [0,∞) and h > 0.

In this paper we consider system (1.1) and we assume that the vectorial Lipschitz

condition

(1.2) |F (t, x1, y1) − F (t, x2, y2)| ≤ Q(t) |x1 − x2| + R(t) |y1 − y2| , F (t, 0, 0) ≡ 0,

holds for all (t, xi, yi) ∈ I×Rn×Rn, i = 1, 2, where Q(t) and R(t) are locally integrable

matrices with nonnegative entries, and we prove for nonlinear system with maxima

(1.1) the asymptotic equivalence among bounded solutions with non perturbed system

(1.3) x′(t) = A(t)x(t).
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Moreover, with this componentwise Lipschitz condition and a spectral condition,

we obtain new results about asymptotic equivalence. The vectorial asymptotic for-

mulae

(1.4) y = x + O(Θ(t) |x|∞),

(1.5) y = x + O (Ω |x|∞) ,

where Θ and Ω are majorants matrices with |Θ(t)| ≤ Ω and ρ(Ω) < 1, and

(1.6) |y(t)| ≤ (I − Ω)−1 |x|∞

are obtained. Inequality (1.6) gives a vectorial bound of the solution y in terms

of the solution x, representing in vectorial way the stability of solution y respect

to solution x. Furthermore, using componentwise Lipschitz condition (1.2), we prove

some results of the Levinson’s theorem type (see ([9]–[11]) for differential systems with

maxima. Obviously, these results can be applied to “linear” systems with maxima

as y′(t) = A(t)y(t) + B(t)ỹ(t). The asymptotic formulae for the vectorial Levinson’s

theorem takes the form

y = exp





t
∫

0

λ(s)ds



 (I + O(Ω))v.

In this paper, we obtain new sufficient conditions for the asymptotic equivalence of

linear and nonlinear systems of differential equations with maxima. Equivalences

among unbounded solutions are also proved. The equivalences have the form of

homeomorphisms, which is the most important version of the correspondence between

the solutions. As it is well known, to arrange an equivalence with another set which

is then carefully studied is one of the most effective methods to clarify the structure

of a complex set, see [3, 4, 9].

The main idea of this method is to apply the properties of the Green matrix of

the system (1.1), the techniques developed in the study of differential equations with

dichotomies, and to use the spectral radious of a majorant matrix. We give certain

examples in which we can appreciate the advantage of the asymptotic representations

obtained with this method.

2. ASYMPTOTIC EQUIVALENCE

Given a fundamental matrix Φ(t) of (1.3), we denote by G(t, s) the Green matrix

associated to this linear system and the projection P1, defined by

G(t, s) =







Φ(t)P1Φ
−1(s), t ≥ s ≥ 0

−Φ(t)P2Φ
−1(s), s ≥ t ≥ 0,
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where P1 and P2 are supplementary projections (see [9, 11, 14, 17]). For fixing idea

we will chose P1 such that Φ(t)P1 → 0 as t → ∞ , see [9, 14, 15, 17]. Let be the n×n

nonnegative matrix Θ(t) = (θij) defined by

(2.1) Θ(t) =

∫ ∞

0

|G(t, s)| (Q(s) + R(s))ds.

Let be the constant n × n matrix Ω = (ωij) with nonnegative real entries ωij , i, j ∈

{1, 2, . . . , n} defined by

(2.2) Ω = sup
t∈I

Θ(t),

The main hypothesis will be the existence and boundedness of Θ(t), for t ≥ 0

(and hence the integral in (2.1) is finite). Other useful condition concerns with the

spectral radious of the matrix Ω, namely ρ(Ω) < 1. In this case, we will say that

system (1.3) has a dichotomy such that ρ(Ω) < 1.

Let be the linear nonhomogeneous system

(2.3) x′(t) = A(t)x(t) + g(t)

and

(2.4) y′(t) = A(t)y(t) + F (t, y(t), ỹ(t)) + g(t).

