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ABSTRACT. In this paper, for a third order differential equation, we will establish some new

inequalities of Lyapunov type. These inequalities give implicit lower bounds on the distance between

zeros of a nontrivial solution and also lower bounds for the spacing between zeros of a solution and/or

its derivatives. The main results will be proved by making use of the Hölder inequality and some

generalizations of Opial and Wirtinger type inequalities. Some examples are considered to illustrate

the main results.
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1. INTRODUCTION

In this paper, we will establish some new Lyapunov type inequalities for the

third-order differential equation

(1.1)
(

r(t) |x′′(t)|γ−1
x′′
)′

+ q(t) |x(t)|γ−1 x(t) = 0, t ∈ I,

where we assume that I is a nontrivial interval of reals, γ ≥ 1 and r, q : I → R+ are

nonnegative continuous measurable functions. By a solution of (1.1) on the interval

J ⊆ I, we mean a nontrivial real-valued function x ∈ C2(J), which has the property

that r(t) |x′′(t)|γ−1 x′′(t) ∈ C1(J) and satisfies equation (1.1) on J . We assume that

(1.1) possesses such a nontrivial solution on I.

The nontrivial solution x of (1.1) is said to oscillate or to be oscillatory, if it

has arbitrarily large zeros. By the Sturm Separation Theorem, it is known that the

oscillation is an interval property, i.e., if there exists a sequence of subintervals [αi, βi]

of [t0,∞), as i → ∞, such that for every i there exists a solution of (1.1) that has at

least three zeros in [αi, βi]. For recent oscillation and nonoscillation results for third

order differential equations, we refer to the book [29].

Equation (1.1) is said to be right (left) disfocal in [a, b] (a < b) if the solutions

of (1.1) with x′(a) = 0, x(a) 6= 0 (x′(b) = 0 and x(b) 6= 0) do not have two zeros

(counting multiplicities) in (a, b] ([a, b)). Equation (1.1) is disconjugate in [a, b] if no
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nontrivial solution of (1.1) has more than two zeros (counting multiplicities). So that

if equation (1.1) is disconjugate in [a, b], then it is right disfocal in [c, b] or left disfocal

in [a, c] for every c ∈ (a, b). Equation (1.1) is said to be nonoscillatory on [a,∞) if

there exists c ∈ [a,∞) such that this equation is disconjugate on [c, d] for every d > c.

Lyapunov type inequalities yield implicit lower bounds on the distance between

consecutive zeros of a nontrivial solution x and also give lower bounds for the distance

between zeros of a solution x(t) and/or its derivatives. The best known existence

result of this type for the second order differential equations is due to Lyapunov [14].

This result states that: If x(t) is a solution of the differential equation

(1.2) x′′(t) + q(t)x(t) = 0,

with x(a) = x(b) = 0 (a < b) and x(t) 6= 0 for t ∈ (a, b), then

(1.3)

∫ b

a

q+(t)dt >
4

(b − a)
,

where q is a real valued and continuous on a nontrivial interval of reals and q+ =

max{q(t), 0}. Since the appearance of this inequality various proofs and generaliza-

tions or improvements have appeared in the literature for different types of equations.

For contribution we refer the reader to the papers [4, 11, 13, 18, 19, 20, 21, 23, 24,

25, 26] and the references cited therein.

Our motivation for this paper comes from the papers of Parhi and Panigrahi

[16, 17], Yang [31] and Cakmak [9]. In [16] the authors proved that if x is a nontrivial

solution of the equation

(1.4) x′′′(t) + q(t)x(t) = 0,

with x (a) = 0 = x (b), x (t) 6= 0, t ∈ (a, b) and there exists a d ∈ [a, b] such that

x′′ (d) = 0, then

(1.5)

∫ b

a

|q (t)| dt >
4

(b − a)2 .

They also proved that if x is a solution of (1.4) with x(a) = x(a′) = x(b) = 0 and

x(t) 6= 0 for t ∈ (a, b) and x′′(t) 6= 0 for t ∈ (a, a′), then
∫ b

a

|q (t)| dt >
4

(b − a)2
.

In [17] the authors used the concept of disfocality for third-order differential equations

and gave a better bound than in (1.5) in some cases. In particular they proved that

if x is a solution of (1.4) with x(a) = 0 = x′(a), x(b) = 0 = x′(b), and x(t) 6= 0 for

t ∈ (a, b), then
∫ b

a

|q (t)| dt >
16

(b − a)2
.
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As a special case of the results proved by Yang [31] for higher order differential

equations, one can deduce that if x is a solution of (1.4) with x(a) = x(t2) = x(b) = 0

and x(t) 6= 0 for t ∈ (a, t2) ∪ (t2, b), then
∫ b

a

|q (t)| dt >
9

2(b − a)2
.

Also one can deduce for the results in [31] that if x is a solution of (1.4) with x(a) =

x(t2) = x(b) = 0 and x(t) 6= 0 for t ∈ (a, t2) ∪ (t2, b), then
∫ b

a

|q (t)| dt >
27

2(b − a)2
.

In [9] the author proved that if x is a solution of (1.4) with x(a) = x(t2) = x(b) = 0

and x(t) 6= 0 for t ∈ (a, t2) ∪ (t2, b), then
∫ b

a

|q (t)| dt >
27

4(b − a)2
.

