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Abstract
Back Propagation (BP) training algorithm has received intensive research efforts to
exploit its parallelism in order to reduce the training time for complex problems. A
modified version of BP based on matrix-matrix multiplication was proposed for parallel
processing. This paper discusses the implementation of Matrix Back Propagation (MBP)
using scalar, vector, and matrix instruction set architecture (ISA). Besides, it shows that
the performance of the MBP is improved by switching form scalar to vector ISA and
form vector to matrix ISA. On a practical application, speech recognition, the speedup of
training a neural network using unrolling scalar over scalar ISA is 1.83. On eight parallel
lanes, the speedup of using vector, unrolling vector, and matrix ISA are respectively
10.33, 11.88, and 15.36, where the maximum theoretical speedup is 16. Our results show
that the use of matrix ISA gives a performance close to the optimal because of reusing the
loaded data, decreasing the loop overhead, and overlapping the memory operations by
arithmetic operations.

Keywords - neural networks, parallel architecture, vector/matrix processing, parallel
algorithms, back propagation algorithm, reusing data, loop unrolling

A major challenge facing computer designers is determining how to improve performance
by executing multiple operations in parallel. These parallel operations can be defined by
programmers, extracted statically by compliers, and/or extracted dynamically by
hardware. If the extracted parallelism depends only on the skills of the programmer,
compiler, or hardware, improving performance requires a professional programmer,



sophisticated complier, or complex hardware. For example, superscalar architectures [1,
2] dynamically extract parallelism from a single instruction stream to execute multiple
independent scalar instructions in the same clock cycle. Thus, the die area used to actually
execute parallel operations is relatively small with respect to the area needed for
extracting parallel operations. Besides, the hardware complexity grows at least
quadratically with issue width [3]. To treat the problem of increasing the hardware
complexity, a compiler should help hardware for extracting parallelism. VLIW
architectures [4] figure out this problem by packing parallel scalar instructions during the
compilation time into a very long instruction. Very sophisticated compiler techniques are
required to detect and schedule a peak amount of instruction parallelism.

Scalar instruction set architectures (ISAs), which are used in superscalar and VLIW
architectures, require a separate opcode and related operand specifiers for every operation
to be performed. Using scalar ISAs increase the semantic gap between high-level
languages and hardware [5]. Moreover, the parallelism convoyed by programmers
through high-level statements using high-level languages is lost when a scalar ISA is
used. However, vector architectures [6-13], which have a two-level ISA, provide vector
instructions (1-0 scalar operations) to support 1-0 data parallelism in addition to scalar
instructions (0-0 data parallelism) to support unvectorizable codes. Vector-vector,
vector-scalar, and scalar-scalar instructions are used for coding an application on vector
computers. Nowadays, single chip vector processors, which have a four-way superscalar
core for processing unvectorizable data and parallel execution datapaths (eight parallel
lanes) for processing vector data, are already fabricated [14].

The logical extension of vector processing is matrix processing, where the parallel
execution datapaths can be used not only for processing vector data but also for
processing matrix data. Our proposed Trident processor [15-17], which has a three-level
ISA, provides a scalar core for processing scalar data and a matrix engine for processing
matrix/vector data. The Trident architecture extends the advantages of the vector ISA by
adding a matrix instruction set. The semantic content of the Trident matrix and vector
instructions already includes the notion of parallel operations.

In this paper, the advantages of using high-level ISA (such as matrix and vector
ISAs) over using low-level ISA (such as scalar ISA) are demonstrated. Thus, an
application based on a mixture of scalar, vector, and matrix operations is needed. Error
Back Propagation (BP) training algorithm is a well studied and famous algorithm in the
artificial neural network area. However, the implementation of BP algorithm on a scalar
processor has several drawbacks. The most important one is the training time it takes for
complex problems (networks having lots of neurons and/or for problems having a large
number of training and validation patterns). One obvious solution to alleviate this
problem is to use other efficient training algorithms. For example, Levenberg-Marquardt



[18] can speedup the training process significantly, however, it has a memory requirement
that reduces its feasibility on complex problems. Another solution for the training time
problem is the use of parallel processing to reduce the training time of BP.

The BP algorithm is based on a mixture of scalar, vector-vector (level-l BLAS [19]),
and matrix-vector operations (level-2 BLAS [20]). This means that the performance of
the BP algorithm using scalar ISA can be dominated by the amount of memory traffic
rather than by the number of arithmetic operations involved. The ratio of arithmetic
operations to data movements would be improved to further avoid excessive data
movements to and from the main memory because the movement of data can be as costly
as (or even higher than) arithmetic operations on the data. This problem can be reduces by
reusing the loaded data. The modified version of the back propagation algorithm, which is
called matrix back propagation (MBP) is a good choice. MBP is based on a mixture of
scalar, vector-vector (level-l BLAS), matrix-vector (level-2 BLAS), and matrix-matrix
operations (level-3 BLAS [21-23]). Mainly, it is based on matrix-matrix multiplication,
which is the operation of choice for high performance computing. To show the advantage
of using a higher level ISA, the number of clock cycles needed for the MBP is calculated
in case of using scalar, vector, and matrix ISA. Besides, the speedup of using vector and
matrix ISAs over using scalar ISA on MBP is calculated.

The remainder of this paper is organized as follows. In Section 2, the MBP learning
algorithm is described. It shows the derivation of MBP from the well known BP
algorithm and demonstrates the conversion of the MBP algorithm into matrix form.
Section 3 depicts the architecture of the Trident processor and illustrates the Trident
implementation of the MBP algorithm. Performance evaluation of the MBP algorithm
using scalar, vector, and matrix ISA is demonstrated and discussed in Section 4. Finally,
Section 5 presents our conclusions and future directions of work.

In this section, an overview of the BP training algorithm is given as it is the basis of the
rest of this paper. In addition, the mathematical formulation of the MBP algorithm is
provided as given in [24, 25].

