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1. INTRODUCTION

Essential maps for single valued maps was introduced by Granas [2] and extended

by Precup [6]. These notions were considered by O’Regan in [3], see also [1, 4] for

particular cases. In this paper we present the notions of d-essential and d-L-essential

maps in a very general setting and we establish a homotopy property for both d-

essential and d-L-essential maps.

Let X and Y be Hausdorff topological spaces. Given a class X of maps, X(X, Y )

denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X, and

Xc the set of finite compositions of maps in X. We let

F(X) = {Z : FixF 6= ∅ for all F ∈ X(Z, Z)}

where FixF denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;

(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ R
n : ‖x‖ ≤ 1}.

We say F ∈ U
k
c (X, Y ) if for any compact subset K of X there is a G ∈ Uc(K, Y )

with G(x) ⊆ F (x) for each x ∈ K.

Recall Uk
c is closed under compositions. The class U

k
c contains almost all the well

known maps in the literature (see [5] and the references therein). It is also possible
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to consider more general maps (see [5]) and in this paper we will consider a class of

maps which we will call A.

2. d-ESSENTIAL MAPS

Let E be a normal topological space and U an open subset of E.

We will consider a class A of maps. The following condition will be assumed:

(2.1)











for Hausdorff topogical spaces X1, X2 and X3,

if F ∈ A(X1, X3) and f ∈ C(X2, X1),

then F ◦ f ∈ A(X2, X3).

Definition 2.1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is an

upper semicontinuous compact map; here U denotes the closure of U in E and K(E)

denotes the family of nonempty compact subsets of E.

Definition 2.2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with x /∈ F (x) for x ∈ ∂U ;

here ∂U denotes the boundary of U in E.

For any map F ∈ A(U, E) let F ⋆ = I × F : U → K(U × E), with I : U → U

given by I(x) = x, and let

(2.2) d :
{

(F ⋆)−1 (B)
}

∪ {∅} → Ω

be any map with values in the nonempty set Ω; here B =
{

(x, x) : x ∈ U
}

.

Definition 2.3. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there exists

a map Ψ : U × [0, 1] → K(E) with Ψ ∈ A(U × [0, 1], E), x 6∈ Ψt(x) for any x ∈ ∂U

and t ∈ [0, 1], Ψ1 = F and Ψ0 = G (here Ψt(x) = Ψ(x, t)).

Remark 2.4. Definition 2.3 corrects a small mistake in the definition of ∼= in [4].

Remark 2.5. The results below (with (2.1) removed) also hold true if we use the

following definition of ∼=. Let F, G ∈ A∂U (U, E). We say F ∼= G in A∂U(U, E)

if there exists a upper semicontinuous compact map Ψ : U × [0, 1] → K(E) with

Ψ( . , η( . )) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0,

x 6∈ Ψt(x) for any x ∈ ∂U and t ∈ [0, 1], Ψ1 = F and Ψ0 = G.

The following condition will be assumed:

(2.3) ∼= is an equivalence relation in A∂U(U, E).

Definition 2.6. Let F ∈ A∂U (U, E) with F ⋆ = I × F . We say F ⋆ : U → K(U × E)

is d-essential if for every map J ∈ A∂U(U, E) with J⋆ = I × J and J |∂U = F |∂U and

J ∼= F in A∂U(U, E) we have that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅). Otherwise

F ⋆ is d-inessential. It is easy to check that this means either d
(

(F ⋆)−1 (B)
)

= d(∅)

or there exists a map J ∈ A∂U (U, E) with J⋆ = I × J and J |∂U = F |∂U and J ∼= F

in A∂U(U, E) such that d
(

(F ⋆)−1 (B)
)

6= d
(

(J⋆)−1 (B)
)

.
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Remark 2.7. If F ⋆ is d-essential then

∅ 6= (F ⋆)−1 (B) = {x ∈ U : (x, F (x)) ∩ (x, x) 6= ∅},

and this together with x /∈ F (x) for x ∈ ∂U implies that there exists x ∈ U with

(x, x) ∈ F ⋆(x) (i.e. x ∈ F (x)).