Theorem 2.1. Assume that there exist locally integrable matrices Q(t) and R(t) with

nonnegative entries, such that the vectorial Lipschitz condition (1.2) holds for all

(t, xi, yi) ∈ I × Rn × Rn, i = 1, 2. If we assume that system (1.3) has a dichotomy

with ρ(Ω) < 1, then:

a) For each bounded solution x of (2.3) there exists a unique solution y of (2.4)

such that (1.4), (1.5) and (1.6) hold.

b) For each bounded solution y of (2.4) there exists a solution x of (2.3) such that

(1.4) and (1.5) are verified.

c) The correspondence x −→ y is bicontinuous and it represents an asymptotic

equivalence between the bounded solutions of (1.1) and (2.3), when Θ(t) → 0 as

t → ∞.

Proof. Let x be a bounded solution of (2.3). Consider the integral equation

(2.5) y(t) = x(t) +

∞
∫

0

G(t, s)F (s, y(s), ỹ(s))ds,

where y(t) = χ(t), for t ∈ [−h, 0], and G(t, s) is the Green matrix of (1.3) Any

solution of (2.5) is a solution of (1.1). We denote by

B(J, Rn) = {ϕ : J = [−h,∞) → R
n / |ϕ|∞ < ∞}
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and we define the operator A : B(J, Rn) → B(J, Rn) by

(2.6) (Ay)(t) = x(t) +

∞
∫

0

G(t, s)F (s, y(s), ỹ(s))ds, for t ∈ I,

where y(t) = χ(t), for all t ∈ [−h, 0]. Then by the componentwise Lipschitz condition

(1.2), we obtain the vectorial inequality:

(2.7) |Aϕ1(t) −Aϕ2(t)| ≤





∞
∫

0

|G(t, s)| [Q(s) + R(s)] ds



 |ϕ1 − ϕ2|∞ ,

where the inequality above means the comparison coordinate to coordinate. By (2.7)

and condition ρ(Ω) < 1 we can apply the Banach fixed point theorem to obtain

the existence of a unique fixed point y(t) of the operator A. Then y(t) verifies the

integral equation (2.5) and condition (1.5). Moreover, y(t) − x(t) ≤ Ω |y|∞, then

|y|∞ − |x|∞ ≤ Ω |y|∞, and we have |y|∞ ≤ (I − Ω)−1 |x|∞. Since y(t) is a bounded

solution and

|y(t) − x(t)| ≤





∞
∫

0

|G(t, s)| [Q(s) + R(s)] ds



 |y|∞ ,

we can see that, if Θ(t) converges to 0 as t → ∞, then (1.4) is true. The proof of a)

is complete. To prove b), we take a bounded solution y of (1.1) and we observe that

x(t) = y(t) −

∞
∫

0

G(t, s)F (s, y(s), ỹ(s))ds

satisfies equation (1.3) and it verifies condition (1.4). Finally, the correspondence

x ↔ y given by equation (2.5) is bicontinuous since the vectorial inequalities

(I + Ω)−1 |x1 − x2|∞ ≤ |y1 − y2|∞ ≤ (I − Ω)−1 |x1 − x2|∞

hold and c) follows.

We have the following result for the “linear” differential system with maxima

(2.8) y′(t) = A(t)x(t) + Q(t)y(t) + R(t)ỹ(t) + g(t).

Corollary 2.2. Let Q(t) and R(t) be locally integrable n×n matrices, and denote by

Θ(t), Ω the n × n matrices given by

Θ(t) =

∞
∫

0

{|G(t, s)Q(s)| + |G(t, s)R(s)|} ds, Ω = |Θ|∞ ,

where G(t, s) is a Green matrix of the system (1.3). If ρ(Ω) < 1, where ρ(Ω) is the

spectral radious of the matrix Ω, then conclutions a), b) and c) of Theorem 2.1 are

verified, where (1.1) is changed by (2.8) and (1.3) is changed by (2.3).
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Remark 2.3. When we have an ordinary dichotomy, i.e., when there exists a constant

c such that ‖G(t, s)‖ ≤ c, for all (t, s), then we have Θ(t) → 0 as t → ∞ if ΦP1 → 0

as t → ∞ and Q, R ∈ L1. If now, the dichotomy is exponential, i.e., there exist

the constants α > 0 and c such that ‖G(t, s)‖ ≤ ce−α|t−s|, t 6= s, then Θ(t) → 0 as

t → ∞ in much cases, such as Q(t), R(t) → 0 as t → ∞ or Q, R ∈ Lp, p ≥ 1.

