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ABSTRACT. In this paper, we give some sufficient conditions for Ψ-(uniform) stability of the

trivial solution of the nonlinear differential systems and of a nonlinear Volterra integro-differential

system.

AMS (MOS) Subject Classification. 45M10, 45J05.

1. PRELIMINARIES

Akinyele [2] introduced the notion of Ψ-stability of degree k with respect to a

function Ψ ∈ C(R+, R+), increasing and differentiable on R+ and such that Ψ(t) ≥ 1

for t ≥ 0 and limt→∞ Ψ(t) = b, b ∈ [1,∞). The fact that the function Ψ is bounded

does not enable a deeper analysis, of the asymptotic properties of the solutions of a

differential equations, than the notion of stability in sense Lyapunov.

Constantin [6] introduced the notions of degree of stability and degree of bound-

edness of solutions of an ordinary differential equation, with respect to a continuous

positive and nondecreasing function Ψ : R+ → R+. Some criteria for these notions

are proved there too.

Morchalo [14] introduced the notions of Ψ-stability, Ψ-uniform stability, and Ψ-

asymptotic stability of trivial solution of the nonlinear system x′ = f(t, x). Several

new and sufficient conditions for mentioned types of stability are proved for the lin-

ear system x′ = A(t)x, in this paper Ψ is a scalar continuous function. Diamandescu

[16] give some sufficient conditions for Ψ-(uniform) stability of the nonlinear Volterra
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integro-differential system x′ = A(t)x+
∫ t

0
F (t, s, x(s))ds, in this paper Ψ is a matrix

function. Furthermore, sufficient conditions are given for the uniform Lipschitz sta-

bility of the system x′ = f(t, x) + g(t, x). For more results, see [3–5, 7–13, 15, 17, 18]

and the references therein.

The purpose of our paper is to prove sufficient conditions for Ψ-(uniform) stability

of trivial solution of the nonlinear system

(1.1) y′ = f(t, y) + g(t, y)

and the nonlinear Volterra integro-differential system

(1.2) z′ = f(t, z) +

∫ t

0

F (t, s, z(s))ds,

which can be seen as perturbed systems of

(1.3) x′ = f(t, x)

or the variational system

(1.4) u′ = fx(t, x(t, t0, x0))u

associated with system (1.3). Where f, g ∈ C(R+×R
n,Rn), F ∈ C(D×R

n,Rn), D =

{(t, s) ∈ R
2 : 0 ≤ s ≤ t < ∞}, and f(t, 0) = g(t, 0) = F (t, s, 0) = 0 for (t, s) ∈ D,

moreover, fx = ∂f/∂x exists and continuous on R+×R
n, and x(t, t0, x0) is the solution

of (1.3) with x(t0, t0, x0) = x0, t0 ≥ 0. The fundamental matrix solution Φ(t, t0, x0)

of (1.4) is given by [7]

(1.5) Φ(t, t0, x0) =
∂

∂x0

(x(t, t0, x0)).

Using the nonlinear variation of constants formula of Alekseev [1], the solutions of

the perturbed systems (1.1) and (1.2) with the same initial values as (1.3) are related

by

(1.6) y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ(t, s, y(s, t0, xo))g(s, y(s, t0, xo))ds

and

(1.7) z(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ(t, s, z(s, t0, xo))

∫ s

0

F (s, u, z(u, t0, xo))du ds.

We investigate conditions under which the trivial solutions of systems (1.1), (1.2)

or (1.3), (1.4) are Ψ-(uniformly) stable on R+. Here Ψ is a matrix function whose

introduction permits us obtaining a mixed behavior for the components of solutions.