Theorem 2.8. Let E be a normal topological space, U an open subset of E, B =

{(x, x) : x ∈ U}, d a map defined in (2.2) and assume (2.1) and (2.3) hold. Suppose

F ∈ A∂U (U, E). Then the following are equivalent:

(i). F ⋆ = I × F : U → K(U × E) is d-inessential;

(ii). d
(

(F ⋆)−1 (B)
)

= d(∅) or there exists a map G ∈ A∂U (U, E) with G⋆ = I × G

and G ∼= F in A∂U(U, E) such that d
(

(F ⋆)−1 (B)
)

6= d
(

(G⋆)−1 (B)
)

.

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). If d
(

(F ⋆)−1 (B)
)

=

d(∅) then trivially (i) is true. Next suppose there exists a map G ∈ A∂U(U, E) with

G⋆ = I × G and G ∼= F in A∂U(U, E) such that d
(

(F ⋆)−1 (B)
)

6= d
(

(G⋆)−1 (B)
)

.

Let H : U × [0, 1] → K(E) be a map with H ∈ A(U × [0, 1], E), x 6∈ Ht(x) for

any x ∈ ∂U and t ∈ [0, 1], H0 = F and H1 = G (here Ht(x) = H(x, t)). Let

H⋆ : U × [0, 1] → K(U × E) be given by

H⋆(x, λ) = (x, H(x, λ)).

Consider

D =
{

x ∈ U : (x, x) ∈ H⋆(x, t) for some t ∈ [0, 1]
}

.

If D = ∅ then in particular (H⋆(x, 0))−1 (B) = ∅ i.e. (F ⋆)−1 (B) = ∅ and as a result

d
(

(F ⋆)−1 (B)
)

= d(∅), so F ⋆ is d-inessential. Next suppose D 6= ∅. Note D is closed

in E. To see this let {xn}
∞

n=1 ⊆ D with xn → x ∈ U . Now there exists tn ∈ (0, 1]

with

xn ∈ H(xn, tn) for each n ∈ {1, 2, . . .}.

Without loss of generality assume tn → t ∈ [0, 1] so (xn, tn) → (x, t). Now since

H : U × [0, 1] → K(E) is a upper semicontinuous map we have x ∈ H(x, t). As

a result (x, x) ∈ H⋆(x, t), so D is closed. Also since x /∈ Ht(x) for x ∈ ∂U and

t ∈ [0, 1] then D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with

µ(∂U) = 0 and µ(D) = 1. Define a map Rµ : U → K(E) by Rµ(x) = H(x, µ(x)) =

Hµ(x)(x) = H ◦ τ(x) and let R⋆
µ = I × Rµ; here τ : U → U × [0, 1] is given by τ(x) =

(x, µ(x)). Notice Rµ ∈ A(U, E) (note (2.1) and H ∈ A(U × [0, 1], E)) and notice

Rµ|∂U = H0|∂U = F |∂U since µ(∂U) = 0. Thus Rµ ∈ A∂U(U, E) (note x 6∈ Ht(x) for

any x ∈ ∂U and t ∈ [0, 1]) with Rµ|∂U = F |∂U .

Note also since µ(D) = 1 that
(

R⋆
µ

)

−1
(B) =

{

x ∈ U : (x, x) ∩ (x, H(x, µ(x)) 6= ∅
}

=
{

x ∈ U : (x, x) ∩ (x, H(x, 1) 6= ∅
}

= (G⋆)−1 (B)
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so d
(

(

R⋆
µ

)

−1
(B)

)

= d
(

(G⋆)−1 (B)
)

. Thus d
(

(F ⋆)−1 (B)
)

6= d
(

(

R⋆
µ

)

−1
(B)

)

.

We now claim

(2.4) Rµ
∼= F in A∂U(U, E).

Let Q : U × [0, 1] → K(E) be given by Q(x, t) = H(x, tµ(x)) = H ◦ g(x, t) where

g : U × [0, 1] → U × [0, 1] is given by g(x, t) = (x, tµ(x)). Note Q ∈ A(U × [0, 1], E)

(note (2.1) and H ∈ A(U × [0, 1], E)), Q0 = F and Q1 = Rµ. Also x /∈ Qt(x) for

x ∈ ∂U and t ∈ [0, 1] since if there exists t ∈ [0, 1] and x ∈ ∂U with x ∈ Qt(x) then

x ∈ H(x, tµ(x)) so x ∈ D and as a result µ(x) = 1 i.e. x ∈ H(x, t), a contradiction.