Example 2.4. Consider the differential system with maxima
(

y′
1

y′
2

)

=

(

α 0

0 β

)(

y1

y2

)

+

(

0 q12

q21 0

)(

y1

y2

)

+

(

0 r12

r21 0

)(

ỹ1

ỹ2

)

where q12, q21, r12 and r21 are locally integrable real functions, Reα < 0 and Reβ > 0.

For projections P1 =

(

1 0

0 0

)

and P2 =

(

0 0

0 1

)

, the matrix Θ in Corol-

lary 2.2 is given by θii = ωii = 0, i = 1, 2, and ω12 = supt∈I θ12(t), ω21 = supt∈I θ21(t),

where

θ12(t) =

t
∫

0

(|q12| + |r12|)(s)e
Re α(t−s)ds, θ21(t) =

∞
∫

t

(|q21| + |r21|)(s)e
Re β(t−s)ds.

If ω12ω21 < 1, then the spectral radius ρ(Ω) < 1, where Ω = |Θ|∞ = (ωij) and we

can apply Corollary 2.2. Therefore, for each bounded solution x =

(

x1

x2

)

of (1.3),

there exists a solution y =

(

y1

y2

)

of (2.8) such that

(

y1

y2

)

=

(

x1

x2

)

+ O





θ21(t) sup
t∈I

|y2(t)|

θ12(t) sup
t∈I

|y1(t)|





and, for all t ∈ I, we have

(

|y1(t)|

|y2(t)|

)

≤
1

1 − ω12ω21

(

1 ω12

ω21 1

)





sup
t∈I

|x1(t)|

sup
t∈I

|x2(t)|



 .

In particular, if qij = 0, r12 is a bounded real function in the interval I, such

that |r12(t)| ≤ M for all t ∈ I and r21(t) = 1
t+1

then, if − M
Re α Re β

< 1, we can apply

Corollary 2.2. Note that r21 /∈ L1 and general cases where r21 /∈ Lp for any p > 1,

may be studied.

The cases Re β ≥ 0, Reα < 0 or Re β = Re α = 0 can be similarly studied

Remark 2.5. If Re α, Reβ 6= 0, then condition θ21θ12 < 1 given in Example 2.4, is

verified for t ≥ t0, and t0 large enough, for example in the following cases:

1) If q21 ∈ Lp1 , r21 ∈ Lp2 and |q12| ≤ ǫ, |r12| ≤ ǫ, where ǫ is small enough,

ǫ < min {|Re α| , |Re β|}.
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2) If q12 ∈ Lp1 , r12 ∈ Lp2 and |q12| ≤ ǫ, |r12| ≤ ǫ, where ǫ is small enough,

ǫ < min {|Re α| , |Re β|}.

3) If q21, r21 ∈ Lp21 and q12, r12 are bounded, or, q21, r21 → 0 and q12, r12 are

bounded, then, we have the asymptotic equivalence.

4) If q12, r12 ∈ Lp12 and q21, r21 are bounded, or, q12, r12 → 0 and q21, r21 are

bounded.

In every case, we have the asymptotic equivalence.

3. LEVINSON’S TYPE THEOREMS

A typical situation for the matrix A is A = diag {λ1(t), λ2(t), . . . , λn(t)}. For

λ ∈ {λi(t)}
n

i=1 the function xλ(t) = exp
(

∫ t

0
λ(s)ds

)

eλ is a solution of (1.3), where

eλ = ek if λ = λk and ek = (0, . . . , 1, . . . , 0) is the vector of the canonical bases of

Rn. Let P = Pλ the constant diagonal projection such that |xλ(t)|
−1 Φ(t)Pλ → 0 as

t → ∞ and denotes Gλ its corresponding Green matrix. We have the following result:

Theorem 3.1. Suppose that xλ(t) = exp

(

t
∫

0

λ(s)ds

)

vλ satisfies equation (1.3),

where vλ is a constant vector, F verifies conditions of Theorem 2.1, and the spec-

tral radious ρ(Ωλ) < 1, where Ωλ = |Θλ|∞ with

(3.1) Θλ(t) =

∞
∫

0

|Gλ(t, s)| exp



−Re

t
∫

s

λ(ξ)dξ



{(Q(s) + R(s)mλ(s))} ds

and

(3.2) mλ(s) = exp



−Re

s
∫

0

λ(ξ)dξ



max
σ∈Is







exp



Re

σ
∫

0

λ(ξ)dξ











.