The objective of BP is to train neural networks having any number of hidden units
arranged in any number of layers. The only restriction is that the connection pattern
between layers must not contain cycles. This kind of networks is called feedforward

networks. The BP algorithm consists of two phases: the forward and backward phases. In
the forward phase, the activations are propagated from the input layer to the output layer
through all the hidden layers, as shown in Figure 1. While in the backward phase, the
error between the observed actual outputs and the desired output values in the output and
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bias values to reduce the error. To train a multi-layer feedforward network, the gradient
descent algorithm is used to approximate an unknown function, based on some training
data, 8(0), and the corresponding target (desired output), T. The overall gradient with
respect to the entire training set is the sum of the gradients for each pattern.

As depicted in Figure 1, the input of the network is indicated as layer 0; it contains
no real neurons because its purpose is to spread the input to the neurons of the first
hidden layer. The hidden layers are numbered from 1 to L-l. The output layer is L. In
general, the 1th layer contains Nl neurons. Thus, the input layer has No elements and the
output layer has NL neurons. A neuron n in layer 1 is connected to all the neurons in layer
1-1 through Nl-l connections; each one is associated to a weight. These weights is
organized in a vector wCn)(l). Besides, the corresponding bias will be bn(l).

Assuming that the training data consists of Np patterns {sCp) Ip = 1...N p}, applying a

pattern sCP) to the input layer, it propagates from input to output through every hidden
layer. Each layer responds with a precise pattern that is called the status of that layer. In
general, the 1th layer will be in status sCP)(l) and the output of the network will be sCP)(L).

The status of the nth neuron of the 1th layer is computed with the feed-forward rule:

sn Cp)(1) = f{sCP) (l-I)T .wCn) (1) + bn (1))= f( l' s?) (l-1) * w/n) (1) + bn (1))

where f is the activation function of the neuron. Hyperbolic tangent (tanh) is used as an
activation function in this paper. The total error E is defined as the normalized squared
difference between the output vector of the network when the pattern vector s(O)cp) is
applied and the corresponding desired output vector tCP), where p E {I, 2, ... , Np}.

E=_l_,! IltCP) _sCP)(L)112 =_l_,! !~~P) -S~P)(L)'f
N pN L p=l N pN L p=ln=l



A simple method to minimize E with respect to the weights is to start from a random
point in the weight space and then descend step-by-step towards a minimum of E. If the
minimum is satisfactory the algorithm stops, otherwise another random point is chosen
and the descent is repeated. In order to choose the right direction, at each step the gradient
of E (VE) is computed. The gradient finds the direction of maximum growth of E,

because of that the right direction is -VE. The gradient descent algorithm is summarized
in the following steps:

I) Start with random weights w(n)(l); weights of neuron n in layer t.

2) Compute VE = ~~ for each weight.
dwi n (l)

3) Compute the step in the opposite direction (~wfn) (1)= -17 ~~ ), where 1] isawi n (1)

the learning constant.

4) Update the weights (wfn) (1)= w?) (I) + ~wfn) (I».

5) Calculate E

If E satisfies the predefined error constraint then stop
Else if E does not satisfy the predefined error constraint and the algorithm is

stuck in a local minimum then go to step I
Else go to step 2.

To compute the gradient (one of the most expensive steps in the BP algorithm), the
derivatives in the output layer is computed as follows:

a[_1-t! &jP) -sjP)(L)f]
aE NpNL p=!j=! =~ N

p [(t~P) -s~p) L )aS~p)(L)]
aw?) (L) awfn) (L) N pN L P~! J J ( ) awfn) (L)

It is known that ~tanh(x) = 1-tanh2(x).
dx

aE _~ t [(t(P) - S(P)(L»)*(1- r (p)(L)f) * S(P)(L-1)]
aw}n)(L) NpN

L
P=! n n I:5n I

Thus, the above equation can be written in a more compact form as follows:
aE Np

------"t5(p)(L)*s(P)(L-1) where
awfn)(L) ~! n I , ,

o~p)(L)= N:~L&~P)-S~P)(L»)*(1- [S~P)(L)f)

The update rule for the weights in the output layer is the famous delta-rule:
Np

~win)(L) =17 LO~p)(L) * si(p)(L -1)
P=!



For the weights in the remaining layers, the procedure is the same as layer L-1 as bellow:

dE _ d [_1_~2 &~P)-s(,P)(L)f]
dw[n) (L -1) dw[n) (L -1) N pN L P=!j=1 J J

To get rid of the deep embedding of the weights in layer L-l the chain rule is used for the

derivative (indicating with EP) the partial error due to pattern p):

__ d_E__ =_ 1 ~ [_d_E_(_P)_* dS~P)(L-l)]_
dw[n) (L -1) N p P=! ds~P) (L -1) dwj(n)(L -1) -

_1_ ~ [ dE(P) *(1- [s~p)(L-1)f) * siP)(L - 2)] = - ~O~P)(L -1) * s[p\L - 2)
N p P=! ds~P) (L -1) P=!

where, o~p) (L -1) = (1- [s~P)(L -1) f) * ~! [ojP) (L) * w~j) (L)]

The back-propagation algorithm can be summarized in the following steps.

1) Feed-forward
for each layer 1 := 1 to L

for each neuron n := 1 to Nt
for each pattern p:= 1 to Np

s~p) (I) = f(s(P) (I-ll.w(n) (I) + bn (I»)
2) Error computation and error back-propagation

for each neuron in the output layer n := 1 to NL

for each pattern p := 1 to Np

o~p) (L) = N p2
N

L &~P)- s~p) (L) t1- [s~P)(L) f)
for each layer 1 := L-l to 1

for each neuron n := 1 to Nt
for each pattern p:= 1 to Np

O~P)(l)=(I- ~~p)(l)f)*~! [ojP) (I + 1)*w~j)(I +1)]

3) Step computation
for each layer 1 := 1 to L

for each neuron n := 1 to Nt
Np

!!.bn(I) = '1 LO~P) (I)
P=!

for each weight i := 1 to Nt-I
Np

!!.w[n)(I) = '1 LO~P) (I) * s[P) (1-1)
P=!