Thus (2.4) holds.

Consequently F ⋆ is d-inessential (take J = Rµ in the definition of d-inessential).

Remark 2.9. From the proof above (with a minor modification in two places) we

see that the result in Theorem 2.8 (with (2.1) removed) holds if the definition of ∼= is

as in Remark 2.5.

Remark 2.10. We note that the map being compact in the class A(U, E) plays no

role in the proof of Theorem 2.8 so we can remove it from the definition if we wish at

this stage. Its when we try to construct examples of essential maps that we usually

need maps to satisfy some type of compactness condition and the most popular maps

in the literature are compact or condensing maps.

Now Theorem 2.8 immediately yields the following continuation theorem.

Theorem 2.11. Let E be a normal topological space, U an open subset of E, B =

{(x, x) : x ∈ U}, d a map defined in (2.2) and assume (2.1) and (2.3) hold. Suppose

Φ and Ψ are two maps in A∂U(U, E) with Φ⋆ = I × Φ and Ψ⋆ = I × Ψ and with

Φ ∼= Ψ in A∂U(U, E). The Φ⋆ is d-inessential if and only if Ψ⋆ is d-inessential.

Proof. Assume Φ⋆ is d-inessential. Then (see Theorem 2.8) either d
(

(Φ⋆)−1 (B)
)

=

d(∅) or there exists a map Q ∈ A∂U(U, E) with Q⋆ = I ×Q and Q ∼= Φ in A∂U(U, E)

such that d
(

(Φ⋆)−1 (B)
)

6= d
(

(Q⋆)−1 (B)
)

.

Suppose first that d
(

(Φ⋆)−1 (B)
)

= d(∅). There are two cases to consider, either

d
(

(Ψ⋆)−1 (B)
)

6= d(∅) or d
(

(Ψ⋆)−1 (B)
)

= d(∅).

Case (1). Suppose d
(

(Ψ⋆)−1 (B)
)

6= d(∅).

Then d
(

(Φ⋆)−1 (B)
)

6= d
(

(Ψ⋆)−1 (B)
)

and we know Φ ∼= Ψ in A∂U(U, E). Now

Theorem 2.8 (with F = Ψ and G = Φ) guarantees that Ψ⋆ is d-inessential.

Case (2). Suppose d
(

(Ψ⋆)−1 (B)
)

= d(∅).

Then by definition Ψ⋆ is d-inessential.
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Next suppose there exists a map Q ∈ A∂U(U, E) with Q⋆ = I ×Q and Q ∼= Φ in

A∂U(U, E) such that d
(

(Φ⋆)−1 (B)
)

6= d
(

(Q⋆)−1 (B)
)

. Note (since ∼= is an equivalence

relation in A∂U(U, E)) also that Q ∼= Ψ in A∂U(U, E). There are two cases to consider,

either d
(

(Q⋆)−1 (B)
)

6= d
(

(Ψ⋆)−1 (B)
)

or d
(

(Q⋆)−1 (B)
)

= d
(

(Ψ⋆)−1 (B)
)

.

Case (1). Suppose d
(

(Q⋆)−1 (B)
)

6= d
(

(Ψ⋆)−1 (B)
)

.

Then Theorem 2.8 (with F = Ψ and G = Q) guarantees that Ψ⋆ is d-inessential.

Case (2). Suppose d
(

(Q⋆)−1 (B)
)

= d
(

(Ψ⋆)−1 (B)
)

.

Then d
(

(Φ⋆)−1 (B)
)

6= d
(

(Ψ⋆)−1 (B)
)

and we know Φ ∼= Ψ in A∂U(U, E). Now

Theorem 2.8 (with F = Ψ and G = Φ) guarantees that Ψ⋆ is d-inessential.

Thus in all cases Ψ⋆ is d-inessential.

Similarly if Ψ⋆ is d-inessential then Φ⋆ is d-inessential.

Remark 2.12. The result in Theorem 2.11 (with (2.1) removed) holds if the definition

of ∼= is as in Remark 2.5.