Then, there exists a solution yλ(t) of (1.1) such that

(3.3) yλ(t) = exp





t
∫

0

λ(s)ds



 (vλ + O(Ωλ |vλ|))

and

(3.4) yλ(t) = exp





t
∫

0

λ(s)ds



 (vλ + O(Θλ(t) |vλ|))

for some constant vector vλ ∈ Rn.

Proof. Consider the integral equation

y(t) = xλ(t) +

∞
∫

0

Gλ(t, s)F (s, y(s), ỹ(s))ds,
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where y(t) = χ(t), for t ∈ [−h, 0] and G is the Green Matrix associated to linear

system (1.3). If we denote e(t) = exp
t
∫

0

λ(σ)dσ. We define the operator A : Be → Be

by the formula

A(y)(t) = xλ(t) +

∞
∫

0

Gλ(t, s)F (s, y(s), ỹ(s))ds.

We have
∣

∣

∣

∣

max
σ∈Is

ϕ1(σ) − max
σ∈Is

ϕ2(σ)

∣

∣

∣

∣

≤ max
σ∈Is

|e(σ)|

∣

∣

∣

∣

max
σ∈Is

ϕ̂1(σ) − max
σ∈Is

ϕ̂2(σ)

∣

∣

∣

∣

,

where ϕ̂ = ϕe−1. Then

|(Aϕ1 −Aϕ2)(t)|

≤

∞
∫

0

|Gλ(t, s)|

{

Q(s) |ϕ1(s) − ϕ2(s)| + R(s)

∣

∣

∣

∣

max
σ∈Is

ϕ1(σ) − max
σ∈Is

ϕ2(σ)

∣

∣

∣

∣

}

ds

≤





∞
∫

0

|Gλ(t, s)e(s)| (Q(s) + R(s)
∣

∣e−1(s)
∣

∣max
σ∈Is

|e(σ)|)ds



 ‖ϕ1 − ϕ2‖e .

Therefore, we have |e−1(t)(Aϕ1 −Aϕ2)(t)| ≤ Θλ(t) ‖ϕ1 − ϕ2‖e and ‖(Aϕ1 −Aϕ2)‖e ≤

(supt∈J Θλ(t)) ‖ϕ1 − ϕ2‖e.

By the Banach fixed point theorem, there exists a solution y = y(t) of (1.1) in

Be and conditions (3.3) and (3.4) are verified.

Remark 3.2. The function xλ is solution of system (1.3) if and only if A(t)vλ =

λ(t)vλ. The function mλ in (3.1) is important because it can be unbounded. For

example, in the case λ(s) = −2s we have mλ(t) = e2th−h2

.

For the “linear” system with maxima

(3.5) y′(t) = A(t)y(t) + Q(t)y(t) + R(t)ỹ(t),

where matrices A, Q and R are defined in the interval [0,∞), we have:

Corollary 3.3. Let Q(t), R(t), and mλ(t) be locally integrable in the interval I, and

we denote by Θ(t) the n × n matrix given by

Θ(t) =

∞
∫

0

{|G(t, s)Q(s)| + |G(t, s)R(s)|mλ(s)} exp



−Re

t
∫

s

λ(ξ)dξ



ds,

where G(t, s) is the Green matrix of system (1.3) and mλ(s) is defined in Theorem 3.1.

If for a constant vector v, xλ = exp

(

t
∫

0

λ(s)ds

)

v satisfies equation (1.3), and ρ(Ω) <

1, where Ω = ‖Θ‖∞ , then there exists a solution y of (3.5) such that (3.4) is verified.
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Remark 3.4. The functions in system (1.1) can be defined on the interval [a,∞),

instead of I = [0,∞). In this case all the results remain valid in [a,∞), eventually,

for a big enough.