In this paper, we are concerned with the following two problems for the equation

(1.1):

(i) obtain lower bounds for the spacing β−α, where x is a solution of (1.1) satisfying

x(α) = x′(α) = x′′(β) = 0, or x(β) = x′(β) = x′′(α) = 0,

(ii) obtain lower bounds for the spacing β−α, where x is a solution of (1.1) satisfying

x(i)(α) = 0 = x(i)(β) for i = 0, 1, 2.

In particular as a special case of our results, we will prove that if x is a solution

of (1.4) with x(i)(a) = 0 = x(i)(b) for i = 0, 1, 2, and x(t) 6= 0 for t ∈ (a, b), then

(1.6)

∫ b

a

|q(t)|2 dt ≥ 256

(b − a)6
.

The paper is organized as follows: In Section 2, we will prove the main results by

employing a technique (different from the techniques employed in the above mentioned

papers) depends on the applications of the Hölder inequality and some generalizations

of Wirtinger Opial type inequalities. In Section 3, we will discuss some special cases of

the results to derive some results for the equation (1.4) and then give some illustrative

examples. To the best of the author’s knowledge this technique has not been employed

before for the equation (1.1) or even on the special case (1.4).

2. MAIN RESULTS

The Wirtinger type inequality and its general form have been studied in the

literature in various modifications both in the continuous and in the discrete set-

ting. It has an extensive applications on partial differential and difference equations,

harmonic analysis, approximations, number theory, optimization, convex geometry,

spectral theory of differential and difference operators, and others (see [27, 28]). Also
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the inequalities of Opial types are the most important and fundamental integral in-

equalities in the analysis of qualitative properties of solutions of differential equations.

For more details we refer the reader to the book [2]. In the following, we present the

Wirtinger type inequality due to Agarwal et al. [1] and some generalizations of Opial’s

inequality due to Beesack and Das [5] and Agarwal and Pang [2] that we will need in

the proof of the main results.

Theorem 2.1. For I = [α, β], γ ≥ 1 is a positive integer and a positive function

λ ∈ C1(I) with either λ′(t) > 0 or λ′(t) < 0 on I, we have

(2.1)

∫ β

α

λγ+1(t)

|λ′(t)|γ |y′(t)|γ+1
dt ≥ 1

(γ + 1)γ+1

∫ β

α

|λ′(t)| |y(t)|γ+1 dt,

for any y ∈ C1(I) with y(α) = 0 = y(β).

Remark 1. It is clear that Theorem 2.1 is satisfied for any function y satisfies the

assumptions of theorem. So if y(t) = x′(t) with x′(α) = 0 = λ(β) or x′(β) = 0 = λ(α),

or x′(α) = 0 = x′(β) and p(t) = λ′(t) we have the following inequality which gives a

relation between x′(t) and x′′(t) on the interval [α, β].

Corollary 2.1. For I = [α, β], and γ ≥ 1 is a positive integer then we have

(2.2)

∫ β

α

|r(t)| |x′′(t)|γ+1
dt ≥ 1

(γ + 1)γ+1

∫ β

α

|p(t)| |x′(t)|γ+1
dt,

for any x ∈ C2(I) with x′(α) = 0 = r(β), or x′(β) = 0 = r(α) or x′(α) = 0 = x′(β),

where r(t) and p(t) satisfy the equation

(2.3) (r(t)(λ′(t))γ)
′ − (γ + 1)p(t)λγ(t) = 0,

for any function λ(t) satisfyies λ′(t) 6= 0.

Remark 2. For illustration, we apply the inequality (2.2) with x′(t) = sin t in the

interval [0, π]. If p(t) = 1 and γ = 1 and by choosing r(t) = t2, we see the equation

(2.3) is satisfied when λ(t) = t. So one can see that

∫ π

0

t2 cos2 tdt ≃ 5.9531 > 0.392 70 ≃ 1

4

∫ π

0

sin2 tdt.

Note also that the equation (2.3) holds if one chooses r(t) = p(t) = 1, where in this

case

λ(t) = exp

(

γ + 1

γ

)
1

γ+1

t.

In the following, we present the Opial-type inequalities that we will need in the

proof of the main results.
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Theorem 2.2 (Beesack and Das [5]). If xis absolutely continuous on [α, β] with

x(α) = 0 (or x(β) = 0), and x does not change sign in (α, β), then the following

inequality holds

(2.4)

∫ β

α

B(t) |x(t)|m |x′(t)|n dt ≤ K(m, n)

∫ β

α

A(t) |x′(t)|m+n
dt,

where m, n are real numbers such that mn > 0 and m + n > 1, A and B are nonneg-

ative, measurable functions on (α, β) such that

∫ t

α

(A(s))
−1

m+n−1 ds < ∞,

and

(2.5)

K(m, n) :=

(

n

n + m

)
n

n+m

[

∫ β

α

B
n+m

m (t)A− n
m (t)

(
∫ t

α

(A(s))
−1

m+n−1 ds

)m+n−1

dt

]
m

m+n

.