Remark 2.13. If we discuss the existence of fixed points the function d is

d(Q) =

{

1 if ∅ 6= Q ⊆ U

0 if Q = ∅

whereas if we discuss degree theory the values of d are usually integers which can

be obtained by means of degree. Recall [3] a map F ∈ A∂U(U, E) is essential in

A∂U(U, E) if for any map J ∈ A∂U(U, E) with J |∂U = F |∂U and with J ∼= F in

A∂U(U, E) we have that there exists a x ∈ U with x ∈ F (x). Notice a map F ∈

A∂U(U, E) is essential in A∂U (U, E) implies that F ⋆ = I × F is d1-essential where

d1(Q) =

{

1 if ∅ 6= Q ⊆ U

0 if Q = ∅.

To see this suppose F ∈ A∂U(U, E) is essential in A∂U (U, E). Then for any J ∈

A∂U(U, E) with J |∂U = F |∂U and with J ∼= F in A∂U(U, E) there exists x ∈ U

with x ∈ J(x). Thus (x, x) ∈ (x, J(x)) ≡ J⋆(x) and so (J⋆)−1 (B) 6= ∅ (in par-

ticular (F ⋆)−1 (B) 6= ∅). Hence d1

(

(J⋆)−1 (B)
)

= 1 and d1

(

(F ⋆)−1 (B)
)

= 1 so

d1

(

(J⋆)−1 (B)
)

= d1

(

(F ⋆)−1 (B)
)

6= d1(∅).

We note that (2.3) could be a strong assumption in Theorem 2.11 (and Theo-

rem 2.8). However one can obtain an applicable result even if (2.3) is not assumed.

To establish this we will consider new d-essential maps (a subset of those d-essential

maps in Definition 2.6).

Definition 2.14. Let F ∈ A∂U (U, E) with F ⋆ = I ×F . We say F ⋆ : U → K(U ×E)

is d-essential if for every map J ∈ A∂U(U, E) with J⋆ = I × J and J |∂U = F |∂U we

have that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).
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Theorem 2.15. Let E be a normal topological space, U an open subset of E, B =

{(x, x) : x ∈ U}, d a map defined in (2.2) and assume (2.1) holds. Suppose G ∈

A∂U(U, E), H : U×[0, 1] → K(E) with H ∈ A(U×[0, 1], E) and assume the following

hold:

(2.5) H(x, 0) = G(x) for x ∈ U

(2.6) G⋆ = I × G : U → K(U × E) is d-essential

and

(2.7) x /∈ H(x, t) for x ∈ ∂U and t ∈ (0, 1].

Let F (x) = H(x, 1) for x ∈ U and F ⋆ = I × F . Then

d
(

(F ⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

6= d(∅).

Remark 2.16. From the proof below we see that we can remove (2.1) and remove

H : U × [0, 1] → K(E) with H ∈ A(U × [0, 1], E) in the statement of Theorem 2.15

if we assume H : U × [0, 1] → K(E) is a upper semicontinuous compact map with

H( . , η( . )) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0.

Proof. Let H⋆ : U × [0, 1] → K(U × E) be given by

H⋆(x, λ) = (x, H(x, λ)).

Consider

D =
{

x ∈ U : (x, x) ∈ H⋆(x, t) for some t ∈ [0, 1]
}

.

Notice D 6= ∅ since for t = 0, H⋆(x, 0) = G⋆(x) and G⋆ is d-essential (i.e. in

particular there exists x ∈ U with (x, x) ∈ (x, G(x)) = H⋆(x, 0)). Also (see Theorem

2.8) D is closed in E. Next notice (2.7), with G ∈ A∂U(U, E), guarantees that

D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D) = 1. Define a map Rµ : U → K(E) by Rµ(x) = H(x, µ(x)) = Hµ(x)(x) =

H ◦ τ(x) and let R⋆
µ = I × Rµ; here τ : U → U × [0, 1] is given by τ(x) = (x, µ(x)).

Notice (as in Theorem 2.8) that Rµ ∈ A(U, E) and Rµ|∂U = G|∂U since µ(∂U) =

0. Thus Rµ ∈ A∂U (U, E) with Rµ|∂U = G|∂U and since G⋆ is d-essential we have

d
(

(

R⋆
µ

)

−1
(B)

)

= d
(

(G⋆)−1 (B)
)

6= d(∅). Also notice (see Theorem 2.8) since µ(D) =

1 that d
(

(

R⋆
µ

)

−1
(B)

)

= d
(

(F ⋆)−1 (B)
)

. Thus d
(

(F ⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

6=

d(∅).

