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ABSTRACT. In this paper, we establish the existence of at least three positive solutions for third-

order impulsive Sturm-Liouville boundary value problems with p-Laplacian, by a fixed point theorem

due to Avery and Peterson. We discuss our problem both for advanced and delayed arguments. An

example is included to illustrate that corresponding assumptions are satisfied.
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1. INTRODUCTION

For J = [0, 1], let 0 = t0 < t1 < · · · < tm < tm+1 = 1. Put J ′ = (0, 1) \
{t1, t2, . . . , tm}. Put R+ = [0,∞) and Jk = (tk, tk+1], k = 0, 1, . . . , m − 1, Jm =

(tm, tm+1).

Let us consider the following problem

(1.1)



















(φp(x
′′(t)))′ + h(t)f(t, x(t), x(α(t))) = 0, t ∈ J ′,

x′(t+k ) = x′(t−k ) + Qk(x(tk)), k = 1, 2, . . . , m,

βx(0) − γx′(0) = 0, δx(1) + ηx′(1) = 0, x′′(0) = 0

with φp(s) = |s|p−2s, p > 1, φ−1
p = φq, where φ−1

p denotes the inverse to φp; x′(t+k )

and x′(t−k ) denote the right and left limits of x′ at tk, respectively, and

H1 : f ∈ C(J × R × R, R+), h ∈ C(J, R+), α ∈ C(J, J),

H2 : Qk ∈ C(R, (−∞, 0]) and bounded for k = 1, 2, . . . , m,

H3 : β, γ, δ, η ≥ 0, ∆ ≡ β(δ + η) + δγ > 0,

H4 : there exists ξ ∈ (0, 1) and such that ρ ∈ (0, 1) with

ρ = min

(

η

δ + η
,
γ + βξ

γ + β

)

,
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H5 : there exists σ ∈ (0, 1) and such that Γ ∈ (0, 1) with

Γ = min

(

δ(1 − σ) + η

δ + η
,

γ

γ + β

)

.

Let us introduce the space:

PC1(J, R) =

{

x ∈ C(J, R), x|Jk
∈ C1(Jk, R), k = 0, 1, . . . , m

and there exist x′(t+k ) for k = 1, 2, . . . , m

}

.

By a positive solution of problem (1.1) we mean a function which is positive on (0, 1)

and satisfies problem (1.1). Throughout this paper we assume that α(t) 6≡ t, t ∈ J .

Recently, many authors have been interested in studying the existence of positive

solutions for differential equations with boundary conditions. The existence of posi-

tive solutions to third-order differential problems is discussed, for example in papers

[4], [7], [8], [11]–[14], see also paper [5]. Equations with p-Laplacian operator arise

in many applications to physical and natural phenomena, see for example [2], [3],

[9], [10]. Corresponding results for the existence of positive solutions to third-order

Sturm-Liouville boundary value problems with p-Laplacian are only formulated in

paper [12], see also paper [6]. In my paper, we discuss impulsive Sturm-Liouville

boundary problems of type (1.1) with deviated arguments α. To my knowledge, it

is the first paper when positive solutions have been investigated for impulsive third-

order Sturm-Liouville boundary value problems with p-Laplacian and with deviating

arguments α which can be both of advanced or delayed type.

The organization of this paper is as follows. In Section 2, we present some

necessary lemmas connected with the case when problem (1.1) is of advanced type.

In Section 3, we present some definitions and a theorem of Avery and Peterson which

is useful to obtain our main results. In Section 4, we discuss the existence of at least

three positive solutions to problem (1.1) with advanced argument α, by using the

above mentioned Avery-Peterson theorem. At the end of this section, an example

is added to verify theoretical results. In the last Section 5, we formulate sufficient

conditions under which problem (1.1) with delayed argument α has at least three

positive solutions.