If we replace x(α) = 0 by x(β) = 0, then (2.4) holds where K(m, n) is replaced by

(2.6)

K(m, n) :=

(

n

n + m

)
n

n+m

[

∫ β

α

B
n+m

m (t)A− n
m (t)

(
∫ β

t

(A(s))
−1

m+n−1 ds

)m+n−1

dt

]
m

m+n

.

Theorem 2.3 (Agarwal and Pang [2]). Assume that the functions p and q are nonneg-

ative and measurable on the interval (α, β), m, n are real numbers such that µ/m > 1,

x(t) ∈ C(n−1)[α, β] be such that x(i)(α) = 0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), x(n−1)(t)

absolutely continuous on (α, β) and x(n)(t) does not change sign on (α, β). Then

(2.7)

∫ β

α

q(t)
∣

∣x(k)(t)
∣

∣

l ∣
∣x(n)(t)

∣

∣

m
dt ≤ K1

[
∫ β

α

ϑ(t)
∣

∣x(n)(t)
∣

∣

µ
dt

](l+m)/µ

,

where

(2.8) K1 :=

(

m
l+m

)m
µ

((n − k − 1)!)l

[
∫ β

α

(

qµ(t)ϑ−m(t)
)1/(µ−m)

(P1,k(t))
l(µ−1)/(µ−m)dt

]

µ−m

µ

,

P1,k(t) :=

∫ t

α

(t − s)(n−k−1)µ/(µ−1)(ϑ(s))−1/(µ−1)ds,

If we replace x(i)(α) = 0 by x(i)(β) = 0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), then (2.7) holds

where K1 is replaced by K2 which is given by

(2.9) K2 :=

(

m
l+m

)
m
µ

((n − k − 1)!)l

[
∫ β

α

(

qµ(t)ϑ−m(t)
)1/(µ−m)

(P2,k(t))
l(µ−1)/(µ−m)dt

]

µ−m

µ

.

where

P2,k(t) :=

∫ β

t

(s − t)(n−k−1)µ/(µ−1)(ϑ(s))−1/(µ−1)ds.
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Remark 3. For equation (1.1), we see that if q (t) ≥ 0 and x(t) be an eventually

positive solution of (1.1), then x(t) > 0, x′(t) > 0, x′′(t) > 0, or x(t) > 0, x′(t) < 0,

x′′(t) > 0. Also, if x(t) is a solution of (1.1) with x′(a) = 0, x(a) 6= 0, then x(t) cannot

have a double zero in (a, b]. Indeed, if there is a t1 ∈ (a, b] such that x(t1) = 0 = x′(t1)

and x(t1) > 0, t ∈ [a, t1), then
(

r(t) |x′′(t)|γ−1 x′′(t)
)′

= −q (t) |x(t)|γ−1 x(t) ≤ 0, for

t ∈ [a, t1), and hence r(t) |x′′(t)|γ−1 x′′(t) is monotonic and decreasing. If there exists

a d ∈ (a, t1) such that x′′(d) = 0, then x′′(t) < 0 for t ∈ (d, t1]. Hence, x′(t) is

decreasing in (d, t1], a contradiction because x′(t1) = 0. If x(t) < 0 for t ∈ [a, t1),

then x′′(t) is increasing, and hence, x′′(t) > 0, t ∈ (d, t1]. Thus, x′(t) is increasing.

This is not possible because x′(t1) = 0. Consequently, if q (t) ≥ 0 and (1.1) is not

right disfocal in [a, b], then (1.1) has a solution x(t) with x′(a) = 0, x(a) 6= 0 and x(t)

has only two simple zeros in (a, b].

Now, we are ready to state and prove the main results by employing the inequal-

ities (2.2), (2.4) and (2.7). For simplicity, we introduce the following notations:

(2.10)

K∗
1(Q, r, P1,0) :=

(

1
γ+1

)
1

γ+1

[

∫ β

α

(

Qγ+1(t)
r(t)

)1/γ

(P1,0(t))
γdt

]
γ

γ+1

,

K∗
2 (Q, r, P2,0) := γ

(

1
γ+1

)
1

γ+1

[

∫ β

α

(

Qγ+1(t)
r(t)

)1/γ

(P2,0(t))
γdt

]
γ

γ+1

,

K∗
1 (p, Q) :=

(

2
γ+1

)
2

γ+1

[

∫ β

α
Q

γ+1
γ−1 (t)

p
2

γ−1 (t)

(

∫ t

α

(

1
p(s)

)
1
γ

ds

)γ

dt

]

γ−1
γ+1

,

K∗
2(p, Q) :=

(

2
γ+1

)
2

γ+1

[

∫ β

α
Q

γ+1
γ−1 (t)

p
2

γ−1 (t)

(

∫ β

t

(

1
p(s)

)
1
γ

ds

)γ

dt

]

γ−1
γ+1

,























































where

P1,0(t) :=

∫ t

α

(t − s)γ+1/γ

r1/γ(s)
ds, P2,0(t) :=

∫ β

t

(s − t)γ+1/γ

r1/γ(s)
ds,

and r(t) and p(t) are positive real functions satisfying the equation (2.3) for any

positive function λ(t).