Remark 2.17. We now note that Theorem 2.15 holds if we use the definition of

d-essential (see (2.6)) in Definition 2.6 instead of in Definition 2.14. Now as in the

proof above we have Rµ ∈ A∂U(U, E) with Rµ|∂U = G|∂U . We now show Rµ
∼=

G in A∂U(U, E). To see this let Q : U × [0, 1] → K(E) be given by Q(x, t) =

H(x, tµ(x)) = H◦g(x, t) where g : U×[0, 1] → U×[0, 1] is given by g(x, t) = (x, tµ(x)).
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Note Q ∈ A(U × [0, 1], E), Q1 = Rµ and Q0 = G. Also x /∈ Qt(x) for x ∈ ∂U

and t ∈ [0, 1] since if there exists t ∈ [0, 1] and x ∈ ∂U with x ∈ Qt(x) then

x ∈ H(x, tµ(x)) so x ∈ D and as a result µ(x) = 1 i.e. x ∈ H(x, t), a contradiction.

Thus Rµ
∼= G in A∂U (U, E) and since G⋆ is d-essential (as in Definition 2.14) we

have d
(

(

R⋆
µ

)

−1
(B)

)

= d
(

(G⋆)−1 (B)
)

6= d(∅). We conclude now as in the proof of

Theorem 2.15.

The result also holds if the definition of ∼= is as in Remark 2.5 (if we use the

assumption in Remark 2.16).

Remark 2.18. As one would expect we note that if in Theorem 2.15 the map F ∈

A∂U(U, E) satisfies the condition

(2.8)























for any map J ∈ A∂U(U, E) with J |∂U = F |∂U there exists a

map Q : U × [0, 1] → K(E) with Q ∈ A(U × [0, 1], E) and

with x 6∈ Qt(x) for any x ∈ ∂U and t ∈ [0, 1] (here Qt(x) = Q(x, t))

and Q0 = G and Q1 = J,

then F ⋆ is d-essential.

To see this let J ∈ A∂U(U, E) be any map with J |∂U = F |∂U . We must show if

J⋆ = I × J then

(2.9) d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).

Let Q be the map described in (2.8) for the map J . Now Theorem 2.15 (with F , G

and H) implies

(2.10) d
(

(F ⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

6= d(∅).

Also Theorem 2.15 (with J , G and Q) implies

(2.11) d
(

(J⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

6= d(∅).

Now (2.10) and (2.11) give (2.9) so F ⋆ is d-essential.

From the above we also note that (2.8) could be replaced by (use Remark 2.16)

the condition

(2.12)































for any map J ∈ A∂U(U, E) with J |∂U = F |∂U there exists a upper

semicontinuous compact map Q : U × [0, 1] → K(E) with

Q( . , η( . )) ∈ A(U, E) for any continuous map η : U → [0, 1]

with η(∂U) = 0, x 6∈ Qt(x) for any x ∈ ∂U and t ∈ [0, 1]

and Q0 = G and Q1 = J.

Remark 2.19. Remark 2.13 holds in this situation as well (with the obvious new

essential map definition).
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We now show that the ideas in this section can be applied to other natural

situations. Let E be a normal topological vector space, Y a topological vector space,

and U an open subset of E. Also let L : dom L ⊆ E → Y be a linear (not necessarily

continuous) single valued map; here dom L is a vector subspace of E. Finally T :

E → Y will be a linear, continuous single valued map with L + T : dom L → Y an

isomorphism (i.e. a linear homeomorphism); for convenience we say T ∈ HL(E, Y ).

A map F : U → 2Y is said to be a (L, T ) upper semicontinuous compact map if

(L + T )−1F : U → K(X) is a upper semicontinuous compact map.

Definition 2.20. Let F : U → 2Y . We say F ∈ A(U, Y ; L, T ) if (L + T )−1F ∈

A(U, E).

Definition 2.21. We say F ∈ A∂U (U, Y ; L, T ) if F ∈ A(U, Y ; L, T ) with Lx /∈ F (x)

for x ∈ ∂U ∩ dom L.