In this paper, the definition of Ψ-(uniform) stability is the same as in [16]. Let

R
n denote the Euclidean n-space. For x = (x1, x2, x3, . . . , xn)T ∈ R

n, let ‖x‖ =

max{|x1|, |x2|, . . . , |xn|} be the norm of x. For an n × n matrix A = (aij), we define

the norm |A| = sup‖x‖≤1 ‖Ax‖. Let Ψ = diag[Ψ1,Ψ2, . . . ,Ψn], Ψi ∈ C(R+, (0,∞)),
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i = 1, 2, . . . , n. For Ψi = 1, i = 1, 2, . . . , n, we obtain the notions of classical stability

and uniform-stability, If we replace Ψ with Ψk, k ∈ Z\{0, 1}, we obtain stability and

uniform-stability of degree k with respect to Ψ in [6].

2. Ψ-STABILITY OF THE SYSTEMS

Theorem 2.1. If there exist a continuous function h(t, s) : D → (0,∞) and the

constants K > 0, M > 0 such that:

||Ψ(t)f(s, x)|| ≤ h(t, s)||Ψ(s)x||, lim sup
t→∞

∫ t

0

h(t, s)ds = M

and |Ψ(t)Ψ−1(s)| ≤ K for 0 ≤ s ≤ t, then, the trivial solution of system (1.3) is

Ψ-uniformly stable on R+.

Proof. Since x(t, t0, x0) = x0 +
∫ t

t0
f(s, x(s, t0, x0))ds, it follows that:

||Ψ(t)x(t, t0, x0)|| ≤ ||Ψ(t)x0|| +

∫ t

t0

||Ψ(t)f(s, x(s, t0, x0))||ds

≤ ||Ψ(t)Ψ−1(t0)Ψ(t0)x0|| +

∫ t

t0

h(t, s)||Ψ(s)x(s, t0, x0)||ds

≤ K||Ψ(t0)x0|| +

∫ t

t0

h(t, s)||Ψ(s)x(s, t0, x0)||ds,

this implies by Lipovan’s inequality ([17]) that

‖Ψ(t)x(t, t0, x0)‖ ≤ K‖Ψ(t0)x0‖e
R

t

t0
h(t,s)ds

≤ KeM‖Ψ(t0)x0‖,

hence the conclusion of the theorem follows.

Theorem 2.2. If there exist two continuous functions h(t, s) : D → (0,∞), ω(u) :

R+ → (0,∞) and the constants K > 0, M > 0 such that:

|Ψ(t)Ψ−1(s)| ≤ K and ||Ψ(t)f(s, x)|| ≤ h(t, s)ω
(

||Ψ(s)x||
)

for 0 ≤ s ≤ t,

where ψ(u) is nondecreasing submultiplicative function and

Ω−1

[

Ω(K) +
ω(||Ψ(t0)x0||)

||Ψ(t0)x0||
lim sup

t→∞

∫ t

θ

h(t, s)ds

]

= M <∞ for all 0 ≤ t0 ≤ θ,

where Ω(u) =
∫ u

u0

1
ω(s)

ds, u0 ∈ (0,∞) and Ω(∞) = ∞, then, the trivial solution of

system (1.3) is Ψ-uniformly stable on R+.

Proof. Since x(t, t0, x0) = x0 +
∫ t

t0
f(s, x(s, t0, x0))ds, it follows that:

||Ψ(t)x(t, t0, x0)|| ≤ ||Ψ(t)x0|| +

∫ t

t0

||Ψ(t)f(s, x(s, t0, x0))||ds

≤ K||Ψ(t0)x0|| +

∫ t

t0

h(t, s)ω(||Ψ(s)x(s, t0, x0)||)ds



566 F. MENG, L. LI, AND Y. BAI

or, equivalently,

||Ψ(t)x(t, t0, x0)||

||Ψ(t0)x0||
≤ K +

∫ t

t0

h(t, s)

||Ψ(t0)x0||
ω
(

||Ψ(t0)x0||
||Ψ(s)x(s, t0, x0)||

||Ψ(t0)x0||

)

ds

≤ K +
ω(||Ψ(t0)x0||)

||Ψ(t0)x0||

∫ t

t0

h(t, s)ω
( ||Ψ(s)x(s, t0, x0)||

||Ψ(t0)x0||

)

ds

this implies by Lipovan’s inequality that

‖Ψ(t)x(t, t0, x0)‖ ≤ ‖Ψ(t0)x0‖Ω
−1

[

Ω(K) +
ω(‖Ψ(t0)x0‖)

‖Ψ(t0)x0‖

∫ t

t0

h(t, s)ds

]

≤M‖Ψ(t0)x0‖,

hence the conclusion of the Theorem follows.