4) Weight updating
for each layer 1 := 1 to L

for each neuron n := 1 to Nt
b:ew (I) = b~ld (I) + Mn (I)
for each weight i := 1 to Nt-I

w[n),new(I) = w[n),otd (I) + !!.w[n)(I)



The above described BP training algorithm can be converted into matrix form, which
is called Matrix Back Propagation (MBP) training algorithm (see [24, 25] for more details
and see Figure I for an illustrative block diagram). The status of neurons in layer I can be
easily organized in matrices S(l) of size NpxNt, where Np is the number of input patterns
and Nt is the number of neurons in layer I:

[ ,0lT (I) ]
s?)(l) Sil) (I) s(l) (I)N,

S(l) = [Sl(l)
] S(2)T(I) S}2)(I) si2) (l) i2) (I)

S2(I) ... SN,(l) = : = N,

S(Np)T(l) s}Np)(I) siNp)(l) S(Np)(l)
N,

The row p of this matrix contains the status of all the neurons in layer I when a pattern p

is applied to the network. As a special case, the input patterns are organized in the same
way in matrix S(O).

Similarly, the weights can be arranged in matrices W(l) of size Nt_1xNt:

wi (l) W}I) (I) W}2)(I)

W(l) = [w(l)(l) w(2)(l) W(NI)(l)]= w~ (l) wil)(l) wi2) (l)... =

w~ (I) w(l) (I) w(2) (I)
I-I N'_I N,_1

wt')(l)
wiNj)(l)

The column n of matrix W(l) contains the weights of neuron n of layer l. The propagated
errors also can be arranged in matrices Ii.(l) of size NpxNt:

[ 6"" (I) ]
o?) (l) oil) (I) o(l) (I)N,

Ii.(l) = [01(I) O2(I)
] 0(2)T (I) o?)(l) oi2) (I) 0(2) (I)

... 0N, (l) = : = N,

O(Np)T(l) °1(Np\l) otp)(l) O(Np)(I)
N,

The row p of matrix Ii.(l) contains the error propagated to layer I when pattern p is
applied. In addition, a matrix T of size NpxNL with the same structure of S(L) is needed to
store the target patterns. The variation of weights and biases computed at each step are
stored respectively in matrices Ii.W(l) of size NI-1xNt and vectors li.b(l) of length Nt.

Now the BP algorithm can be rewritten in matrix form as shown in Table 1. The
steps (la), (2c), and (3a) are marked to emphasize that the computational load belongs to
them is O(n3

) complexity, where n is the size of the problem.



Table 1: The MBP al20rithm

Step Description FLOPs Operation High Level Operation

Feed-
forward
(la) S(l) = S(1-1) x W(l) 2NpNlht *,+ Matrix-matrix multiplication
(lb) S(l) = S(l) + b(l) . It NpN, + Matrix-vector addition
(Ic) S(l) =f{ S(l)} ktNpN, eX, e"X, +, -, I Element-wise matrix operation
Error
back-prop
(2a) tJ.(L) = T - S(L) NpNL - Matrix-matrix subtraction
(2b) tJ.(L) = tJ.(L) * g (S(L)} (k2+1)NpNL *, *,- Element-wise matrix operation
(2c) tJ.(l) = tJ.(1+1)x W(1+1) 2NpN,N/_1 *,+ Matrix-matrix multiplication
(2d) tJ.(l) = tJ.(l) * g (S(l)} (k2+1)NpN, * * - Element-wise matrix operation
Weight
variation
(3a) tJ.W(l)·'"' = 8'(1-1) x tJ.(l) 2NpN/N,_t *,+ Matrix-matrix multiplication
(3b) tJ.b(l)·'"' = tJ.'(l) . I NpN, + Vector accumulation
(3c) tJ.W(l)''"' =1]tJ.W(l)n,",+£l2lW(l)°/d 3N/N,_1 *. *. + Element-wise matrix operation
(3d) tJ.b(l)new=1]tJ.b(l)n,",+£l2lb(l)0ld 3N/ *.*,+ Element-wise vector operation
Weigh
update
(4a) W(l) = W(l) + tJ.W(l)n,", N,N'_l + Element-wise matrix addition
(4b) b(l) - b(l) + tJ.b(l)n,", N/ + Element-wise vector addition
FLOPs: floating-point operations
fix): tanh(x)

a: the influence of the previous steps on the current one
kt: the number of operations needed to computefi)

3.1 Trident Microarchitecture
Figure 2 shows an overall block diagram of the Trident processor [15, 17]. Scalar, vector,
and matrix instructions of an application are fetched from the instruction cache and stored
in the fetch buffer awaiting sending to the proper unit. The dispatch unit splits the
incoming instruction stream into scalar instructions and high-level (vector/matrix)
instructions. Scalar instructions are executed on the scalar core, which includes traditional
scalar functional units and a scalar register file.

The scalar core in the Trident processor can be in-order/out-of-order, single/multiple-
issue. Practically, the vector processor developed for NEe SX-6 supercomputers
integrates a four-way out-of-order superscalar processor with eight vector lanes on a
single chip (60 million transistors) [14]. The Trident scalar unit is responsible for
executing scalar (unparallel) code and for supporting high-level vector/matrix
instructions. In other words, the primary job of the scalar core is to serve the matrix unit
to do bookkeeping computation and to do any code that cannot be done effectively using
high-level vector/matrix instructions. Again, the scalar core is not responsible for
achieving high performance.

Our proposed extended unit (matrix unit) for processing vector/matrix data is based
on the decoupled technique [26]. A decoupled processor has two independent units, the
address unit and the computation unit. The address unit performs all address
computations and loads/stores data from/to main memory to/from register files. The
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Figure 2: Trident processor block diagram

computation unit executes all arithmetic instructions on data loaded into registers. These
units are communicated through architectural queues which are used to temporary keep
the loaded/stored data from/to the main memory to/from the register file.