For any map F ∈ A(U, Y ; L, T ) let F ⋆ = I × (L + T )−1[F + T ] : U → K(U ×E),

with I : U → U given by I(x) = x, and let

(2.13) d :
{

(F ⋆)−1 (B)
}

∪ {∅} → Ω

be any map with values in the nonempty set Ω; here B =
{

(x, x) : x ∈ U
}

.

Definition 2.22. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T ) if

there exists a map Ψ : U × [0, 1] → 2Y with Ψ ∈ A(U × [0, 1], Y ; L, T ), Lx 6∈ Ψt(x)

for any x ∈ ∂U ∩ dom L and t ∈ [0, 1], Ψ1 = F and Ψ0 = G (here Ψt(x) = Ψ(x, t)).

Remark 2.23. The results below (with (2.1) removed) also hold true if we use the fol-

lowing definition of ∼=. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T )

if there exists a (L, T ) upper semicontinuous compact map Ψ : U × [0, 1] → 2Y with

(L + T )−1Ψ( . , η( . )) ∈ A(U, E) for any continuous function η : U → [0, 1] with

η(∂U) = 0, Lx 6∈ Ψt(x) for any x ∈ ∂U ∩ dom L and t ∈ [0, 1], Ψ1 = F and Ψ0 = G.

The following condition will be assumed:

(2.14) ∼= is an equivalence relation in A∂U(U, Y ; L, T ).

Definition 2.24. Let F ∈ A∂U(U, Y ; L, T ) with F ⋆ = I × (L + T )−1[F + T ]. We

say F ⋆ : U → K(U × E) is d-L-essential if for every map J ∈ A∂U (U, Y ; L, T ) with

J⋆ = I × (L + T )−1[J + T ] and J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T ) we have

that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅). Otherwise F ⋆ is d-L-inessential. It is

easy to check that this means either d
(

(F ⋆)−1 (B)
)

= d(∅) or there exists a map

J ∈ A∂U(U, Y ; L, T ) with J⋆ = I × (L + T )−1[J + T ] and J |∂U = F |∂U and J ∼= F in

A∂U(U, Y ; L, T ) such that d
(

(F ⋆)−1 (B)
)

6= d
(

(J⋆)−1 (B)
)

.
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Remark 2.25. If F ⋆ is d-L-essential then

∅ 6= (F ⋆)−1 (B) = {x ∈ U : (x, (L + T )−1[F + T ](x)) ∩ (x, x) 6= ∅},

and this together with Lx /∈ F (x) for x ∈ ∂U ∩ dom L implies that there exists

x ∈ U ∩ dom L with (x, x) ∈ F ⋆(x) (i.e. Lx ∈ F (x)).

Theorem 2.26. Let E be a normal topological vector space, Y a topological vector

space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map,

T ∈ HL(E, Y ), d a map defined in (2.13) and assume (2.1) and (2.14) hold. Suppose

F ∈ A∂U (U, Y ; L, T ). Then the following are equivalent:

(i). F ⋆ = I × (L + T )−1[F + T ] : U → K(U × E) is d-L-inessential;

(ii). d
(

(F ⋆)−1 (B)
)

= d(∅) or there exists a map G ∈ A∂U(U, Y ; L, T ) with G⋆ =

I × (L + T )−1[G + T ] and G ∼= F in A∂U(U, Y ; L, T ) such that d
(

(F ⋆)−1 (B)
)

6=

d
(

(G⋆)−1 (B)
)

.

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). If d
(

(F ⋆)−1 (B)
)

=

d(∅) then trivially (i) is true. Next suppose there exists a map G ∈ A∂U(U, Y ; L, T )

with G⋆ = I×(L+T )−1[G+T ] and G ∼= F in A∂U(U, Y ; L, T ) such that d
(

(F ⋆)−1 (B)
)

6=

d
(

(G⋆)−1 (B)
)

. Let H : U × [0, 1] → 2Y be a map with H ∈ A(U × [0, 1], Y ; L, T ),

Lx 6∈ Ht(x) for any x ∈ ∂U ∩ dom L and t ∈ [0, 1], H0 = F and H1 = G (here

Ht(x) = H(x, t)). Let H⋆ : U × [0, 1] → K(U × E) be given by

H⋆(x, λ) = (x , (L + T )−1[H + T ](x, λ)).