Remark 2.3. Theorems 2.1, 2.2 are based on the fact x(t, t0, x0) = x0+
∫ t

t0
f(s, x(s, t0,

x0))ds if x(t, t0, x0) is a solution of (1.3) which satisfies x(t0, t0, x0) = x0.

Now we give the conditions for Ψ-(uniform) stability of trivial solution of the

linear system (1.4), which can be expressed in terms of the fundamental matrix for

(1.4).

Theorem 2.4. Let Φ(t, t0, x0) be a fundamental matrix of (1.4). Then

(a) The trivial solution of (1.4) is Ψ-stable on R+ if and only if there exists a

function k : R+ → (0,∞) such that |Ψ(t)Φ(t, t0, x0)| ≤ k(t0) for t ≥ t0 and for

||Ψ(t0)x0|| sufficiently small.

(b) The trivial solution of (1.4) is Ψ-uniformly stable on R+ if and only if there exists

a positive constant K such that |Ψ(t)Φ(t, s, x0)Ψ
−1(s)| ≤ K for all 0 ≤ s ≤ t

and for ||Ψ(s)x0|| sufficiently small.

Proof. Let u(t, t0, x0) = Φ(t, t0, x0)x0 is the unique solution of (1.4) satisfying

u0 = u(t0, t0, x0) = x0.

Suppose first that the trivial solution of (1.4) is Ψ-stable on R+. Then, for ε = 1

and t0 ∈ R+. There exists δ > 0 such that any solution u(t, t0, x0) of (1.4) which

satisfies ||Ψ(t0)u0|| = ||Ψ(t0)x0|| < δ, there exists and satisfies

||Ψ(t)u(t, t0, x0)|| = ||Ψ(t)Φ(t, t0, x0)Ψ
−1(t0)Ψ(t0)x0|| < 1 for t ≥ t0.

Let v ∈ R
n be such that ||v|| ≤ 1. If we take x0 = δ

2
Ψ−1(t0)v, then ||Ψ(t0)x0|| < δ.

Hence, ||Ψ(t)Φ(t, t0, x0)Ψ
−1(t0)

δ
2
v|| < 1 for t ≥ t0. Therefore, |Ψ(t)Φ(t, t0, x0)Ψ

−1(t0)| ≤
2
δ
, it is equivalently that |Ψ(t)Φ(t, t0, x0)| ≤

2
δ
|Ψ(t0)| := k(t0) for t ≥ t0.

Suppose next that there exists a function k : R+ → (0,∞) such that |Ψ(t)Φ(t, t0,

x0)| ≤ k(t0) for t ≥ t0. For ε > 0 and t0 ∈ R+, let δ(ε, t0) = εk−1(t0)|Ψ
−1(t0)|

−1. For

||Ψ(t0)u0|| = ||Ψ(t0)x0|| < δ and t ≥ t0, we have

||Ψ(t)u(t, t0, x0)|| = ||Ψ(t)Φ(t, t0, x0)Ψ
−1(t0)Ψ(t0)x0|| < ε.
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Thus, the trivial solution of (1.4) is Ψ-stable on R+. Part (b) is proved similarly and

omit its proof. The proof is complete.