Theorem 2.4. If x is a nontrivial solution of (1.1) which satisfies x(α) = x′(α) =

x′′(β) = 0, then

(2.11) K∗
1(Q, r, P1,0) + γ(γ + 1)γ+1K∗

1 (p, Q) ≥ 1,

where in this case Q(t) =
∫ β

t
q(s)ds. If instead x(β) = x′(β) = x′′(α) = 0, then

(2.12) K∗
2(Q, r, P2,0) + γ(γ + 1)γ+1K∗

2 (p, Q) ≥ 1,

where in this case Q(t) =
∫ t

α
q(s)ds.
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Proof. We prove (2.11). Multiplying (1.1) by x′ and integrating by parts, we have
∫ β

α

(

r(t) |x′(t)|γ−1
x′′(t)

)′
x′(t)dt

= r(t) |x′′(t)|γ−1
x′(t)x′′(t)

∣

∣

∣

β

α
−
∫ β

α

r(t) |x′′(t)|γ+1
dt

= −
∫ β

α

q(t)x′(t) |x(t)|γ dt.

Using the assumptions that x′(α) = x′′(β) = 0, and Q(t) =
∫ β

t
q(s)ds, we get that

(2.13)

∫ β

α

r(t) |x′′(t)|γ+1
dt =

∫ β

α

q(t) |x′(t)| |x(t)|γ dt = −
∫ β

α

Q′(t)x′(t) |x(t)|γ dt.

Integrating by parts the right hand side, we see that
∫ β

α

Q′(t)x′(t) |x(t)|γ dt

= Q(t)x′(t) |x(t)|γ |βα − γ

∫ β

α

Q(t) |x(t)|γ−1 (x′(t))2dt

−
∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt.

Using the assumptions Q(β) = 0 and x′(α) = 0, we see that
∫ β

α

Q′(t)x′(t) |x(t)|γ dt = −γ

∫ β

α

Q(t) |x(t)|γ−1 |x′(t)|2 dt

−
∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt.(2.14)

Substituting (2.14) into (2.13), we have

(2.15)
∫ β

α

r(t) |x′′(t)|γ+1
dt ≤

∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt + γ

∫ β

α

|Q(t)| |x(t)|γ−1 |x′(t)|2 dt.

Applying the inequality (2.7) on the integral
∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt,

with q(t) = |Q(t)|, ϑ(t) = r(t), m = 1, k = 0, l = γ, n = 2 and µ = γ + 1, we get

(note that x′′(t) is of one sign and x(α) = x′(α) = 0) that

(2.16)

∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt ≤ K∗
1 (Q, r, P1,0)

[
∫ β

α

r(t) |x′′(t)|γ+1
dt

]

,

where K∗
1(Q, r, P1,0) is defined as in (2.10). Applying the inequality (2.4) on the

integral

γ

∫ β

α

|Q(t)| |x(t)|γ−1 |x′(t)|2 dt,
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with B(t) = Q(t), A(t) = p(t), m = γ − 1 and n = 2, we see that

(2.17) γ

∫ β

α

|Q(t)| |x(t)|γ−1 |x′(t)|2 dt ≤ γK∗
1(Q, r)

∫ β

α

p(t) |x′(t)|γ+1
dt,

where K∗
1 (Q, r) is defined as in (2.10) where x(α) = 0. Applying the Wirtinger

inequality (2.2) on the integral

∫ β

α

p(t) |x′(t)|γ+1
dt,

we see that

(2.18)

∫ β

α

p(t) |x′(t)|γ+1
dt ≤ (γ + 1)γ+1

∫ β

α

r(t) |x′′(t)|γ+1
dt,

where p(t) and r(t) satisfying the equation (2.3) for any positive function λ(t). Sub-

stituting (2.18) into (2.17), we have

(2.19) γ

∫ β

α

|Q(t)| |x(t)|γ−1 |x′(t)|2 dt ≤ γ(γ + 1)γ+1K∗
1 (Q, r)

∫ β

α

r(t) |x′′(t)|γ+1
dt.

Substituting (2.16) and (2.19) into (2.15) and canceling the term
[

∫ β

α
r(t) |x′′(t)|γ+1 dt

]

,

we have

K∗
1 (Q, r, P1,0) + γ(γ + 1)γ+1K∗

1 (Q, r) ≥ 1,

which is the desired inequality (2.11). The proof of (2.12) is similar using the in-

tegration by parts and the constants K∗
1 (Q, r, P1,0) and K∗

1 (Q, r) are replaced by

K∗
2 (Q, r, P2,0) and K∗

2 (Q, r) which are defined as in (2.10). The proof is complete.

From Theorem 2.4, we have the following result which gives the implicit lower

bound of the spacing between β and α which satisfying x(i)(α) = 0 = x(i)(β) for

i = 0, 1, 2.

Corollary 2.2. If x is a nontrivial solution of (1.1) which satisfies

x(α) = x′(α) = x′′(α) = 0,

x(β) = x′(β) = x′′(β) = 0,

then (2.11) and (2.12) hold.