The Trident matrix unit has two types of register file based on shift registers needed
for vector/matrix processing. A ring register file had been proposed for storing and
cyclically shifting I-D data within a lane. A communication register file had been
proposed for storing and cyclically shifting I-D data across parallel lanes. By using ring
and communication register files, data stored in parallel lanes can be cyclically shifted in
2-D space (horizontally and vertically), which is needed for vector/matrix processing.

As shown in Figure 2, Trident microarchitecture is based on local communications
because it is known that processors are rapidly becoming bound by wire delay [27-29].
Besides, the organization of the Trident processor is based on parallel lanes, which
reduces the design and verification complicity. Each lane contains a set of ring registers
and functional units. P ring register (one ring per lane) represents a matrix register, which
can store as well as cyclically shift (within lanes) vector/matrix data.

3.2 Trident Implementation of Matrix-matrix Multiplication
It is clear from Table I that the computational load belongs to steps (Ia), (2c), and (3a)
that show O(n3

) complexity, where n is the size of the problem. To compute these steps,
three matrix-matrix multiplications must be performed: step (Ia) is a conventional matrix
product (C = AxB), step (2c) is a matrix product with the second matrix transposed (C =
AxB\ and step (3a) is a matrix product with the first matrix transposed (C = AtxB). Most
of the remaining steps if Table I are based on element-wise matrix operations (steps (Ic),
(2a), (2b), (2d), (3c), and (4a) that show O(n2

) complexity) and element-wise vector
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operations (steps (3d) and (4b) that show O(n) complexity). Step (lb) can be considered
as a rank-one update operation (the second vector is constant) or matrix-vector addition.
Finally, step (3b) is based on accumulating vectors to scalar values.

Figure 3 shows the implementation of the conventional matrix-matrix multiplication
(C = AxB) on four Trident lanes. A block (4x4 elements) of matrix A is loaded into a
matrix register (see the content of the MI matrix register, which has four rings; each has
four elements). Only four memory addresses are needed for loading this block since A is
an aligned matrix. By the same way, a block of matrix B is loaded into a matrix register
(see the content of the M2 matrix register in Figure 3). After loading M2, skewing
operation should be done to adjust the elements of B for parallel processing, as shown in
Figure 4. It is easy to show that skewing a block of a PxP block requires PI2 clock cycles,
since the ring registers can be cyclically shifted in both directions.

The processing time for multiplying two PxP blocks of matrices on P Trident lanes
is r clock cycles. However, the loading time is 2P clock cycles, assuming P elements
can be loaded per clock cycle. For P ~ 4, the loading and skewing times (2P + PI2 clock
cycles) can be overlapped by the processing time (r clock cycles). Table Al in the
appendix illustrates in detail the execution of the conventional matrix-matrix
multiplication on four (P = 4) Trident lanes. It shows the input of each lane every clock
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Figure 5: Trident Implementation of a
matrix product C =AxBt

Figure 6: Trident Implementation of a
matrix product C = A txB

cycle and the results after P clock cycles.
Figure 5 shows the Trident Implementation of a matrix product with the second

matrix transposed. It is based on vector-matrix multiplication as a middle loop and dot-
product as an inner loop. Like conventional matrix product, a block (4x4 elements) of
matrix A is loaded into a matrix register (M!) and a block of matrix B is loaded and
skewed into a matrix register (M2). After p2 (=16) clock cycles the results of matrix-
matrix multiplication will be available in the matrix register M3 (see Table A2 for more
detail). Similarly, Figure 6 shows the Trident Implementation of a matrix product with the
first matrix transposed. In this case, the middle loop is based on outer-product and the
inner loop is based on SAXPY (a scalar times vector X plus vector Y).

The key advantage of the Trident implementation of C = AXB, C = AxB!, and C =
A IxB is the use of unit stride (contiguous accessing) for loading/storing matrices. The
input matrices will be loaded into matrix registers row by row and the output results will
be stored also row by row (assuming the matrices are stored in the memory row major).
Other key advantages of the Trident implementation of matrix products are reusing the
loaded data and overlapping both the loading/storing times and loop overheads by
computation time.



3.3 Trident Implementation of Element-wise MatrixIV ector Operations

Element-wise matrix-matrix instructions (C=A op B), such as matrix addition,
subtraction, multiplication, division, etc., are executed on the Trident processor without
cross-lane communications. Figure 7 shows the implementation of element-wise matrix-
matrix addition on a four-lane Trident processor. A 4x4 block of each of the input
matrices A and B are loaded into Ml and M2 matrix registers. An execution datapath
within a lane can process data stored in ring registers at the rate of one element per clock
cycle, as shown in Table A4. Each datapath receives identical control but different input
elements in each clock cycle by cyclically shifting the ring registers in parallel.

Element-wise vector instructions (z = x op y), such as vector addition, subtraction,
multiplication, division, etc., can be processed on multiple execution datapaths similar to
element-wise matrix-matrix instructions. Figure 8 shows the implementation of vector
addition on a four-lane Trident processor. The input x and y vectors are distributed across
a set of ring registers in a round-robin fashion (see the content of Ml and M2 matrix
registers in Figure 8). An execution datapath (vector pipeline) within a lane can process
vector data stored in ring registers at the rate of one element per clock cycle..



In this section, the performance of the MBP algorithm is evaluated when scalar, vector,
and matrix ISA are used. Firstly, the performance of MBP is evaluated on a hypothetic
neural network with the following parameters. The number of layers is four (L = 4). Three
sizes of the training set (Np) are selected: 100, 1000, and 10,000. The number of neurons
in a layer I (Nz) is assumed to be equal to that in layer 1-1 (No = N1 = Nz = N3 = N4). Then,
the performance of the MBP is evaluated on a practical problem, speech recognition, with
two layers (No = 234, N1 = 1000, and Nz = 69).