Remark 2.5. We generalize Diamandescu’s result [16] from linear case to nonlinear

case. In the Ψ-stability of [16], our positive function k has reduced to a positive

constant K. In fact, the fundamental matrix solution Φ(t, t0, x0) of a linear system is

independent of x0, moreover, Φ(t, t0) = Y (t)Y −1(t0), then we can give the conditions

for Ψ-(uniform) stability of linear case in terms of Y (t).

Theorem 2.6. Let Φ(t, t0, x0) be a fundamental matrix of (1.4). If there exist two

constants p ≥ 1, M > 0, and a continuous function ϕ : R+ → (0,∞), a continuous

matrix function Φ1(t) defined on R+, such that:

|Ψ(t)Φ(t, s, x)Ψ−1(s)| ≤ |Ψ(t)Φ1(t)Φ
−1
1 (s)Ψ−1(s)| for 0 ≤ s ≤ t and for all x ∈ R

n.

Then, the trivial solution of system (1.4) is Ψ-stable on R+ if one of the following

conditions satisfied:

(i)
∫ t

0
ϕ(s)|Ψ(t)Φ1(t)Φ

−1
1 (s)Ψ−1(s)|pds ≤M , for all t ≥ 0;

(ii)
∫ t

0
ϕ(s)|Φ−1

1 (s)Ψ−1(s)Ψ(t)Φ1(t)|
pds ≤M , for all t ≥ 0.

Proof. Following the proof of Diamandescu [16] Theorem 3.3, we get |Ψ(t)Φ1(t)| ≤

K1 for t ≥ 0, where K1 is a positive constant. Therefore,

|Ψ(t)Φ(t, t0, x0)| = |Ψ(t)Φ(t, t0, x0)Ψ
−1(t0)Ψ(t0)|

≤ |Ψ(t)Φ1(t)Φ
−1
1 (t0)Ψ

−1(t0)| · |Ψ(t0)|

≤ K1|
(

Ψ(t0)Φ1(t0)
)−1

| · |Ψ(t0)| := k(t0)

for t ≥ t0. Then, the theorem follows immediately from the Theorem 2.4. The proof

of case (ii) is similar to case (i) and we omit it.

In the following we consider the Ψ-(uniform) stabilities of the systems (1.1), (1.2)

and (1.3).

Since f(t, 0) = 0, there exists a sufficiently small δ > 0 such that:

(H0) f(t, x) = fx(t, 0)x + p(t, x) for ||x|| < δ, where p(t, x) ∈ C(R+ × R
n,Rn) and

||p(t, x)|| = o(||x||)(x→ 0).

Theorem 2.7. Let Φ(t, t0, x0) be a fundamental matrix of (1.4) and assume that

Hypothesis (H0) is satisfied. If there exist a continuous function ϕ : R+ → (0,∞)

and a constant M > 0 such that:
∫ t

0

ϕ(s)|Ψ(t)Φ(t, s, 0)Ψ−1(s)|ds ≤ M, for all t ≥ 0

and ||Ψ(t)p(t, x)|| ≤ q(t)||Ψ(t)x||, supt≥0
q(t)
ϕ(t)

< 1
M

, where q(t) is a nonnegative con-

tinuous function on R+. Then, the trivial solution of system (1.3) is Ψ-stable on R+

provided that the trivial solution of system (1.4) is Ψ-stable on R+.
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Proof. From the last assumption we conclude that there exists a function k :

R+ → (0,∞) such that |Ψ(t)Φ(t, t0, 0)| ≤ k(t0) for t ≥ t0. The solution of (1.3) with

initial condition x(t0, t0, x0) = x0 is unique and defined for all t ≥ 0, by (H0) and the

variation of constants formula, we have

(2.1) x(t, t0, x0) = Φ(t, t0, 0)x0 +

∫ t

t0

Φ(t, s, 0)p(s, x(s, t0, x0))ds, t ≥ t0.