In the following, we will use the maximum of |Q(t)| on [α, β] and establish a

new formula which is different from (2.11) and (2.12). The results will be proved by

making use of the Yang inequality [30] and the Cheung inequality [12]. The Yang

inequality is given by

(2.20)

∫ β

α

h(t) |x(t)|l |x′(t)|m dt ≤ m

m + l
(β − α)l

∫ β

α

h(t) |x′(t)|m+l
dt,
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where l ≥ 0, m ≥ 1, where h(t) is a positive, bounded and nonincreasing function on

[α, β] and x(α) = 0, (or x(β) = 0). The Cheung inequality is given by

(2.21)

∫ β

α

h(t) |x(t)|l
∣

∣

∣
x

(n)

(t)
∣

∣

∣

m

dt ≤ cn (β − α)nl

∫ β

α

h(t)
∣

∣x(n)(t)
∣

∣

m+l
dt,

where l +m > 1, h(t) is a positive, bounded and nonincreasing function on [α, β] and

x(i)(α) = 0, for i = 0, 1, . . . , n − 1 (or x(i)(β) = 0, for i = 0, 1, . . . , n − 1 ) and

cn =
m

m
l+m

(n!)l (l + m)

[

n(1 − 1
l+m

)

n − 1
l+m

]l(1− 1
l+m

)

.

Theorem 2.5. Assume that r(t) is a nonincreasing function. If x is a nontrivial

solution of (1.1) which satisfies x(α) = x′(α) = x′′(β) = 0, then

(2.22)
(β − α)2γ

r(β)
max
α≤t≤β

|Q(t)|





1

γ + 1

Γ2 ((γ + 2) /2)

Γ (γ + 2)
+

(

2γ

2γ + 1

)
γ2

γ+1



 ≥ 1.

where in this case Q(t) =
∫ β

t
q(s)ds. If instead x(β) = x′(β) = x′′(α) = 0, then

(2.23)
(β − α)2γ

r(β)
max
α≤t≤β

|Q(t)|





1

γ + 1

Γ2 ((γ + 2) /2)

Γ (γ + 2)
+

(

2γ

2γ + 1

)
γ2

γ+1



 ≥ 1.

where in this case Q(t) =
∫ t

α
q(s)ds.

Proof. We prove (2.22). Multiplying (1.1) by x′ and proceeding as in Theorem 2.4 to

obtain
∫ β

α

r(t) |x′′(t)|γ+1
dt ≤

∫ β

α

|Q(t)| |x(t)|γ |x′′(t)| dt

+γ

∫ β

α

Q(t) |x(t)|γ−1 |x′(t)|2 dt(2.24)

≤ max
α≤t≤β

∣

∣

∣

∣

Q(t)

r(β)

∣

∣

∣

∣

∫ β

α

|r(t)| |x(t)|γ |x′′(t)| dt

+γ max
α≤t≤β

|Q(t)|
∫ β

α

|x(t)|γ−1 |x′(t)|2 dt,

where r(t) is a nonincreasing function. Applying the inequality (2.21) on the integral
∫ β

α

|r(t)| |x(t)|γ |x′′(t)| dt,

with h(t) = r(t), m = 1, l = γ ≥ 1 and n = 2, we see that

(2.25)

∫ β

α

|r(t)| |x(t)|γ |x′′(t)| dt ≤
(

2γ

2γ + 1

)
γ2

γ+1

(β − α)2γ

[
∫ β

α

r(t) |x′′(t)|γ+1
dt

]

,

Applying the inequality (2.20) on the integral
∫ β

α

|x(t)|γ−1 |x′(t)|2 dt,
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with l = γ − 1, m = 2, p(t) = 1 and x(α) = 0, we see that

(2.26)

∫ β

α

|x(t)|γ−1 |x′(t)|2 dt ≤ 2

γ + 1
(β − α)γ−1

∫ β

α

|x′(t)|γ+1
dt.

Applying the Wirtinger inequality

(2.27)
(b − a)γ+1Γ2 ((γ + 2) /2)

2Γ (γ + 2)

∫ b

a

(y′(t))γ+1dt ≥
∫ b

a

yγ+1(t)dt,

due to Agarwal and Pang [3] where y(a) = y(b) = 0, with y(t) = x′(t) on the integral
∫ β

α
|x′(t)|γ+1 dt, (note that x′(α) = x′(β) = 0), we see that

(2.28)

∫ β

α

|x′(t)|γ+1
dt ≤ (β − α)γ+1Γ2 ((γ + 2) /2)

2Γ (γ + 2) r(β)

∫ β

α

r(t) |x′′(t)|γ+1
dt,

where r(t) is a nonincreasing function. Substituting (2.28) into (2.26), we have
∫ β

α

|x(t)|γ−1 |x′(t)|2 dt

≤ γ

γ + 1

(β − α)γ+1Γ2 ((γ + 2) /2)

Γ (γ + 2) r(β)
(β − α)2γ

∫ β

α

r(t) |x′′(t)|γ+1
dt.(2.29)

Substituting (2.25) and (2.29) into (2.15) and canceling the term
[
∫ β

α

r(t) |x′′(t)|γ+1
dt

]

,

we have

(β − α)2γ

r(β)
max
α≤t≤β

|Q(t)|





1

γ + 1

Γ2 ((γ + 2) /2)

Γ (γ + 2)
+

(

2γ

2γ + 1

)
γ2

γ+1



 ≥ 1,

which is the desired inequality (2.22). The proof of (2.23) is similar. The proof is

complete.