4.1 Metric
Time is the measure of computer performance; obviously, the computer that performs the
same amount of work in the least time is the fastest. The execution time of a computer
program can be expressed roughly as the product of three terms: the number of
instructions required, the average number of clock cycles per instruction, and the time per
clock cycle [30]. Since the goal is to maximize performance (minimize the execution
time), a computer designer wants to decrease each of these terms. Unfortunately, these
factors are interrelated, where the number of instructions executed in a program depends
on the instruction set architecture (scalar, vector, and matrix ISA), and the other two
factors depend on the architecture organization and the choice of implementation
technology, as well as the ISA [31].

The use of high-level ISA, such as matrix ISA, reduces the number of instructions
needed for coding a program. Besides, the clock cycle time can be drastically reduced on
the Trident processor because of using local interconnections within and between parallel
lanes. The remaining factor, the average number of clock cycles per instruction, decreases
on the Trident because of reducing the overhead due to looping.

4.1 Performance Evaluation of the MBP using scalar ISA
The number of clock cycles needed for MBP using scalar ISA can be expressed as:

L L L L
# Cycles = 6Np 'L,N1N1_1-2NpN1No +(6+kl +kz)Np 'L,N1+6'L,N1N1_1 + NpNL +6'L,N1

1=1 1=1 1=1 1=1

The multiply-accumulate operation is assumed to be performed in a single clock cycle.
Figure 9 shows the calculation of the number of clock cycles in more details. Moreover,
the number of floating-point operations (FLOPs) in the MBP algorithm (see Table 1) can
be calculated as follows.

L L L L
# FLOPs = 6Np'L,N1N1_1 -2NpN1No +(3+kl +kz)Np'L,N1 +4'L,N1N1_1 + NpNL +4'L,N1

1=1 1=1 1=1 1=1



6Np(NoNl + N1N2 + N2N3 + N~4) - 2NoNl +
8Np(N1 + N2 + N3 + N4) +
4NpN4+
3Np(Nl + N2 + N3) +
4(NoNl + NlN2 + N2N3 + N~4) +
4(N1 + N2 + N3 + N4) +
(Nl + N2 + N3 + N4) +
(Nl + N2 + N3 + N4) +
Np(Nl + N2 +N3 +N4) +
Np(Nl +N2 +N3 +N4) +
(NoNl + NlN2 + N2N3 + N~4) +
(NoNl + NlN2 + N2N3 + N~4)

Steps (la), (2c), (3a)
Steps (lb), (Ie), (3b)
Steps (2a), (2b)
Steps (2d)
Steps (3c), (4a)
Steps (3d), (4b)
Storingb(l), b(2), b(3), b(4)
Storing~b(l), ~b(2), ~b(3), ~b(4)
StoringS(l), S(2), S(3), S(4)
Storing~(l), ~(2), ~(3), ~(4)
StoringW(l), W(2),W(3), W(4)
Storin)?;~W(l), ~W(2), ~W(3), ~W(4)

Thus, the number of clock cycles per FLOP (CPF) using scalar ISA is approximately one
even though the multiply-accumulate operation is assumed to be performed in one clock
cycle. In few words, O(n3

) clock cycles are needed to perform O(n3
) FLOPs on MBP

algorithm using scalar ISA, where Np = NI = Mol = n.
On the other hand, the number of memory operations (load/store) using scalar ISA is

O(n3
). This means that the performance of the MBP algorithm using scalar ISA can be

dominated by the amount of memory traffic rather than by the number of floating-point
operations involved. The ratio of FLOPs to data movements would be improved to further
avoid excessive data movements to and from the main memory because the movement of
data can be as costly as (or even higher than) arithmetic operations on the data. To
address this problem, the data would be loaded into registers or first level cache once and
used many times to improve CPF.

In the above analysis, an important factor has not been considered, which is the
overhead due to looping (or loop overhead). The number of ALU operations (updating the
indices, comparing and branching back to the beginning) needed for looping is
approximately as follows.

L
# Operations for loop overhead'" 6N p L N1 N1_1 - 2N pN 1No + O(N 2)

1;1

Implementing MBP by scalar ISA requires one extra ALU operation per FLOP, which is
an unacceptable overhead. This means, the looping represents a source of overhead that
should be decreased to improve the performance of an application.

To decrease the effect of loop overhead as well as to improve percentage of reusing
the loaded data, loop unrolling technique [32] is used. The increase of the unrolling depth
decreases the number of iterations per loop and shifts the balance of the loop from
memory-bound to CPU-bound. Therefore, extra cycles are available for the memory port
to load/store the operands while the processor is computing the arithmetic operations. In



other words, the loading/storing time can be overlapped by the execution of arithmetic
operations. However, increasing the unrolling depth results in increasing the code size,
which needs a larger instruction cache to reduce the cache miss rate.

Table 2 shows the scalar loop unrolling needed for matrix products in MBP
algorithm (steps (la), (2c), (3a) in Table 1, which represent the computational load in the
algorithm). It is know that the unrolling depth is limited by the number of registers
available for storing intermediate results. Assuming that n scalar registers are available
for storing the intermediate scalar results, the parameters U and V can be easily calculated
from 2U + 1= nand V2 +2V = n, respectively (see Table 2). For n =32, the depth of loop
unrolling U and V are respectively 15 and 4.

The number of clock cycles needed for MBP when using the scalar loop unrolling
technique is:

111 L 1 L L
(3+-+-+-

2
)N pL,N1N1_1-(l+-)N pN1No +(6+kl +k2)N pL,N1 +6L,N1N1_1+NpNL +6

U V V 1=1 V 1=1 1=1 I

The speedup due to using scalar unrolling over scalar code is shown in Figure 10, where the
maximum speedup is approximately 6/(3 + 1IU + 1IV + 1IV2

). In case of U = 15 and V = 4,
the maximum speedup is approximately 1.78. To show another advantage of the use of loop
unrolling, the overhead due to looping should be considered.