2. SOME LEMMAS

Let us consider the following problem

(2.1)



















(φp(u
′′(t)))′ + y(t) = 0, t ∈ J ′,

u′(t+k ) = u′(t−k ) + Qk, k = 1, 2, . . . , m,

βu(0) − γu′(0) = 0, δu(1) + ηu′(1),

(2.2) u′′(0) = 0.
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Lemma 2.1. Assume that ∆ ≡ β(δ + η) + δγ 6= 0 and y ∈ C(J, R). Then problem

(2.1)–(2.2) has the unique solution given by the following formula

(2.3) u(t) =

∫ 1

0

G(t, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi, t ∈ Jk,

for k = 0, 1, . . . , m, where

G(t, s) =
1

∆







(δ + η − δt)(γ + βs), s ≤ t,

(δ + η − δs)(γ + βt), t ≤ s.

Proof. 1st step. The differential equation from (2.1) and condition (2.2) yield

(2.4) u′′(t) = −φq

(
∫ t

0

y(s)ds

)

.

This shows that

(2.5) u(t) = u(0) + u′(0)t +

k
∑

i=1

′Qi(t − ti) −
∫ t

0

(t − s)φq

(
∫ s

0

y(τ)dτ

)

ds, t ∈ Jk,

for k = 0, 1, . . . , m with
∑s

i=q
′ · · · = 0 if q > s. Indeed, (2.5) holds for k = 0. Assume

that formula (2.5) holds for a fixed integer k = r ≤ m− 1. Integrating two times the

differential equation in (2.4) we have

u′(t) = u′(t+r+1) −
∫ t

tr+1

φq

(
∫ s

0

y(τ)dτ

)

ds, t ∈ Jr+1,

u(t) = u(t+r+1) + (t − tr+1)u
′(t+r+1) −

∫ t

tr+1

∫ s

tr+1

φq

(
∫ τ

0

y(w)dw

)

dτds

= u(0) + u′(0)tr+1 +
r

∑

i=1

′Qi(tr+1 − ti) −
∫ tr+1

0

(tr+1 − s)φq

(
∫ s

0

y(τ)dτ

)

ds

+ (t − tr+1)

[

u′(0) +
r

∑

i=1

′Qi + Qr+1 −
∫ tr+1

0

φq

(
∫ s

0

y(τ)dτ

)

ds

]

−
∫ t

tr+1

(t − s)φq

(
∫ s

0

y(τ)dτ

)

ds.

This relation proves that (2.4) holds for k = r + 1. Hence, (2.5) holds, by induction.

2nd step. Now we are going to eliminate u(0) and u′(0) from (2.5). To do it we

use the boundary conditions from (2.1), so

βu(0) − γu′(0) = 0,

δ

[

u(0) + u′(0) +

m
∑

i=1

Qi(1 − ti) −
∫ 1

0

(1 − s)φq

(
∫ s

0

y(τ)dτ

)

ds

]

+η

[

u′(0) +
m

∑

i=1

Qi −
∫ 1

0

φq

(
∫ s

0

y(τ)dτ

)

ds

]

= 0.
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Solve this system with respect to u(0) and u′(0) and then substitute it to formula

(2.5) to obtain the assertion. The proof is complete.

Lemma 2.2. Let Assumption H3 hold. Assume that Qi ≤ 0, i = 1, 2, . . . , m and y ∈
C(J, R+). Then the unique solution u of problem (2.1)–(2.2) satisfies the condition

u(t) ≥ 0 on [0, 1].

Proof. Note that

u(0) =
γ

∆

[

∫ 1

0

(δ + η − δs)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

(δ + η − δti)Qi

]

≥ 0,

u(1) =
η

∆

[

∫ 1

0

(γ + βs)φq

(
∫ 1

0

y(τ)dτ

)

ds −
m

∑

i=1

(γ + βti)Qi

]

≥ 0.

Since u is concave down (by formula (2.4)), then u(t) ≥ 0, t ∈ J . This completes the

proof.

Lemma 2.3. Let G be given as in Lemma 2.1 and let Assumption H4 hold. Then we

have the following result:

(2.6)
G(t, s)

G(s, s)
≤ 1 for t, s ∈ [0, 1],

(2.7)
G(t, s)

G(s, s)
≥ ρ for t ∈ [ξ, 1], s ∈ [0, 1].