In the following, we apply an inequality due to Boyd [6] and the Hölder inequality

to obtain results similar to Theorem 2.1. The Boyd inequality states that: if x ∈
C1[a, b] with x(a) = 0 (or x(b) = 0), then

(2.30)

∫ b

a

|x(t)|ν |x′(t)|η dt ≤ N(ν, η, s)(b − a)ν

(
∫ b

a

|x′(t)|s dt

)

ν+η

s

,

where ν > 0, s > 1, 0 ≤ η < s,

(2.31)

N(ν, η, s) :=
(s − η) νν

(s − 1)(ν + η) (I(ν, η, s))ν σν+η−s, σ :=

{

ν(s − 1) + (s − η)

(s − 1)(ν + η)

}
1
s

,

and

I(ν, η, s) :=

∫ 1

0

{

1 +
s(η − 1)

s − η
t

}−(ν+η+sν)/sν

[1 + (η − 1)t]t1/ν−1dt.
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Note that the inequality (2.30) has immediate application to the case where x(a) =

x(b) = 0. Choose c = (a + b)/2 and apply (2.30) to [a, c] and [c, b] and then add we

obtain

(2.32)

∫ b

a

|x(t)|ν |x′(t)|η dt ≤ N(ν, η, s)

(

b − a

2

)ν (∫ b

a

|x′(t)|s dt

)

ν+η

s

,

where N(ν, η, s) is defined as in (2.31).

Theorem 2.6. Assume that r(t) is a nonincreasing function. If x is a nontrivial

solution of (1.1) which satisfies x(i)(α) = x(i)(β) = 0 for i = 0, 1, 2, then

(2.33) (β − α)(2γ+1)(γ+1)

∫ β

α

|q(t)|γ+1 dt ≥ (2Γ (γ + 2) r(β))γ+1

(

Γ
(

γ+2
2

))2(γ+1)
Nγ(γ + 1, γ+1

γ
, γ + 1)

.

Proof. Proceeding as in Theorem 2.4 by multiplying (1.1) by x′, integrating by parts

and using the assumptions that x′′(α) = x′′(β) = 0, to get that

(2.34)

∫ β

α

r(t) |x′′(t)|γ+1
dt =

∫ β

α

q(t) |x′(t)| |x(t)|γ dt.

Applying the Hölder inequality

∫ b

a

|f(t)g(t)| dt ≤
[
∫ b

a

|f(t)|l dt

]

1
l
[
∫ b

a

|g(t)|k dt

]

1
k

,

on the term
∫ β

α
q(t) |x′(t)| |x(t)|γ dt with l = γ + 1 and k = (γ + 1)/γ, we see that

∫ β

α

|q(t)| |x(t)|γ |x′(t)| dt ≤
(
∫ β

α

|q(t)|γ+1 dt

)

1
γ+1

×
(
∫ β

α

|x(t)|(γ+1) |x′(t)|
γ+1

γ dt

)

γ

γ+1

.(2.35)

Applying the Boyd inequality (2.32) with ν = (γ + 1), η = (γ + 1) /γ and s = γ + 1,

we obtain
∫ β

α

|x(t)|(γ+1) |x′(t)|
γ+1

γ dt

≤ N(γ + 1,
γ + 1

γ
, γ + 1)(

β − α

2
)(γ+1)

(
∫ b

a

|x′(t)|γ+1
dt

)

(γ+1)
γ

.(2.36)

Substituting into (2.35), we have
∫ β

α

|q(t)| |x′(t)| |x(t)|γ dt

≤
(

N(γ + 1,
γ + 1

γ
, γ + 1)(

β − α

2
)(γ+1)

)
γ

γ+1
(
∫ β

α

|q(t)|γ+1 dt

)

1
γ+1

×
∫ b

a

|x′(t)|γ+1
dt.(2.37)
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Applying the Wirtinger inequality (2.27) with y(t) = x′(t) on the integral
∫ β

α
|x′(t)|γ+1 dt,

(note that x′(α) = x′(β) = 0), we see that

(2.38)

∫ β

α

|x′(t)|γ+1
dt ≤ (β − α)γ+1Γ2 ((γ + 2) /2)

2Γ (γ + 2) r(β)

∫ β

α

r(t) |x′′(t)|γ+1
dt,

where r(t) is a nonincreasing function. Substituting (2.38) into (2.37), we have

∫ β

α

|q(t)| |x′(t)| |x(t)|γ dt

≤
(

N(γ + 1,
γ + 1

γ
, γ + 1)(β − α)(γ+1)

(

1

2

)γ+1
)

γ

γ+1

× (β − α)γ+1Γ2 ((γ + 2) /2)

2Γ (γ + 2) r(β)

(
∫ β

α

|q(t)|γ+1 dt

)

1
γ+1

×
∫ β

α

r(t) |x′′(t)|γ+1
dt.(2.39)

Substituting (2.39) into (2.34), we obtain

(β − α)(2γ+1)(γ+1)

∫ β

α

|q(t)|γ+1 dt ≥

(

2γ+1Γ(γ+2)r(β)
Γ2((γ+2)/2)

)γ+1

Nγ(γ + 1, γ+1
γ

, γ + 1)
,

which is the desired inequality (2.33). The proof is complete.