1 2 L 2
# Operations for loop overhead"" 2(-+-2 )NpL,NINI_I --NpNINo +O(N2

)
U V 1=1 v2

Thus, the effect of loop overhead is decreased roughly by a factor equals to the depth of
loop unrolling.

S(n = S(l-I) x W(l)
for j = 0 to NI-l step U

for i=O to Np-l
for k= 0 to Nl_rl

sL+= sf,,/ *wL
I _ I-I * I

Si,j+1+ - Si,k Wk,j+1

,,1 _ ,,1+1 * 1+1
Ui,j+ - ui,k+V-I Wj,k+V-I

8.1.+1 + = 8l+k
l* wl+11k~,J I, j+ •

L\ I + _ I-I * ,,1
Wi,j+V-I - Sk,i Uk,j+V-I

A I _ I-I *,,1
LlWi+l,j+ - Sk,i+1 Uk,j
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4.2 Performance Evaluation of the MBP using Vector ISA
The performance of the MBP can be further improved by using vector ISA. On P vector
lanes, P parallel operations can be performed per clock cycle, which accelerate the
execution of vector operations. Table 3 shows the vector pseudo code needed for the
computational expensive parts in the MBP algorithm (steps (la), (2c), (3a) in Table 1).
The number of clock cycles using vector ISA is:

4 2 L 2NpN1No (6+kl +k2) L L 6 L NpNL 6 L
(-+-)NpL.N{N{_1 -----+----NpL.N{ +PNpL.N{+-L.N{N{_I+--+-L.N{
P VL {;I P P 1;1 {;2 P{;I P P{;I

where P is the number of parallel lanes and VL is the maximum length of a vector
register. Figure 11 shows detailed calculation of the number of clock cycles needed each

step in MBP when vector ISA is used on P parallel lanes. The speedup of using vector
ISA over scalar ISA is shown in Figure 12, where the number of parallel lanes equals four
and the optimal speedup is eight. There is another factor of speedup was not considered in
Figure 11: reducing the loop overhead.

6N L 2# Operations for loop overhead"" -_P L.N{N{_I --NpN1No +O(N2)
VL 1=1 VL

Thus the loop overhead is reduced by a factor equals to the vector length, which
represents a key advantage of using vector processing over scalar processing.

To further improve the performance of MBP using vector ISA, the unrolling
technique can be considered (see Table 4). The number of clock cycles can be expressed
as follows.



3 1 2 L 1 1
(-+--2 +--)NpININ1_I-(-+--2)NpNINo

# C I
_ P PV UVL 1=1 P PV

yc es - L L L
(6+kl+k2)N ~N PN "'N 6"'NN NpNL 6"'N+-~~~ p£.., 1+ p£.., I+-£'" 1 I-I+--+-£'" 1

P 1=1 1=2 P 1=1 P P 1=1

\fot only the number of clock cycles is further decreased using unrolling technique but

oop overhead also is decreased.
. 2 1 L 2 2

# OperatIOns for loop overhead"" 2Np(--+-2-)IN1N1-1 ---NpN1No +O(N )
UVL V VL 1=1 UVL

The speedup of using both vector ISA and loop unrolling technique is greater than

Ising vector ISA only as shown in Figure 13. The maximum speedup is approximately

5.7, which represents 84% of the optimal speedup.

2(l/P + l/VL)Np (NoN, + N,Nz + NzN3 + N~4) +
2Np/P (N,Nz + NzN3 + N~4) + PNp (Nz + N3 + N4) +
8Np/P (N, + Nz + N3 + N4) +
4NpNJP+
3NP/P(N, +Nz +N3) +
4(NoN, + N,Nz + NzN3 + N~4) +
4/P(N, +Nz + N3 + N4) +
lIP(N[ + Nz +N3 + N4) +
lIP(N, + Nz + N3 +N4) +
NP/P(N, + Nz + N3 + N4) +
NP/P(N, + Nz + N3 +N4) +
liP (NoN, + N,Nz + NzN3 + N~4) +
liP (NoN, + N,Nz + NzN3 + N~4)

Steps (la), (3a)
Steps (2e)
Steps (lb), (le), (3b)
Steps (2a), (2b)
Steps (2d)
Steps (3e), (4a)
Steps (3d), (4b)
Storing b(l), b(2), b(3), b(4)
Storing db(l), db(2), db(3), db(4)
Storing Set), S(2), S(3), S(4)
Storing d(l), d(2), d(3), d(4)
Storing W(l), W(2), W(3), W(4)
Storin2dW(l), dW(2),dW(3),dW(4)
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Table 4: Vector 100DunroUinl! of the matrix Droducts in MBP
S(l) - S(I-1) x W(l) A(l) = A(I+ 1) x W 1(1+1) AW(l) = SI(I-1) x A (l)

for}=OtoN/-1 stepVL for i=O to Np-I Step V for} = 0 to N/-I step VL
for i=O toNp-1 step U for}=OtoN/-1 Step V for i=O to N/./ -I step U
for k= 0 to N/-rl for k= 0 to N/+/ -I step VL fork=OtoNp-1

s!,i:i+VL-I + = s!~1* wL:i+VL-I 8L+ = 8;,~~k+VL-I* w~t\:+VL-l L'1w!,i:i+VL-I+ = st/ * 8k,j:i+VL-l

S!+I,i:i+VL-I + = S;;Lk * wL:i+VL-l 8;,i+1+ = 8:'~~k+VL-I* W~:tk:k+VL-l L'1w!+I,i:i+VL-l+ = St~1 * 8k.t:i+VL-I

s!+U-l,i:i+VL-l + = S!;t-I,k * wL:i+VL-l 8;+V-I,i+V-I + = 8;:J-l,k:k+VL-l* W~:~-I,k:k+VL-l L'1Wf+U-I,i:i+VL-l+ =St~U-I * t5k.t:i+VL-I
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4.3 Performance Evaluation of the MBP using Matrix ISA
The logical next step is the use of matrix ISA to improve the performance of MBP. The

block mining technique (see Table 5) is used to divide the input matrices into block

instead of using the strip mining technique in vector processing. The processing of blocks

by matrix ISA deceases the total number of clock cycles because of the highly reusing the

loaded data [33]. Besides, the overhead due to looping can be neglected compared to the

corresponding values of using vector and scalar ISAs.