Proof. Relation (2.6) is simply for proving. Note that

G(t, s)

G(s, s)
=

δ + η − δt

δ + η − δs
≥ η

δ + η − δs
≥ η

δ + η
, for s ≤ t,

G(t, s)

G(s, s)
=

γ + βt

γ + βs
≥ γ + βξ

γ + βs
≥ γ + βξ

γ + β
, for s ≥ t

for t ∈ [ξ, 1], s ∈ [0, 1]. This completes the proof.

Lemma 2.4. Let Assumptions H3 and H4 hold. Assume that Qi ≤ 0, i = 1, 2, . . . , m

and y ∈ C(J, R+). Then the unique solution u of problem (2.1)–(2.2) satisfies the

condition

min
[ξ,1]

u(t) ≥ ρ‖u‖.

Proof. In view of (2.3) and (2.6), we obtain

u(t) =

∫ 1

0

G(t, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi

≤
∫ 1

0

G(s, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi,
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so

‖u‖ ≤
∫ 1

0

G(s, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi

This and condition (2.7) show that

min
[ξ,1]

u(t) = min
[ξ,1]

[

∫ 1

0

G(t, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi

]

≥ ρ

[

∫ 1

0

G(s, s)φq

(
∫ s

0

y(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi

]

≥ ρ‖u‖.

This completes the proof.

3. BACKGROUND MATERIALS AND DEFINITIONS

In this section, we provide some background materials from the theory of cones

in Banach spaces.

Definition 3.1. Let E be a real Banach space. A nonempty convex set P ⊂ E is

said to be a cone provided that the following are satisfied:

(i) ku ∈ P for all u ∈ P and all k ≥ 0, and

(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if y−x ∈ P .

Definition 3.2. A map Λ is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space E if Λ : P → R+ is continuous and

Λ(tx + (1 − t)y) ≥ tΛ(x) + (1 − t)Λ(y)

for all x, y ∈ P and t ∈ [0, 1].

Similarly, we say the map ϕ is a nonnegative continuous convex functional on a

cone P of a real Banach space E if ϕ : P → R+ is continuous and

ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 3.3. An operator is called completely continuous if it is continuous and

maps bounded sets into pre-compact sets.

Let ϕ and Θ be nonnegative continuous convex functionals on P , Λ be a non-

negative continuous concave functional on P , and Ψ be a nonnegative continuous

functional on P . Then for positive numbers a, b, c and d, we define the following sets:

P (ϕ, d) = {x ∈ P : ϕ(x) < d},
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P (ϕ, Λ, b, d) = {x ∈ P : b ≤ Λ(x), ϕ(x) ≤ d},
P (ϕ, Θ, Λ, b, c, d) = {x ∈ P : b ≤ Λ(x), Θ(x) ≤ c, ϕ(x) ≤ d},

and

R(ϕ, Ψ, a, d) = {x ∈ P : a ≤ Ψ(x), ϕ(x) ≤ d}.

We will use the following fixed point theorem of Avery and Peterson to establish

multiple positive solutions to problem (1.1).

Theorem 3.4 (see [1]). Let P be a cone in a real Banach space E. Let ϕ and Θ be

nonnegative continuous convex functionals on P , Λ be a nonnegative continuous con-

cave functional on P , and Ψ be a nonnegative continuous functional on P satisfying

Ψ(kx) ≤ kΨ(x) for 0 ≤ k ≤ 1, such that for some positive numbers M and d,

Λ(x) ≤ Ψ(x) and ‖x‖ ≤ Mϕ(x)

for all x ∈ P (ϕ, d). Suppose

T : P (ϕ, d) → P (ϕ, d)

is completely continuous and there exist positive numbers a, b and c with a < b such

that

(S1) : {x ∈ P (ϕ, Θ, Λ, b, c, d) : Λ(x) > b} 6= ∅ and Λ(Tx) > b for x ∈ P (ϕ, Θ, Λ, b, c, d);

(S2) : Λ(Tx) > b for x ∈ P (ϕ, Λ, b, d) with Θ(Tx) > c,

(S3) : 0 6∈ R(ϕ, Ψ, a, d) and Ψ(Tx) < a for x ∈ R(ϕ, Ψ, a, d) with Ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (ϕ, d), such that

ϕ(xi) ≤ d, for i = 1, 2, 3,

b < Λ(x1), a < Ψ(x2), with Λ(x2) < b

and

Ψ(x3) < a.