The inequality (2.30) has immediate application when η = s, to the case where

x(a) = x(b) = 0. In this case the equation (2.30) becomes

(2.40)

∫ b

a

|x(t)|ν |x′(t)|η dt ≤ L(ν, η)(
b − a

2
)ν

(
∫ b

a

|x′(t)|η dt

)

ν+η

η

,

where

(2.41) L(ν, η) :=
ηνη

ν + η

(

ν

ν + η

)
ν
η





Γ
(

η+1
η

+ 1
ν

)

Γ
(

η+1
η

)

Γ
(

1
ν

)





ν

,

and Γ is the Gamma function. Follows the proof of Theorem 2.6 and applying the

inequality (2.40) instead of the inequality (2.30), we have the following result.

Theorem 2.7. If x is a nontrivial solution of (1.1) which satisfies x(i)(α) = x(i)(β) =

0 for i = 0, 1, 2, then

(2.42) (β − α)(2γ+1)(γ+1)

∫ β

α

|q(t)|γ+1 dt ≥ (2γ+1Γ (γ + 2) r(β))
γ+1

(

Γ
(

γ+2
2

))2(γ+1)
Lγ(γ + 1, γ + 1)

,

where L is defined as in (2.41).
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3. DISCUSSIONS AND EXAMPLES

In this section, we present some special cases of the results obtained in Section 2

and also give some illustrative examples. We begin by Theorem 2.1 and consider the

case when r(t) = 1, and p(t) = 1. Using the definitions of the functions P1,0 and P2,0,

and putting r(t) = 1, we see after integration that

P1,0(t) :=

∫ t

α

(t − s)(γ+1)/γds =
γ

2γ + 1
(t − α)(2γ+1)/γ ,

P2,0(t) :=

∫ β

t

(t − s)(γ+1)/γds =
γ

2γ + 1
(β − t)(2γ+1)/γ .

This gives us that

K∗
1 (Q, 1, P1,0) = u1, K∗

2 (Q, 1, P2,0) = u2, K∗
1 (1, Q) = u∗

1, K∗
2(1, Q) = u∗

2,

where

u1 :=

(

γ

2γ + 1

)
γ2

γ+1
(

1

γ + 1

)
1

γ+1
[
∫ β

α

Q
γ+1

γ (t)(t − α)(2γ+1)dt

]

γ

γ+1

,

u2 :=

(

γ

2γ + 1

)
γ2

γ+1
(

1

γ + 1

) 1
γ+1
[
∫ β

α

Q
γ+1

γ (t)(β − t)(2γ+1)dt

]

γ

γ+1

,

u∗
1 :=

(

2

γ + 1

)
2

γ+1
[
∫ β

α

Q
γ+1
γ−1 (t) (t − α)γ dt

]

γ−1
γ+1

,

u∗
2 :=

(

2

γ + 1

)
2

γ+1
[
∫ β

α

Q
γ+1
γ−1 (t) (β − t)γ dt

]

γ−1
γ+1

.

This leads to the following results for the equation

(3.1)
(

|x′′(t)|γ−1
x′′
)′

+ q(t) |x(t)|γ−1 x(t) = 0, α ≤ t ≤ β.

Theorem 3.1. If x is a nontrivial solution of (3.1) which satisfies x(α) = x′(α) =

x′′(β) = 0, then

(3.2) u1 + γ(γ + 1)γ+1u∗
1 ≥ 1, Q(t) =

∫ β

t

q(s)ds.

If instead x(β) = x′(β) = x′′(α) = 0, then

(3.3) u2 + γ(γ + 1)γ+1u∗
2 ≥ 1, Q(t) =

∫ t

α

q(s)ds.

Remark 4. By using the maximum of |Q| on [α, β] in (3.2) and (3.3) and integrating,

we have the following result.
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Corollary 3.1. If x is a nontrivial solution of (3.1) which satisfies x(α) = x′(α) =

x′′(β) = 0, then

1 <





(β − α)2γ

γ + 1

(

1

2

)
γ

γ+1
(

γ

2γ + 1

)
γ2

γ+1

+ γ(γ + 1)γ2
2

γ+1 (β − α)γ−1





× max
α≤t≤β

∣

∣

∣

∣

∫ β

t

q(s)ds

∣

∣

∣

∣

.(3.4)

If instead x(β) = x′(β) = x′′(α) = 0, then

1 <





(β − α)γ

γ + 1

(

1

2

)
γ

γ+1
(

γ

2γ + 1

)
γ2

γ+1

+ γ(γ + 1)γ2
2

γ+1 (β − α)γ−1





× max
α≤t≤β

∣

∣

∣

∣

∫ t

α

q(s)ds

∣

∣

∣

∣

.(3.5)

Remark 5. When γ = 1, the conditions (3.4) and (3.5) reduce to

max
α≤t≤β

∣

∣

∣

∣

∫ β

t

q(s)ds

∣

∣

∣

∣

>
1

√
44

88
(β − α)2 + 4

,

when x(α) = x′(α) = x′′(β) = 0, and

max
α≤t≤β

∣

∣

∣

∣

∫ t

α

q(s)ds

∣

∣

∣

∣

>
1

√
44

88
(β − α)2 + 4

,

when x(β) = x′(β) = x′′(α) = 0, where x(t) is a solution of the equation

(3.6) x′′′(t) + q(t)x(t) = 0, α ≤ t ≤ β.