3Np L NpN1No (6+k1 +k2) L 6 L NpNL 6 L# Cycles =--IN/Nl-l--~~+-~~~NpIN/ +-IN/N/_1 +--+- IN/
P /=1 P P /=1 P 1=1 P P /=1

2N L 2# Operations for loop overhead", -f-IN/N/-1-3NpNINo +O(N2)
P /=1 P

The speedup of using matrix ISA over scalar ISA is very close to the optimal value,

as shown in Figure 14. The optimal value of the speedup is eight since the number of

parallel lanes is four and two operation can be chained in a lane. The main reason for

good performance of MBP algorithm using matrix ISA is overlapping the loading/storing

time by the computation time.



~ _ ~ ~ ~ ~ ~ ~ 1~

Matrix Size

...
" 7.8

17.75
III

7.7

7.65

4.4 Practical Problem: Speech Recognition
In this subsection, the perfonnance of the MBP algorithm for training a neural network on
speech recognition (a real problem) is shown using scalar, vector, and matrix ISA. This
speech recognition neural network has only one hidden layer. The input layer has 234
neurons (No = 234). The hidden layer has 1000 neurons (Nl = 1000), and the output layer
has 69 neurons (N2 = 69). The number of input patterns for training the neural network
(Np) varies from 0 to ooסס1

The maximum speedup due to scalar loop unrolling is 1.83 (see Figure 15a).
Moreover, on four parallel lanes, the maximum speedup of using vector and matrix ISA
are 5.7 and 7.77, respectively, as shown in Figures 15b and 15d. These speedup represent
71% and 97% of the optimal value, which is eight. The performance of using vector ISA
can be improved from 71% to 87% of the optimal value by using the loop unrolling
technique, as shown in Figure 15c.

On eight parallel lanes, the maximum speedup of using vector, unrolling vector, and
matrix ISA are 10.33, 11.88, and 15.36, respectively, as shown in Figures 15e, 15f, and
15g. To show the advantage of using matrix ISA over vector ISA, the speedup of using
vector ISA represents 65% of the optimal value on eight lanes, however, the speedup of
using matrix ISA represents 96% of the optimal value. This analysis shows the scalability
of using matrix ISA
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In this paper, we presented a highly efficient implementation of the Matrix Back
Propagation (MBP) training algorithm for neural networks to solve complex problems
requiring too much training time. Our implementation of MBP is based on the use of
matrix ISA on a recently proposed matrix processor named Trident processor. Therefore,
we briefly presented the architecture of this processor and its features. All the elementary
matrix operations required for executing MBP and the number of clock cycles required
are shown. We then evaluated the performance of the MBP algorithm when scalar,
vector, and matrix ISA are used on a hypothetic neural network and on a practical
problem (speech recognition). Our obtained results showed that unlike scalar and vector
ISAs even by using loop unrolling, the speedup of the matrix ISA (on the Trident
processor) can be very close to the optimal value. This is because of three reasons. First,
the processing of blocks by matrix ISA deceases the total number of clock cycles due to
the high reusing of the loaded data. Second, the overhead due to looping can be neglected
compared to the corresponding values of using vector and scalar ISAs. Finally, the
loading/storing time is overlapped by the computation time.

There are several possible future directions based on this work. By following the
same approach shown in this paper, other practical problems can be evaluated and
implemented on the Trident processor. Examples of these problems are parallel
implementation of the LM algorithm, all-pair shortest path, and sales man problem.
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Table AI: Trident execution of the conventional matrix product
(C=AxB)

MACO MACl MAC2 MAC3

,b ,b
,b ,b
,b ,b

a ,b a ,b
CIO = alO*boo+all*blO all *bll+aI2*b21 aI2*bn+a13*b32 C13 = a13*b33+alO*b03

+a *b +a *b *b +a *b *b +a *b +a *b +a *b
Clock C de 8 a ,b a a a ,b
Clock C de 9 a ,b a a a ,b
Clock C de 10 a ,b a a a , b
Clock C de II a ,b a a ,b
Results C20 = a20*boo+a21*blO C21 = a21*bll+on*b21 Cn = an *bn+a23 *b32 C23 = a23*b33+a20*b03

+a *b + *b +a * +a *b +a *b +a *b +a *b + *b
Clock C de 12 a , b a ,b a , b a ,b
Clock C de 13 a ,b a ,b a ,b a ,b
Clock C de 14 a ,b a ,b a ,b a ,b
Clock C de 15 a ,b a ,b a ,b a ,b
Results C30 = a30*boo+a31*blO C31 = a31*bll+a32*b21 C32 = a32*bn+a33*b32 C33 = a33*b33+a30*b03

+a *b +a *b +a *b +a *b +a *b +a *b +a *b +a *b

Table A2: Trident execution of a matrix product with the second matrix transposed
(C=AxR)

a ,b ,b
a ,b ,b
a ,b ,b
a a ,b a ,b
CIO = alO *boo+all *bOl all*bll+aI2*bI2 C12 = aI2*bn+a13*b23 C13 = a13*b33+aIO*b30

+a *b +a *b *b +a *b +a *b +a *b +a *b +a *b
Clock C de 8 a ,b a a ,b a ,b
Clock C de 9 a ,b a a ,b a ,b
Clock C de 10 a ,b a a ,b a ,b
Clock C de II a ,b a a ,b a ,b
Results C20 = a20*boo+a21*bOl C21 = a21*bll+an*bI2 Cn = an*bn+a23*b23 C23 = a23*b33+a20*b30