4. CASE WHERE α(t) ≥ t ON J

Let X = C(J, R) be our Banach space with the maximum norm ‖x‖ = max
t∈J

|x(t)|.
Let

P =

{

x ∈ X : x(t) ≥ 0, t ∈ J and min
[ξ,1]

x(t) ≥ ρ‖x‖
}

,

P̄r = {x ∈ P : ‖x‖ ≤ r},
where ρ is defined as in Assumption H4. Note that P ⊂ X is a cone. Now, we define

the nonnegative continuous concave functional Λ on P by

Λ(x) = min
[ξ,1]

|x(t)|.

Indeed, Λ(x) ≤ ‖x‖. Put Ψ(x) = Θ(x) = ‖x‖.
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Theorem 4.1. Let Assumptions H1–H4 hold and let α(t) ≥ t, t ∈ J . In addition,

we assume that there exist positive constants Q, a, b, d, a < b, and such that

µ ≥
∫ 1

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds + Q,

0 < L < ρ

∫ 1

ξ

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds

and

(A1) : −∑m

i=1 G(ti, ti)Qi(ui)) ≤ Q

µ
d for ui ∈ [0, d] and f(t, u, v) ≤ φp(

d
µ
) for (t, u, v) ∈

J × [0, d] × [0, d],

(A2) : f(t, u, v) ≥ φp

(

b
L

)

for (t, u, v) ∈ [ξ, 1] × [b, b
ρ
] × [b, b

ρ
],

(A3) : −∑m

i=1 G(ti, ti)Qi(ui)) ≤ Q

µ
a for ui ∈ [0, a] and f(t, u, v) ≤ φp(

a
µ
) for (t, u, v) ∈

J × [0, a] × [0, a].

Then, problem (1.1) has at least three positive solutions x1, x2, x3 satisfying ‖xi‖ ≤
d, i = 1, 2, 3 and

b ≤ Λ(x1), a < ‖x2‖ with Λ(x2) < b

and ‖x3‖ < a.

Proof. Put (Fx)(t) = h(t)f(t, x(t), x(α(t))). Now we define an operator T by

(Tx)(t) =

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti)), t ∈ Jk

for k = 0, 1, . . . , m, where G is defined as in Lemma 2.1.

Indeed, T : X → X. Problem (1.1) has a solution x if and only if x solves the

operator equation x = Tx.

Note that

(Tx)′′ ≤ 0.

It shows that Tx is concave down. Moreover

(Tx)(0) =
γ

∆

[

∫ 1

0

(δ + η − δs)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

(δ + η − δti)Qi(x(ti))

]

≥ 0,

(Tx)(1) =
η

∆

[

∫ 1

0

(γ + βs)φq

(
∫ 1

0

(Tx)(τ)dτ

)

ds −
m

∑

i=1

(γ + βti)Qi(x(ti))

]

≥ 0.

This and the fact that Tx is concave down show that Tx(t) ≥ 0, t ∈ J . Now, in view

of condition (2.6), we see that

‖Tx‖ = max
t∈J

[

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti))

]
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≤
∫ 1

0

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi(x(ti)).

Moreover, condition (2.7) yields

min
[ξ,1]

(Tx)(t) = min
[ξ,1]

[

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti))

]

≥ ρ

[

∫ 1

0

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi(x(ti))

]

,

so

min
[ξ,1]

(Tx)(t) ≥ ρ‖Tx‖.

This proves that TP ⊂ P .

Now we prove that the operator T : P → P is completely continuous. Let

x ∈ P̄r. Then |x| ≤ r. Note that h and f are continuous so h is bounded on J and

f is bounded on J × [0, r] × [0, r]. It means that there exists a constant K > 0 such

‖Tx‖ ≤ K. This proves that T P̄ is uniformly bounded. Moreover, (Tx)′ is uniformly

bounded too. On the other hand for t1, t2 ∈ J there exists a constant L1 > 0 such

that

|(Tx)(t1) − (Tx)(t2)| =

∣

∣

∣

∣

∫ t1

t2

(Tx)′(s)ds

∣

∣

∣

∣

≤ L1|t1 − t2|.