From Theorem 2.6, when γ = 1 and r(t) = 1, we have the following result.

Corollary 3.2. If x is a solution of (3.6) which satisfies x(α) = x′(α) = x′′(β) = 0,

then

max
α≤t≤β

∣

∣

∣

∣

∫ β

t

q(s)ds

∣

∣

∣

∣

≥ 1
(

1
16

π + 1
3

√
2
√

3
)

(β − α)2
.

If instead x(β) = x′(β) = x′′(α) = 0, then

max
α≤t≤β

∣

∣

∣

∣

∫ t

α

q(s)ds

∣

∣

∣

∣

≥ 1
(

1
16

π + 1
3

√
2
√

3
)

(β − α)2 .

where in this case Q(t) =
∫ t

α
q(s)ds.

As a special case of Theorem 2.7, if r(t) = 1 and γ = 1 and γ = 2, we have the

following result respectively.

Corollary 3.3. If x is a nontrivial solution of (3.6) which satisfies x(i)(α) = x(i)(β) =

0 for i = 0, 1, 2, then

(3.7)

∫ β

α

|q(t)|2 dt ≥ 256

(β − α)6
.
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Corollary 3.4. If x is a nontrivial solution of (1.1) which satisfies x(i)(α) = x(i)(β) =

0, for i = 0, 1, 2, then

(3.8)

∫ β

α

|q(t)|3 dt ≥ 4194 304

19 683

π12

(

Γ
(

2
3

))18

1

(β − α)15
.

One can also use Theorems 2.2–2.6 to get similar results and due to the limited

space the details are let to the reader. The following examples illustrate the results.

Example 1. Consider the equation

(3.9) x′′′(t) + λ cos2 (t)x(t) = 0, 0 ≤ t ≤ π,

where λ ≥ 1 is a positive constant. If x is a solution of (3.9) with x(i)(0) = x(i)(π) = 0

for i = 0, 1, 2, then

λ2

∫ π

0

cos4 tdt = λ23π

8
≥ 256

π6
, for λ ≥ 1,

and (3.7) holds if λ ≥ 1.

Example 2. Consider the equation

(3.10)
(

(x′′(t))
2
)′

+ λ cos2 (t) x2(t) = 0, 0 ≤ t ≤ π,

where λ ≥ 1 is a positive constant. If x is a solution of (3.10) with x(i)(0) = x(i)(π) = 0

for i = 0, 1, 2, then

λ3

∫ π

0

cos6 tdt = λ3 5

16
π ≥ 4194 304

19 683π3

1
(

Γ
(

2
3

))18 , for λ ≥ 1,

and (3.8) holds if λ ≥ 1. Note that

5

16
π − 4194 304

19 683

π12

(

Γ
(

2
3

))18

1

π15
= 0.952 42 > 0.
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[15] Z. Opial, Sur uné inegalité, Ann. Polon. Math., 8: 92–32, 1960.

[16] N. Parhi and S. Panigrahi, On Liapunov-type inequality for third order differential equations,

J. Math. Anal. Appl., 233: 445–460, 1999.

[17] N. Parhi and S. Panigrahi, Disfocality and Liapunov-type inequalities for third-order differen-

tial equations, Comp. Math. Appl., 16:227–233, 2003.

[18] B. G. Pachpatte, A note on Lyapunov type inequalities, Indian J. Pure Appl. Math., 21: 45–49,

1990.

[19] 6. B. G. Pachpatte, On the zeros of solutions of certain differential equations, Demonstratio

Mathematica, 25: 825–833, 1992.

[20] B. G. Pachpatte, A Lyapunov type inequality for a certain second-order differential equation,

Proc. Nat. Acad. Sci. India, 64: 69–73, 1994.

[21] B. G. Pachpatte, An inequality suggested by Lyapunov’s inequality, Centre Rech. Math. Pures

Neuchatel Chambery, Fac. Ser. I, 26: 1–4, 1995.

[22] B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Geor-

gian Math. J., 4: 139–148, 1997.

[23] B. G. Pachpatte, Inequalities related to the zeros of solutions of certain second order differential

equations, Facta Univ. (NIS) Ser. Math. Infor., 16: 35–44, 2001.

[24] W. T. Patula, On the distance between zeros, Proc. Amer. Math. Soc., 52: 247–251, 1975.

[25] S. Panigrahi, Lyapunov-type integral inequalities for certain higher-order differential equations,

Elect. J. Diff. Eqns., 2009: 1–14, 2009.

[26] W. T. Reid, A generalized Lyapunov inequality, J. Diff. Eqns., 13: 182–196, 1973.

[27] S. H. Saker, Applications of Wirtinger inequalities on the distribution of zeros of the Riemann

Zeta-function, J. Ineq. Appl. (accepted).

[28] S. H. Saker, Lyapunov type inequalities for a second order differential equation with a damping

term, Ann. Polon. Math. (accepted).

[29] S. H. Saker, Oscillation Theory of Delay Differential and Difference Equations, Verlag D.

Muler, Germany, 2010.

[30] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad., 42: 78–83, 1966.

[31] X. Yang, On a Liapunov-type inequality for a certain higher-order differential equations, Appl.

Math. Comp., 134: 307–317, 2003.


