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and analyzed for approximating the solution of a nonlinear-hyperbolic equation in 2-space
variables. Piecewise quadratic trial functions and piecewise constant test functions are used to

finally obtain error estimate O(tit +h2
) . A numerical experiment is given which showed the

The finite volume elements, which can be termed as the generalized difference methods, are
viewed as a new approach of numerical discretization for partial differential equation[I--2]. Since
their constructions are similar to those of some finite difference methods and their convergence
can be analyzed in the framework of finite element methods, the finite volume element methods
enjoy not only the simplicity of difference methods but also the accuracy of finite elements.
Meanwhile, the finite volume element methods maintain the (local) mass conservation law.
Consequently they have been widely used in many practical computations and extensively studied
in theory. On the other hand, in many cases discrete scheme derived in terms of finite volume
element methods is asymmetric, it brings us many difficulties in both theoretical research and
realistic computations. It is usually necessary for us to seek for some suitable technique that can
transform the asymmetric scheme into symmetric one. There are many results about finite volume
element methods for elliptic problems and parabolic problems[3--5].

In the process of nerve conduction, nerve conduction signal U and its variability with
respect to time and space can be characterized the two-dimensional pseudohyperbolic equation[6]
in Mathematics. It is a class of important nonlinear evolution equation of much current interest.
There are some results about the equations[7--9]. Since generalized nerve conduction equations
are a class of nonlinear evolution which can describe lots of physical phenomenons and possess
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strong physical background, thus it is important for us to develop the studies across-the-board and
deeply either from the theoretical point of view or from the numerical analysis and practical point

of view.
In this paper, we are concerned with numerical approximation to the two-dimensional

generalized nerve conduction equation:

Utt +b(x,u,uJVUt -t!1ut -t!1u = f(u)ut - g(U),XE n,tE J.

aU aUt
-=-=O,XE an,tE J.an an

u(x,O) = Uo(x),ur<x,O) = wo(X),XE n.

{bI (x, U, Ut), bz (x, U, Ut) }, Uo and Wo are assumed to be enough smooth functions.

We make the following physical assumption (A):

When Is! - szl ~ e there exists a positive constant L, such that

I!(s!)- !(s2)1 ~ Lis! -s21·

(ii)UE C2(nXJ)n L=(W.,:)nL2(H3(Q», Ut E LZ(H3(Q»n C(W":)

In the present paper, the generalized nerve conduction equation is regarded as a model
problem and characteristic direction method is applied to deal with one-order hyperbolic part of
the equation in the process of scheme construction. The trial function space is chosen as the

quadratic element space of Lagrangian type. Finally, we obtain the desired O( t!1t+hz) error

The rest of this paper is organized as follows: In section 2, we present a full-discrete
characteristic finite volume element scheme while introducing some notations. In section 3, we
give some preliminaries. The error estimates are presented in section 4. In section 5, we carry out
numerical experiments to observe the performance of the proposed scheme. The letter c and C
will be generic positive constants and may be different each time they are used, e will be an



au av
- = -a =0, x E an,t E J.
an n

At fIrst, in order to attain very high accuracy we apply characteristic direction method to deal with
the fIrst two terms of (2.1):

Let If/(X,U, V) = ~-1-+-lb-(-x-,-u-,-v-)1-2,here we make a convention that r is defIned as

a a
the characteristic direct of If/- =-+ b(x,u, V)V.ar at

av av
If/ ar = at +b(x,u, v)Vv.

av
Then(2.I)canberewrittenas If/ ar -Av-Au+ut =H(u,v).

At=t)·+l-t). ,andforasequence ffJ).(j=1,2, N) ,defIne: a ffJ. = ffJj+\-ffJj
t ) At

av
As far as If/ ar is concerned, we consider the standard backward difference quotient error

approximation in the parameter r [7] along the tangent to the characteristic from (~, tn) to



- -
( )

v(x, tn+!) - v(x, tn) v(x, tn+!) - v(x, tn)
III X, t ! - --------. ( 2.5 )
." n+ I 2 /1t\IIX-~1+/1t2

Ji
triangulation This not greater that -, and that the ratio r of the lengths of two sides of the

2

maximum angle satisfies r E [~, J% ]. The corresponding dual decomposition of This

denoted by T*h' their detailed construction(see figure 1) is as follows: (i)Construction of K* ,
Po

1-
POi is a point on Po Pi such that POPOi ="3 POPi ' connect successively POi to obtain a

polygon K;o surrounding Po; (ii) Construction of K:, let m be midpoint of a common side