This shows that T P̄ is equicontinuous on J , so T is completely continuous.

Let x ∈ P (ϕ, d), so 0 ≤ x(t) ≤ d, t ∈ J , and ‖x‖ ≤ d. This means that also

0 ≤ x(α(t)) ≤ d, t ∈ J because 0 ≤ t ≤ α(t) ≤ 1 on J . By (2.6) and Assumption

(A1), we see that

ϕ(Tx) = ‖Tx‖ = max
t∈J

|(Tx)(t)| = max
t∈J

(Tx)(t) =

= max
t∈J

[

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti))

]

≤
∫ 1

0

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi(x(ti))

≤
∫ 1

0

G(s, s)φq

(
∫ s

0

φp

(

d

µ

)

h(τ)dτ

)

ds +
Q

µ
d

=
d

µ

[
∫ 1

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds + Q

]

≤ d.

This proves that T : P (ϕ, d) → P (ϕ, d).

Now we need to show that condition (S1) is satisfied. Take

x(t) =
1

2

(

b +
b

ρ

)

, t ∈ J.
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Then

‖x‖ =
b(ρ + 1)

2ρ
<

b

ρ
so Λ(x) = min

[ξ,1]
x(t) =

b(ρ + 1)

2ρ
> b =

b

ρ
ρ > ρ‖x‖.

It proves that

{x ∈ P (ϕ, Θ, Λ, b,
b

ρ
, d) : b < Λ(x)} 6= ∅.

Let b ≤ x(t) ≤ b
ρ

for t ∈ [ξ, 1]. Then ξ ≤ t ≤ α(t) ≤ 1 on [ξ, 1]. It yields b ≤
x(α(t)) ≤ b

ρ
on [ξ, 1]. Note that

Λ(Tx) = min
[ξ,1]

(Tx)(t)

= min
[ξ,1]

[

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti))

]

≥ ρ

∫ 1

0

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds

≥ ρ

∫ 1

ξ

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds

≥ ρ

∫ 1

ξ

G(s, s)φq

(
∫ s

0

φp

(

b

L

)

h(τ)dτ

)

ds

≥ b

L
ρ

∫ 1

ξ

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds

> b.

This proves that condition (S1) holds.

Now we need to prove that condition (S2) is satisfied. Take x ∈ P (ϕ, Λ, b, d) and

‖Tx‖ > b
ρ
. Then

Λ(Tx) = min
[ξ,1]

(Tx)(t) ≥ ρ‖Tx‖ > ρ
b

ρ
= b,

so condition (S2) holds.

Indeed, ϕ(0) = 0 < a, so 0 6∈ R(ϕ, Ψ, a, d). Suppose that x ∈ R(ϕ, Ψ, a, d) with

Ψ(x) = ‖x‖ = a. Then

Ψ(Tx) = ‖Tx‖ = max
t∈J

(Tx)(t)

= max
t∈J

[

∫ 1

0

G(t, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(t, ti)Qi(x(ti))

]

≤
∫ 1

0

G(s, s)φq

(
∫ s

0

(Fx)(τ)dτ

)

ds −
m

∑

i=1

G(ti, ti)Qi(x(ti))

≤
∫ 1

0

G(s, s)φq

(
∫ s

0

φp

(

a

µ

)

h(τ)dτ

)

ds +
Q

µ
a

=
a

µ

[
∫ 1

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds + Q

]

≤ a.
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This shows that condition (S3) is satisfied.

Since all the conditions of Theorem 3.4 are satisfied, problem (1.1) has at least

three positive solutions x1, x2, x3 such that ‖xi‖ ≤ d for i = 1, 2, 3,

b ≤ min
[ξ,1]

x1(t), a < ‖x2‖ with min
[ξ,1]

x2(t) < b

and ‖x3‖ < a. This ends the proof.