Hence,

||Ψ(t)x(t, t0, x0)|| ≤ ||Ψ(t)Φ(t, t0, 0)Ψ−1(t0)Ψ(t0)x0||

+

∫ t

t0

ϕ(s)|Ψ(t)Φ(t, s, 0)Ψ−1(s)|
||Ψ(s)p(s, x(s, t0, x0))||

ϕ(s)
ds

≤ k(t0)|Ψ
−1(t0)| · ||Ψ(t0)x0||

+

∫ t

t0

ϕ(s)|Ψ(t)Φ(t, s, 0)Ψ−1(s)|
q(s)

ϕ(s)
||Ψ(s)x(s, t0, x0)||ds

for t ≥ t0. If we put b = supt≥0
q(t)
ϕ(t)

< 1
M

, then,

||Ψ(t)x(t, t0, x0)|| ≤ k(t0)|Ψ
−1(t0)| · ||Ψ(t0)x0|| +Mb sup

t≥t0

||Ψ(t)x(t, t0, x0)||,

hence,

||Ψ(t)x(t, t0, x0)|| ≤
k(t0)

1 −Mb
|Ψ−1(t0)| · ||Ψ(t0)x0||

and the conclusion of the theorem follows.

Corollary 2.8. Suppose that all the assumptions of Theorem 2.7 hold, then the con-

clusion of the Theorem may be replaced by “the trivial solution of system (1.1) is Ψ-

uniform stable on R+ provided that the trivial solution of system (1.3) is Ψ-uniform

stable on R+.”

Proof. Because the trivial solution of system (1.3) is Ψ-uniform stable on R+,

there exists a positive constant K such that |Ψ(t)Φ(t, t0, 0)Ψ−1(t0)| ≤ K, it is to

say that k(t0)|Ψ
−1(t0)| can be replaced with K in the proof of Theorem 2.7, this

completed the proof.

Theorem 2.9. Assume that Hypothesis (H0) is satisfied and

||Ψ(t)p(t, x)|| ≤ q(t)||Ψ(t)x||, L =

∫ ∞

0

q(t)dt <∞,

where q(t) is a nonnegative continuous function on R+. Then, the trivial solution of

system (1.3) is Ψ-uniform stable on R+ provided that the trivial solution of system

(1.4) is Ψ-uniform stable on R+.

Proof. Let Φ(t, t0, x0) be a fundamental matrix for system (1.4), from the

last assumption, there exists a constant K > 0 such that |Ψ(t)Φ(t, s, x0)Ψ
−1(s)| ≤
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K for all 0 ≤ s ≤ t. Suppose the solution of (1.3) with initial condition x(t0, t0, x0) =

x0 is x(t, t0, x0), from (2.1) we get

||Ψ(t)x(t, t0, x0)|| ≤ ||Ψ(t)Φ(t, t0, 0)Ψ−1(t0)Ψ(t0)x0||

+

∫ t

t0

||Ψ(t)Φ(t, s, 0)Ψ−1(s)Ψ(s)p(s, x(s, t0, x0))||ds

≤ K||Ψ(t0)x0|| +K

∫ t

t0

q(s)||Ψ(s)x(s, t0, x0)||ds

for t ≥ t0 ≥ 0. By Gronwall’s inequality, we have

||Ψ(t)x(t, t0, x0)|| ≤ K||Ψ(t0)x0||e
K

R

t

t0
q(s)ds

≤ KeKL||Ψ(t0)x0||.

This shows that the conclusion of the theorem is true.

Theorem 2.10. Let Φ(t, t0, x0) be a fundamental matrix of (1.4) and assume that

the trivial solution of system (1.3) is Ψ-stable on R+, moreover,

||Ψ(t)Φ(t, s, y)g(s, y)|| ≤ h(t, s)||Ψ(s)y|| and L = lim sup
t→∞

∫ t

0

h(t, s)ds <∞,

where h is a continuous nonnegative function on D. Then, the trivial solution of

system (1.1) is Ψ-stable on R+.