Consider

D =
{

x ∈ U : (x, x) ∈ H⋆(x, t) for some t ∈ [0, 1]
}

.

Notice that it is immediate that

D =
{

x ∈ U ∩ dom L : (x, Lx) ∈ (x, H(x, t)) for some t ∈ [0, 1]
}

.

If D = ∅ then in particular (H⋆(x, 0))−1 (B) = ∅ i.e. (F ⋆)−1 (B) = ∅ and as a result

d
(

(F ⋆)−1 (B)
)

= d(∅), so F ⋆ is d-L-inessential. Next suppose D 6= ∅. Note (see

the argument in Theorem 2.8) that D is closed in E. Also since Lx /∈ Ht(x) for

x ∈ ∂U ∩ dom L and t ∈ [0, 1] then D ∩ ∂U = ∅. Thus there exists a continuous

map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define a map Rµ : U → 2Y by

Rµ(x) = H(x, µ(x)) = Hµ(x)(x) = H ◦ τ(x) and let R⋆
µ = I × (L + T )−1[Rµ + T ]; here

τ : U → U × [0, 1] is given by τ(x) = (x, µ(x)). Notice Rµ ∈ A(U, Y ; L, T ) (note (2.1)

and H ∈ A(U × [0, 1], Y ; L, T )) and notice Rµ|∂U = H0|∂U = F |∂U since µ(∂U) = 0.

Thus Rµ ∈ A∂U(U, Y ; L, T ) (note Lx 6∈ Ht(x) for any x ∈ ∂U ∩ dom L and t ∈ [0, 1])

with Rµ|∂U = F |∂U .
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Note also since µ(D) = 1 that
(

R⋆
µ

)

−1
(B) =

{

x ∈ U : (x, x) ∩ (x, (L + T )−1[H + T ](x, µ(x)) 6= ∅
}

=
{

x ∈ U : (x, x) ∩ (x, (L + T )−1[H + T ](x, 1) 6= ∅
}

= (G⋆)−1 (B)

so d
(

(

R⋆
µ

)

−1
(B)

)

= d
(

(G⋆)−1 (B)
)

. Thus d
(

(F ⋆)−1 (B)
)

6= d
(

(

R⋆
µ

)

−1
(B)

)

.

We now claim

(2.15) Rµ
∼= F in A∂U(U, Y ; L, T ).

Let Q : U × [0, 1] → 2Y be given by Q(x, t) = H(x, tµ(x)) = H ◦ g(x, t) where

g : U×[0, 1] → U×[0, 1] is given by g(x, t) = (x, tµ(x)). Note Q ∈ A(U×[0, 1], Y ; L, T )

(note (2.1) and H ∈ A(U × [0, 1], Y ; L, T )), Q0 = F and Q1 = Rµ. Also Lx /∈ Qt(x)

for x ∈ ∂U ∩ dom L and t ∈ [0, 1] since if there exists t ∈ [0, 1] and x ∈ ∂U ∩ dom L

with Lx ∈ Qt(x) then Lx ∈ H(x, tµ(x)) so x ∈ D and as a result µ(x) = 1 i.e.

Lx ∈ H(x, t), a contradiction. Thus (2.15) holds.

Consequently F ⋆ is d-L-inessential (take J = Rµ in the definition of d-L-inessential).

Remark 2.27. From the proof above we see that the result in Theorem 2.26 (with

(2.1) removed) holds if the definition of ∼= is as in Remark 2.23.

Essentially the same reasoning as in Theorem 2.11 establishes the following result.

Theorem 2.28. Let E be a normal topological vector space, Y a topological vector

space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map,

T ∈ HL(E, Y ), d a map defined in (2.13) and assume (2.1) and (2.14) hold. Suppose

Φ and Ψ are two maps in A∂U(U, Y ; L, T ) with Φ⋆ = I × (L + T )−1[Φ + T ] and

Ψ⋆ = I × (L + T )−1[Ψ + T ] and with Φ ∼= Ψ in A∂U(U, Y ; L, T ). The Φ⋆ is d-L-

inessential if and only if Ψ⋆ is d-L-inessential.

Remark 2.29. There is also an analogue of Theorem 2.15 for the maps in A∂U(U, Y ;

L, T ); we leave the details to the reader.
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