Example 3.5. Consider the differential system with maxima

(3.6) y′ =

(

α 0

0 β

)

y +

(

q11 q12

q21 q22

)

y +

(

r11 r12

r21 r22

)

ỹ

where qij , rij , 1 ≤ i, j ≤ 2 are locally integrable real functions and α, β are real

constants such that α < β.

For λ = α and projections P1 = 0 and P2 = I2, we see that mλ(s) = 1 if α > 0

and mλ(s) = e−αh if α ≤ 0. We have:

Θα(t) =

∞
∫

t

(|Q(s)| + |R(s)|mα(s))e(β−α)(t−s)ds

If a is big enough then in the following cases we have ρ (Ω) < 1:

1) qij ∈ Lcij , rij ∈ Ldij , 1 ≤ cij , dij < ∞

2) |qij| ≤ ǫ, |rij| ≤ ǫ, 1 ≤ i, j ≤ 2, for ǫ small enough

As x = eαte1 is a solution of (1.3), where e1 is the vector of the canonical bases of R2,

in any of these cases, there exists a solution ϕ1 of the system (3.6), defined in [a,∞)

such that

ϕ1(t) = eαt {I2 + O(Θα(t))} e1.

For λ = β and projections P1 = I2 and P2 = 0 we see that mλ(s) = 1 if β > 0 and

mλ(s) = e−βh if β ≤ 0. In this case, we have:

Θβ(t) =

t
∫

a

(|Q(s)| + |R(s)|mβ(s))e(α−β)(t−s)ds.

Similarly, there exists a solution ϕ2 of the system (3.6), defined in [a,∞) such that

ϕ2(t) = eβt {I2 + O(Θβ(t))} e2.

So, we have

ϕ2(t) = eβt







I2 + O





t
∫

a

(|Q(s)| + |R(s)|mβ(s))e(α−β)(t−s)ds











e2.

We have considered α and β are constants, but we can take α and β non constants.

For example, if α(t) = −2t and β(t) = ε − 2t, for t ≥ 0 and ε > 0, we observe that

mα(t) = e2th−h2

is not a bounded function and Θα(t) is given by

Θα(t) =

∞
∫

t

(

|Q(s)| + |R(s)| e2sh−h2

)

eε(t−s)ds.
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Then, Corollary 3.3 and Theorem 3.1 are not valid asking only rij ∈ L1, it is necessary

rij(s)e
2sh−h2

∈ L1.

4. APPLICATIONS TO SECOND ORDER DIFFERENTIAL

EQUATIONS

In the particular case when the matrix A in Theorem 2.1 is null, that is

y′ = F

(

t, y(t), max
s∈t−h,t

y(s)

)

we have the following vectorial result, extending the scalar ones in [12]:

Corollary 4.1. Assume that there exist integrable matrices Q(t) and R(t) with non-

negative entries, such that (1.2) holds, for all (t, xi, yi) ∈ I × Rn × Rn, i = 1, 2. If

ρ(Ω) < 1, where

Θ(t) =

∞
∫

t

{Q(s) + R(s)} ds, Ω = |Θ|∞

then we have:

a) For each v ∈ Rn there exists a unique solution y of (1.2) such that we have the

componentwise formulas

(4.1) y = v + O(Ω |v|)

(4.2) y = v + O(Θ(t) |v|),

as t approaches infinity, and we have the vectorial estimate

(4.3) |y(t)| ≤ (I − Ω)−1 (|v|) .

b) For each bounded solution y of (1.2) there exists v ∈ Rn such that (4.1), (4.2)

and (4.3) are verified.

c) The correspondance v −→ y is bicontinuous and its represents an asymptotic

equivalence between the bounded solutions of (1.1) and Rn, when Θ(t) → 0 as

t → ∞.

Proof. It follows at once from Theorem 2.1.

Consider the differential system

(4.4) z′ = A(t)z + Q(t)z + R(t)z̃.

The substitution z = Φ(t)y changes (4.4) into the differential system

y′ = Φ−1(t)Q(t)Φ(t)y + Φ−1(t)R(t) ˜(Φ(t)y).