Example 4.2. For p = 3, we consider the following problem

(4.1)











[φp(x
′′(t))]′ + htf(t, x(α(t)) = 0, t ∈ J ′ = (0, 1),

x′(t+1 ) = x′(t−1 ) + Q1, t1 = 1
2
,

x(0) − x′(0) = 0, x(1) + x′(1) = 0, x′′(0) = 0,

where h ≥ 2
(

72
13

)2
and

f(t, u) =































































u2

µ2
, u ∈ [0, 1],

1

µ2
+

(

4

L2
− 1

µ2

)

(u − 1), u ∈ [1, 2],

4

L2
, u ∈ [2, 4],

4

L2
+

(

d2

µ2
− 4

L2

) (

u − 4

d − 4

)

, u ∈ [4, d],

d2

µ2
, u ≥ d.

Indeed, ∆ = 3. Let ξ ∈ (0, 1), a = 1, b = 2, d > 4, Q1 ∈
[

−4
9
, 0

)

. Then ρ = 1
2
. Take

Q = 1. Hence

L < ρ

∫ 1

ξ

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds =
1

6
√

2

√
h

∫ 1

ξ

(2 + s − s2)s ds <
13

72
√

2

√
h,

µ ≥
∫ 1

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds + Q =

√
h

3
√

2

13

12
+ Q ≥ 2

and

−G(t1, t1)Q1 = −3

4
Q1 ≤

1

3
.

It means that for µ = 3, 0 < L < 13
72

√
2

√
h, all the assumptions of Theorem 4.1 hold,

so problem (4.1) has at least three positive solutions.

5. CASE WHERE α(t) ≤ t ON J

Similarly as Lemmas 2.3 and 2.4, we can prove the following results.

Lemma 5.1. Let G be given as in Lemma 2.1 and let Assumption H5 hold. Then we

have the following result:

G(t, s)

G(s, s)
≥ Γ for t ∈ [0, σ], s ∈ [0, 1].
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Lemma 5.2. Let Assumptions H3 and H5 hold. Assume that Qi ≤ 0, i = 1, 2, . . . , m

and y ∈ C(J, R+). Then the unique solution u of problem (2.1)–(2.2) satisfies the

condition

min
[0, σ]

u(t) ≥ Γ‖u‖.

Let X = C(J, R) be our Banach space with the maximum norm ‖x‖ = max
t∈J

|x(t)|.
Let

P =

{

x ∈ X : x(t) ≥ 0, t ∈ J and min
[0, σ]

x(t) ≥ Γ‖x‖
}

,

P̄r = {x ∈ P : ‖x‖ ≤ r},

where Γ is defined as in Assumption H5. We define the nonnegative continuous

concave functional Λ on P by

Λ(x) = min
[0, σ]

|x(t)|.

Note that Λ(x) ≤ ‖x‖. Put Ψ(x) = Θ(x) = ‖x‖.

Theorem 5.3. Let Assumptions H1–H3, H5 hold and let α(t) ≤ t, t ∈ J . In addition,

we assume that there exist positive constants Q, a, b, d, a < b, and such that

µ ≥
∫ 1

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds + Q,

0 < L < Γ

∫ σ

0

G(s, s)φq

(
∫ s

0

h(τ)dτ

)

ds

and

(A4) : −∑m

i=1 G(ti, ti)Qi(ui)) ≤ Q

µ
d for ui ∈ [0, d] and f(t, u, v) ≤ φp(

d
µ
) for (t, u, v) ∈

J × [0, d] × [0, d],

(A5) : f(t, u, v) ≥ φp

(

b
L

)

for (t, u, v) ∈ [0, σ] × [b, b
Γ
] × [b, b

Γ
],

(A6) : −∑m

i=1 G(ti, ti)Qi(ui)) ≤ Q

µ
a for ui ∈ [0, a] and f(t, u, v) ≤ φp(

a
µ
) for (t, u, v) ∈

J × [0, a] × [0, a].

Then, problem (1.1) has at least three positive solutions x1, x2, x3 satisfying ‖xi‖ ≤
d, i = 1, 2, 3 and

b ≤ Λ(x1), a < ‖x2‖ with Λ(x2) < b

and ‖x3‖ < a.
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