Proof. Because the trivial solution of system (1.3) is Ψ-stable on R+, then for

ε > 0 and t0 ∈ R+, there exists a δ = δ(ε, t0) > 0 such that: ||Ψ(t)x(t, t0, x0)|| <

e−Lε for t ≥ t0 and for ||Ψ(t0)x0|| < δ. The solution of (1.1) with initial condition

y(t0, t0, x0) = x0 is unique and defined for all t ≥ 0, by (1.6) we get

||Ψ(t)y(t, t0, x0)|| ≤ ||Ψ(t)x(t, t0, x0)||

+

∫ t

t0

||Ψ(t)Φ(t, s, y(s, t0, x0))g(s, y(s, t0, x0))||ds

< e−Lε+

∫ t

t0

h(t, s)||Ψ(s)y(s, t0, x0)||ds

for t ≥ t0 ≥ 0 and for all x0 which satisfied ||Ψ(t0)x0|| < δ. By Gronwall’s inequality,

we have

||Ψ(t)y(t, t0, x0)|| < e−Lεe
R

t

t0
h(t,s)ds

≤ ε.

This shows that the conclusion of the theorem is true.

From the proof of the Theorem 2.10, we have the following corollary.

Corollary 2.11. Suppose that all the assumptions of Theorem 2.10 hold except that

“the trivial solution of system (1.3) is Ψ-stable on R+” is replaced with “the trivial

solution of system (1.3) is Ψ-uniform stable on R+”, then the trivial solution of system

(1.1) is Ψ-uniform stable on R+.
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Before we give the Ψ-(uniform) stability of trivial solution of system (1.2), we

state a hypothesis which is natural in studying the Ψ-(uniform) system (1.2).

(H1) For all t0 ≥ 0, x0 ∈ R
n and ρ > 0, if ||Ψ(t0)x0|| < ρ, then there exists a unique

solution z(t) on R+ of system (1.2) such that z(t0, t0, x0) = x0 and ||Ψ(t)z(t, t0, x0)|| ≤

ρ for all t ∈ [0, t0].

Theorem 2.12. Assume that Hypothesis (H1) is satisfied. Let Φ(t, t0, x0) be a funda-

mental matrix of (1.4) and assume that the trivial solution of system (1.3) is Ψ-stable

on R+, moreover,

||Ψ(t)Φ(t, s, z)F (s, u, z)|| ≤ h(s, u)||Ψ(u)z|| for (t, s) ∈ D and for all z ∈ R
n,

L =
∫∞

0

∫ s

0
h(s, u)du ds < ∞, where h is a continuous nonnegative function on D.

Then, the trivial solution of system (1.2) is Ψ-stable on R+.

Proof. Suppose ε > 0 is arbitrarily chosen. Because the trivial solution of

system (1.3) is Ψ-stable on R+, then for 1
2
e−Lε > 0 and t0 ∈ R+, there exists a δ1 =

δ1(ε, t0) > 0 such that: ||Ψ(t)x(t, t0, x0)|| <
1
2
e−Lε for t ≥ t0 and for ||Ψ(t0)x0|| < δ1.

From (H1), for δ2(ε) = 1
2L
e−Lε, let t0 ≥ 0 and x0 ∈ R

n be such that z(t0, t0, x0) = x0

and ||Ψ(t)z(t, t0, x0)|| ≤ δ2(ε) for all t ∈ [0, t0]. Choose δ = min{δ1, δ2}, then the

solution of (1.2) with initial condition z(t0, t0, x0) = x0 is unique and defined for all