Let Jih: H!(Q) --7 Uh, then by the interpolation theory of Sobolev spaces [6], we



lrZUh= LUh(p)Zp +Luh(m)Zm'
p m

Right: Portion of two adjacent triangular elements sharing a midpoint of a common side
m and its control volume.

aK(u, w) = - L [w(p/) 1Vu .nds + w(m/) iVu ·nds]. (2.8)
/=i,j,k I I

AK(u,v,w)=- L [w(p/) 1V(u+v)·nds+w(m/) IE V(u+v)·nds]
/=i,j,k I I



.Notethat a(u, w) = LaK(u, w),A(u, v, w) = LAK(u, v, w).
K K

Before presenting three discrete norms[lO], we introduce two vectors on K related to

Uh E Uho

(Uh )O,K= (Uh (pJ'Uh (pj ),Uh (Pk ),Uh (mi),uh (mj ),Uh (mk) r·
(Uh )l,K = (Uh(pJ -Uh (mJ,uh (Pj) - Uh(mj ),Uh (Pk) -Uh (mk)

Uh(mi)-Uh(m),uh(mJ-Uh(mk) r·

Iluhll~,h= ~]uhll~'h'K = ~ 7~:1(Uh):,K B(uh)o,K 0

IUhl~h= LIUhl~,h,K = L(Uh)~K (Uh)l,K 0

K K

Where B = (boo) is a given symmetric positive definite matrix in [11].
I) 6><6

(( vt )n+l +b(x,un+l' vn+1)· VVn+1 + (Ut )n+l ,X) + A(un+l' vn+l' X)

= (H(un+l' vn+l' X), X) 0



(Un+1 -Un ) (V )At ,Z = n+l'Z,

A A

It should be pointed out that [7]x=x-b(x,Un,Vn)·At,Vn =V(x). If X

~ with respect to an. At this time, we require Vn = Vn(x· ) .

Lemma 3.1 '\Iuh E Uh' there exists positive constants CI and C2 independent of h,
such that

CI IIUh II00h ::; IIUh 110 ::; c211Uh II00h .

cllUh Ilh ::; IUh II ::; c21Uh II h •
o 0

clllUh II00h ::; IIJr:Uh 110 ::; c211Uh II00h



For the proof ofthe above two lemma, we can refer to [10][11].

Lemma 3.2 (the trace theorem)[12]Suppose that 0. is a bounded region with a Lipschitz

continuous boundary an, then there exists a positive constant C, such that,

I I

IluIIL2(ilQ) ~ Cllull~2(Q) '1Iull~l(Q) , "ii/u E HI (0.). (3.5)

Ilgh Ilooh ~ C Iluh 110,h.

11n": gh 110~ c Iluh 110'

Igh Iloh ~ C IUh Iloh .

triangular element K, a relationship between gh and Uh always holds: (gh )O,K =

B , finally we both obtain a positive definite quadratic form related to thevector (U h ) O,K . Thus

IIUh II00h is equivalent with Ilgh II00h' there exists a positive constant C, such that Ilgh II00h ~

Then 11n":gh 110 ~ C IIgh IIDoh' Ilgh II00h ~ C IIUh Il0oh' the desired result follows from

the two inequality. This completes the proof of (3.7).

By the elliptic condition (lemma3.2), there exists a positive constant M , such that

Where G = (hij )5><5 and is a matrix defined in [11], moreover Ihij I ~ S .m(K). Let



By the above two estimate, it is an easy matter to deduce that I!!h Il,h,K ~ C IUhIl,h,K . This

completes the proof of (3.8).

IA(u, W,1l":~h) - A(uh, W,1l":~h)1 ~ C(h211u1I3 + l1l"hU- Uh II )IVh II,h' ( 3.9 )

IA(u, W,1l":~h) - A(uh, W,1l":~h)1 ~ C(h211u1l3 + l1l"hU- Uh11)IVhII,h' ( 3.10 )

-L [(~h(ml+2)-~h(PI»' bV(u-uh)·nds+(~h(PI)-~h(ml+I»·
l=i,j,k /PII+l

bV(u -uh)· nds+ (~h(ml+2) -~h(ml+I»' r V(u -uh)· nds].
/~~ ~Q

Applying holder inequality, the trace theorem(3.5), together with interpolation estimate and
inverse property of finite element methods, we deduce that

IbV(U-Uh)·nds\
/PII+l

~ 1/PIIJV(U-1l"hu).nlds+ bIV(1l"hU-Uh)·nlds

I

~ h 2 (IIV (u -1l"hU )IIL2(Q,PII+l)+ IIV (1l"hU- Uh)IIL2(Q,PII+l)

I I I
~ h2 (Ilu -1l"hUlll1(K) ·lIu -1l"hUII12(K)