Then, by Corollary 4.1 we obtain the following result:
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Corollary 4.2. Let Q(t) and R(t) be locally integrable n×n matrices, and denote by

Θ(t), Ω the n × n matrices given by

(4.5) Θ(t) =

∞
∫

t

{

∣

∣Φ−1(s)Q(s)Φ(s)
∣

∣+
∣

∣Φ−1(s)R(s)
∣

∣

∣

∣

∣
Φ̃
∣

∣

∣
(s)
}

ds, Ω = |Θ|∞ .

If ρ(Ω) < 1, where ρ(Ω) is the spectral radious of the matrix Ω, then conclusions a),

b) and c) of Theorem 2.1 are verified, where (1.1) is changed by (4.4) and (1.4), (1.5)

and (1.6) are respectivelly changed by:

(4.6) z(t) = Φ(t)(v + O(Θ(t) |v|),

(4.7) z(t) = Φ(t)(v + O(Ω |v|),

(4.8) |z(t)| ≤ |Φ(t)| (I − Ω)−1 |v| .

In Corollary 4.2, the correspondence z → Φ(t)v is an equivalence between so-

lutions not necessarilly bounded. Moreover, every solution has a representation as

(4.6), (4.7) and (4.8). For that, the stronger integrability condition (4.5) has been

necessary, see next example. In Theorem 3.1 and Corollary 3.3, only some special

solutions have an asymptotic formula as (3.3) or (3.4).

Example 4.3. Consider the second order differential equation with maxima

(4.9) u′′(t) = u(t) + δr(t)ũ(t),

where r is an integrable function in I = [0,∞). Corollaries 4.2 and 3.3 will be applied.

Equation (4.9) is equivalent to the differential linear system

(4.10) z′ =

(

0 1

1 0

)

z + δr(t)

(

0 0

1 0

)

z̃, z =

(

u

u′

)

=

(

z1

z2

)

.

If
∞
∫

0

|r(t)| e2tdt < ∞ then for parameter |δ| small enough we get ρ(Ω) < 1, where

Ω = |Θ|∞ and the matrix Θ(t) defined in (4.5) is given by

Θ(t) =

∞
∫

t

δ |r(s)|

(

1
2
eh + 1

2
e2s

1
2
e−2s + 1

2
eh−2s 1

)

ds.

Then, applying Corollary 4.2 we have:

For all ν =

(

v1

v2

)

∈ R2 there exists a unique solution z of (4.10) such that (4.6),

(4.7) and (4.8) are verified. Then a consequence of the Corollary 4.2 is that, for all
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solution u of equation (4.9), there exists ν ∈ R2 such that

u(t) = e−tν1 + etν2 + |δ|O







(|ν1|

∞
∫

t

|r(s)| ds + ν2

∞
∫

t

|r(s)| e2sds)

+ |δ| et(|ν1|

∞
∫

t

|r(s)| e−2sds + |ν2|

∞
∫

t

|r(s)| ds)







,

and with an analogous formula for u′.

For every solution u of (4.9), equation (4.7) gives the formulae

u(t) = e−tν1 + etν2 + O(ω11 |ν1| + ω12 |ν2|)

u′(t) = −e−tν1 + etν2 + O(ω21 |ν1| + ω22 |ν2|),

where ωij = supt∈I θij(t), and inequality (4.8) implies

u(t) ≤
1

∆

{

e−t((1 − ω22) |ν1| + ω21 |ν2|) + et(ω12 |ν1| + (1 − ω11) |ν2|
}

u′(t) ≤
1

∆

{

−e−t((1 − ω22) |ν1| + ω21 |ν2|) + et(ω12 |ν1| + (1 − ω11) |ν2|
}

,

where ∆ = (1 − ω11)(1 − ω22) − ω12ω21.

Then,under the strong condition r(t)e2t ∈ L1(I), applying Corollary 4.2 we obtain

asymptotic formulae for all the solutions of the equation (4.9).

Only with r ∈ L1(I) in equation (4.9), we can also apply Corollary 3.3. First, we

transform (4.10) into the differential system

(4.11) y′ =

(

−1 0

0 1

)

y +
1

2
δr(t)

(

1 0

1 0

)

˜(Ty).