t ≥ 0, by (1.7), for t ≥ t0 we get

||Ψ(t)z(t, t0, x0)|| ≤ ||Ψ(t)x(t, t0, x0)||

+

∫ t

t0

∫ s

0

||Ψ(t)Φ(t, s, z(s, t0, x0))F (s, u, z(u, t0, x0))||du ds

<
1

2
e−Lε+

∫ t

t0

∫ s

0

h(s, u)||Ψ(u)z(u, t0, x0)||du ds

≤
1

2
e−Lε+

∫ t

t0

∫ t0

0

h(s, u)||Ψ(u)z(u, t0, x0)||du ds

+

∫ t

t0

∫ s

t0

h(s, u)||Ψ(u)z(u, t0, x0)||du ds

≤ e−Lε+

∫ t

t0

∫ s

t0

h(s, u)||Ψ(u)z(u, t0, x0)||du ds

Define Q(t) =
∫ t

t0

∫ s

t0
h(s, u)||Ψ(u)z(u, t0, x0)||du ds, then ||Ψ(t)z(t, t0, x0)|| < e−Lε +

Q(t), Q(t) is nonnegative , continuously differentiable and increasing on [t0,∞). For

t ≥ t0, we have

Q′(t) =

∫ t

t0

h(t, u)||Ψ(u)z(u, t0, x0)||du

≤

∫ t

t0

h(t, u)
[

e−Lε+Q(u)
]

du
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≤ e−Lε

∫ t

t0

h(t, u)du+Q(t)

∫ t

t0

h(t, u)du

or, equivalently,

Q′(t) −Q(t)

∫ t

t0

h(t, u)du ≤ e−Lε

∫ t

t0

h(t, u)du

Multiplying the above inequality by e
−

R

t

t0

R

s

t0
h(s,u)du ds

, we get

d

dt

(

Q(t)e
−

R

t

t0

R

s

t0
h(s,u)du ds

)

≤ e−Lε
d

dt

(

−e
−

R

t

t0

R

s

t0
h(s,u)du ds

)

.

Consider now the integral on the interval [t0, t] to obtain

Q(t)e
−

R

t

t0

R

s

t0
h(s,u)du ds

≤ e−Lε(1 − e
−

R

t

t0

R

s

t0
h(s,u)du ds

).

So, Q(t) ≤ e−Lε(e
R

t

t0

R

s

t0
h(s,u)du ds

− 1), and hence ||Ψ(t)z(t, t0, x0)|| ≤ e−Lε + Q(t) ≤

e−Lεe
R

t

t0

R

s

t0
h(s,u)du ds

≤ ε for t ≥ t0. Then the trivial solution of system (1.2) is Ψ-stable

on R+.

From the proof of the Theorem 2.12, we have the following corollary.

Corollary 2.13. Suppose that all the assumptions of Theorem 2.12 hold except that

“the trivial solution of system (1.3) is Ψ-stable on R+” is replaced with “the trivial

solution of system (1.3) is Ψ-uniform stable on R+”, then the trivial solution of system

(1.2) is Ψ-uniform stable on R+.

This is because that the δ1 in the proof of the Theorem 2.12 will be independent

of t0 if the trivial solution of system (1.3) is Ψ-uniform stable on R+.

3. EXAMPLES

Example 3.1. Consider the nonlinear differential equation

(3.1) y′ = −y + e−t sin tmin{y2, y}.

In the equation (3.1), f(t, y) = −y, g(t, y) = e−t sin tmin{y2, y}, equation (3.1)

can be seen as perturbed equation of

(3.2) x′ = −x,

and the variational system through (t0, x0) associated with system (3.2) is (3.2) itself,

it’s fundamental matrix solution φ(t, t0, x0) = e−(t−t0), independent of x0. Obviously

the trivial solution of equation (3.2) is uniform stable. If we choose the scalar function

ψ(t) = et, since |ψ(t)φ(t, s, x0)ψ
−1(s)| = |ete−(t−s)e−s| = 1 for all 0 ≤ s ≤ t < ∞, the

trivial solution of equation (3.2) is ψ-uniformly stability on R+. Moreover,

|ψ(t)φ(t, s, y)g(s, y)| ≤ e−s|ψ(s)y| = e−s|esy| and 1 = lim sup
t→∞

∫ t

0

e−sds <∞,
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Then the trivial solution of the nonlinear differential equation (3.1) is ψ-uniformly

stability on R+ from our Theorem 2.10.