+a *b +a *b +a *b+ *b +a *b +a *b +a *b +a *b
Clock C de 12 a ,b a ,b a ,b a ,b
Clock C de 13 a ,b a ,b a ,b a ,b
Clock C de 14 a ,b a ,b a ,b a ,b
Clock C de 15 a ,b a ,b a ,b a ,b
Results C30 = a30*boo+a31*b01 C31 = a31*bll+a32*bI2 C32 = a32*bn+a33*b23 C33 = a33*b33+a30*b30

+a *b +a *b +a *b +a *b +a *b +a *b +a *b +a *b



Table A3: Trident execution of a matrix product with the first matrix transposed
(C = AtxB)

Input MACO MAC1 MAC2 MAC3

Clock Cycle 0 am. b~ an,. bm an? bn? an" bm
Clock Cycle I an,.b~ an? bnl am. boo aoo. b03
Clock Cycle 2 an? boo an,. bO[ am. boo an •• bm
Clock Cycle 3 an •• boo am. bO[ am. b02 an,. bm
Results Coo= aoo *boo Cu - am *bm C22- aoo*b02 C33- 1203*b03

CIO= am *boo C21= aoo*bol C32= a03*b02 C03= aoo*b03
C20= a02*boo C31= 1203*bm CO2= aoo *b02 Cl3 = 1201*b03
c.o= am*boo CO[= aoo *b01 C,,= an,*bn? c,,= ao,*bm

Clock Cycle 4 a.n. bin a J, bu al? bl? a", b"
Clock Cycle 5 a". bin al?bu a". b12 alO, bl
Clock Cycle 6 a'2. bin an.bu alO. bl2 a .b13
Clock Cycle 7 an. blO alO. b I al • bl2 al? b"
Results Coo= aoo*boo+ alo*blO Cu =am*bm + au*bu C22= a02*b02 + aI2*b12 C33 = a03*b03 +

CIO= am*boo+ au*blO C21= 1202*bm + Ql2*bu C32= a03*b02 + a13*bI2 al3*bl3
C20= a02*boo+ a12*blO C31= 1203*bol+ Ql3*bu CO2= aoo*b02 + alO*b12 C03 = aoo*b03 +
C30= a03*boo+ a13*blO COI= aoo*bol + QIO*bu Cl2 = aOI*b02 + au*b12 alO*b13

CI3 = am*b03 +
au*bl3
C23 = a02*bo3 +
al?*b"

Clock Cycle 8 a,n. b,n Q,J, b" a". b" a", b"
Clock Cycle 9 a,J, b20 a22. b2 a2'. b22 a20, b2,
Clock Cycle 10 a". b,n a2'. b2 a20. b22 a2l> b2,
Clock Cycle II a". b,n a,n. b, a". b22 a22. b23
Results Coo = aoo*boo+ alO*blO + Cu = I2oI*bm +au*bu + C22= a02*b02 + a12*b12 + C33 = a03*b03 +

a2o*b20 a21*b21 a22*b22 al3*bl3 +
CIO= am*boo+ au*blO + C21= a02*bO! + al2*bu + C32 = a03*b02 + a13*b12 + a23*b23

a21*b20 a22*b21 a23*b22 C03 = aoo*b03 +
C20 = a02*boo+ al2*blO + C31= a03*bm + al3*bu + CO2= aoo*b02 + alO*bl2 + alO*bl3 +

a22*b20 a23*b21 a20*b22 a20*b23
C30 = a03*boo+ a13*blO + COI= aoo*bO! + alO*bu + CI2 = aOI*b02 + aU*bl2 + Cl3 = am*bo3 +

a23*b20 a20*b21 a21*b22 au*b13 +
a21*b23

C23 = aoo*b03 +
aI2*bl3 +
a"*b,,

Clock Cycle 12 a,". b.n a". b" a'2. b32 a". b"
Clock Cycle 13 a". b.n a". b" a". b32 a30. b"
Clock Cycle 14 a". b.o a", b" a,". b" a3J, b33
Clock Cycle 15 a". b,n a.o. b" a". b" a". b"
Results Coo - aoo*boo+ alO*blO + Cu - 1201*bm + au *bu + C22 = aoo*b02 + a12*b12 + C33 = a03*b03 +

a2o*b20 + a30*b30 a21*b21 + Q)1*b31 a22*b22 + a32*b32 a13*bI3 +
CIO= aO!*boo+ au *blO + C21= aoo*bol + al2*bu + C32 = a03*b02 + al3*bI2 + a23*~3 +

a21*b20+ a31*b30 a22*b21 + a32*b31 a23*b22 + a33*b32 a33*b33
C20 = a02*boo+ al2*blO + C31= a03*bol + al3*bu + CO2= aoo*b02 + alO*bl2 + C03 = aoo*b03 +

a22*b20 + a32*b30 a23 *~I + a33 *b31 a2o*b22 + a30*b32 alO*bl3 +
C30 = a03*boo+ al3*blO + CO!= aoo*bol + alO*bu + CI2 = am *b02 + au *b12 + a20*b23 +

a23*b20 + a33*b30 a20*~1 + a30*~1 ~I *bn + a31*b32 a30*~3
Cl3 = aOI*bo3 +

aU*bl3 +
a21*~3 +
a31*b33

C23 = a02*bo3 +
aI2*bl3 +
a22*b23 +
a32*b"



Input AddO Add! Add2 Add3
ClockC cleO C =a ,b C =a ,b C =a ,b C ,b
Clock C cle 1 C =a ,b C =a ,b C =a ,b C =a ,b
ClockC cle2 C =a ,b C =a ,b C =a ,b C =a ,b
ClockC cle 3 C =a ,b cl=abb c =a 2, b 2 C =a ,b