Since
∣

∣

∣
T̃ y
∣

∣

∣
≤ |T | |ỹ| we can apply Corollary 3.3 to equation (4.11). For the solution

z−1 =

(

1

0

)

e−t of the homogeneous system associated to (4.11), we have

Θ(t) =

∞
∫

t

1

2
|δ| |r(s)| eh

(

1 1

e2(t−s) e2(t−s)

)

ds.

If r is integrable in the interval I and |δ| is small enough, we have ρ(Ω) < 1,then

there exists ν−1 =

(

c1

c2

)

∈ R2 and a solution y−1(t) =

(

y−11

y−12

)

of (4.11) such that

y−1(t) = e−t(v−1 + O(Θ(t) |v−1|). Then, there is a solution y−11 of (4.11) such that

y−11 = e−t



c1 + O



|δ|

∞
∫

t

|r(s)| ds







 .
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y−12 = e−t



c2 + O



|δ|

∞
∫

t

|r(s)| e2(t−s)ds







 .

Since u−1 = −y−11 + y−12 is a solution of (4.9) and u′
−1 = y−11 + y−12 :

u−1(t) = e−t



c1 + O



|δ|

∞
∫

t

|r(s)| ds







+ e−t



c2 + O



|δ|

∞
∫

t

|r(s)| e2(t−s)ds









u′
−1(t) = e−t



−c1 + O



|δ|

∞
∫

t

|r(s)| ds







 + e−t



c2 + O



|δ|

∞
∫

t

|r(s)| e2(t−s)ds









for |δ| small enough.

Also for |δ| small enough, there exists a solution u of (4.9) such that

(4.12)

u = −et

(

d1 + O

(

|δ|

∫ ∞

t

|r(s)|e−2(t−s) ds

))

+ et

(

d2 + O

(

|δ|

∫ ∞

t

|r(s) ds|

))

,

and

(4.13)

u′ = et

(

d1 + O

(

|δ|

∫ ∞

t

|r(s)|e−2(t−s) ds

))

+ et

(

d2 + O

(

|δ|

∫ ∞

t

|r(s) ds|

))

.

We remark that although the integrability r(t)e2t ∈ L1 asked for r in Corollary

4.2 to obtain the asymptotic formulae (4.12)–(4.13) is stronger, this conclusion is

valid for every solution u of equation (4.9). Using Corollary 3.3, r needs to be only

integrable, but the conclusion is weaker.

Example 4.4. Consider the ordinary differential equation with maxima

(4.14) u′′ =
2

t2
u + q(t)u + r(t)ũ, t ≥ 1.

The substitution y =

(

y1

y2

)

=

(

u

u′

)

changes equation (4.14) into the ordinary

differential system

y′ =

(

0 1
2
t2

0

)

y + q(t)

(

0 0

1 0

)

y + r(t)

(

0 0

1 0

)

ỹ.

Since, the ordinary differential equation u′′ = 2
t2

u has the fundamental set of solutions

{uj}
2
j=1, where u1(t) = t2 and u2(t) = t−1, then the matrix Θ defined by (4.5) is given

by

Θ(t) =

∞
∫

t

{

|q(s)|

(

1
3
s 1

3s2

1
3
s4 1

3
s

)

+ |r(s)|

(

1
3
s 1

3
s |−h + s|

1
3
s4 s2

3|−h+s|

)}

dt.

If q(s)s4 and r(s)s4 are integrables in the interval I, then there exists a nonnegative

number a big enough such that ρ(Ω) < 1 and then, we can apply Corollary 4.2.
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Proceeding as in example 4.3, we have that for every solution u of equation (4.14),

there exists νi ∈ R, i = 1, 2, such that

u(t) = t2



ν1 + |δ|O





∞
∫

t

(|r| + |q)|



 (s)ds



 |ν1|)

+ t−1



ν2 + O





∞
∫

t

(|r| + |q|)(s)s4ds



 |ν1|



 ,

u′(t) = 2t

(

ν1 + O

(
∫ ∞

t

(|r| + |q|)(s)s4ds

)

|ν1|

)

− t−2(ν2 + O

(
∫ ∞

t

(

|r(s)|

es − h
s2ds

))

|ν2| .

Again the result is valid for every solution u of equation (4.14). The integrability

conditions have been very strong.
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