Example 3.2. Consider the nonlinear differential system

(3.3)

{

y′1 = y1 + min{y1, y
2
1} sin t,

y′2 = −y2 + min{y2, y
2
2} cos t.

In the equation (3.3), f(t, y) = (y1,−y2)
T , g(t, y) = (min{y1, y

2
1} sin t, min{y2, y

2
2} cos t)T ,

equation (3.3) can be seen as perturbed system of

(3.4)

{

x′1 = x1,

x′2 = −x2,

and the variational system through (t0, x0) associated with system (3.4) is (3.4) itself,

it’s fundamental matrix solution

Φ(t, t0, x0) =

(

e(t−t0) 0

0 e−(t−t0)

)

,

independent of x0. Because |Φ(t, t0, x0)| is unbounded, the trivial solution of system

(3.4) is unstable. Choose the matrix function

Ψ(t) =

(

e−2t 0

0 e
t

2

)

, since

|Ψ(t)Φ(t, s, x0)Ψ
−1(s)| =

∣

∣

∣

∣

∣

(

e(t−s) 0

0 e−(t−s)

)(

e−2t 0

0 e
t

2

)(

e2s 0

0 e
−s

2

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

e−(t−s) 0

0 e−
1

2
(t−s)

)
∣

∣

∣

∣

∣

≤ 1

for all 0 ≤ s ≤ t < ∞, then the trivial solution of equation (3.4) is ψ-uniformly

stability on R+. Moreover,

||Ψ(t)Φ(t, s, y)g(s, y)|| = ||
[

Ψ(t)Φ(t, s, y)Ψ−1(s)
][

Ψ(s)g(s, y)
]

||

≤ |Ψ(t)Φ(t, s, y)Ψ−1(s)| · ||Ψ(s)y|| ≤ e−
1

2
(t−s)||Ψ(s)y||

and 2 = lim supt→∞

∫ t

0
e−

1

2
(t−s)ds < ∞. Then the trivial solution of the nonlinear

differential system (3.3) is ψ-uniformly stability on R+ from our Corollary 2.11.

Example 3.3. Consider the nonlinear Volterra integro-differential system

(3.5)

{

z′1 = z1 +
∫ t

0
min{z1(s), z

2
1(s)}(sin t)(cos s)ds,

z′2 = −z2 +
∫ t

0
min{z2(s), z

2
2(s)}(cos t)(sin s)ds.
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In the equation (3.5), f(t, z) = (z1,−z2)
T , F (t, s, z) = (min{z1, z

2
1}(sin t)(cos s),

min{z2, z
2
2}(cos t)(sin s))T , equation (3.5) can be seen as perturbed system of equation

(3.4), by similar discussion and choose the same matrix function Ψ(t) =

(

e−2t 0

0 e
t

2

)

,

we have |Ψ(t)Φ(t, s, x0)Ψ
−1(s)| =

∣

∣

∣

∣

∣

(

e−(t−s) 0

0 e−
1

2
(t−s)

)
∣

∣

∣

∣

∣

≤ 1 for all 0 ≤ s ≤ t < ∞,

then the trivial solution of equation (3.4) is ψ-uniformly stability on R+. Moreover,

||Ψ(t)Φ(t, s, z)F (s, u, z)|| = ||
[

Ψ(t)Φ(t, s, z)Ψ−1(s)
][

Ψ(s)F (s, u, z)
]

||

≤ |Ψ(t)Φ(t, s, y)Ψ−1(s)| · ||Ψ(s)z|| ≤ e−
1

2
(t−s)||Ψ(s)y||

and 2 = lim supt→∞

∫ t

0
e−

1

2
(t−s)ds < ∞. Then the trivial solution of the nonlinear

Volterra integro-differential system (3.5) is ψ-uniformly stability on R+ from our

Corollary 2.13.
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