I I

+IIV(1l"hU -Uh)II~2(K) +IIV(1l"hU - uh)1111(K)

~ C(h2I1uII3,K + l1l"hU- UhII,K)'

Itisobviousthat l~h(ml+2)-~h(PI)I~!~hllhK ~CIVhllh .
" "K

By the similar technique, error estimate of other terms can easily establish, thus we further
have the following result:

IA(u, W,1l":~h) - A(uh, W,1l":~h)1 ~ C(h211u1I3 +11l"hU- uhll)lvhll,h'

An argument similar to the one in the above case implies that

IA(u, W,1l":~h) - A(u, Wh,1l":~h)1 ~ C(h211w113 +11l"hW- whll )!vhll,h'



Substracting (2.17) from (2.15) and using (2.16) and (2.18),we have

(qn+l-qn 'V)=(]: -B 'V)+(?n-qn 'V)+(Bn+I-8n 'V)
!i.t 'A, ~n+l n+l'A, !i.t' A, !i.t' A,

A

aV V -Vn+(----!!±L + h(x U V) .VV - n+l 'V)at ' n' n n+l !i.t' A,

7

+(H(Un, VJ - H(un+l' Vn+1),Z) = LT;n+l(X).
i=1

(O"n+l-O"n 'V)=(Tln+l-Tln 'V)+(]: _() 'V)
!i.t 'A, !i.t' A, ~n+l n+l' A,

IIw.. ~ w. II:,;II~t w,dtll: ,; ~ IIW, II~«,.".•,),L') ,

Taking Z = !i.ttrZq in (4.1) and summing from n = 0 to R -1, then we will use_n+l
different technique to deal with every term in the right hand side of the equality (4.1).
For the fIrst term, it follows from (2.6) and (3.7)that

R-I R-I R-I
L~n+I(At1TZfn+l) = At L (qn+1- On+!,1TZfn+l) ~ CAt L (1Iqn+lll~+ IIOn+III~)
n=O n=O n=O

R-I

~ C(h
4 +AtLllqn+lll~)·

n=O

It can be easily verifIed [15] that II qk -;./ k 110 ~ c Ilqk III' using the initial value condition(B),



R-I R-I

~ C(~tLllqn+lll~ +hLllqnll~ +&2 +h
4
).

n=O n=1

I

Set l{/(X,U n' Vn) = (l + Ib(x, Un ' Vn)12)2 , the characteristic direction corresponding to

a-+b(x,Un, Vn)· V is denoted by f'(x,Un,Vn)' we can getat
aVn+1 dvn+1 b( U V) '£7

l{/ ar =~+ X, n' n . vVn+l·

In terms of a taylor expansion with an integral remainder, we then arrive at

R-I

~ C(&2 +&Lllqn+III~).
n=O

In the following further analysis, we need two induction hypothesis (C) as follows:

(1) There exists a positive constant M , such that sup IIVnIlo.~~ M.
O<n<R

sup Ilwn+1- Wnllo.~~ CO'
O<n<R-l

above two results.
For n = 0 , integrating inverse property and interpolation estimate of finite element methods,

together with & = O(h3
) and initial value condition(B), as a result, we can obtain

IIVollo.~~ IIVollo.~+llvo -1thVollo.~ +111thVO- Vollo,~~ C1+C2h2 + C3h ~ M.

IIwt - Wollo.~~ IIwl-wollo.~ +llwo -Wollo.~ ~ c1M!2 +llwo -1thWollo.~ +111thWO -Wallo.~



Assume that sup IIVnllo,oo$; M, sup Ilwn+1- wnllo,oo $; Eo' then we give a proof for
Q,;n';R-I O';n';R-2

while taking into account error estimate of the other terms.

Noticing that bi(x,l,s) are E-continuous with respect to I and s respectively, it leads to

$; CM~(llun+1 -unll~ +IIUn -Unll~ +IIVn+1-Vnll~ +IIVn - vnll~ +llqn+III~)
n=O

R-2 R-I

$; C(~t2 +h4 +MLII(jn+lll~ +~tLllqn+III~)·
n=O n=O

Similar to lemma(3.5), we have

IA(un+l, vn+1,1tZfn+l) - A(U n+I' Vn+1,1tzt+I)1
$; IA(un+1' vn+1'JrZt+l) - A(U n+1'vn+1'JrZt+1 )HA(Un+1' Vn+1'JrZf.+1 ) - A(U n+1'Vn+l' JrZt+I)1

R-I R-I

L1;;n+1 (MJrZfn+l) = ~t L (A(un+1' Vn+l'1tZt+l) - A(Un+1' Vn+I'1tZfn+I))
n=O n=O

For sufficiently small ~t and h, a combination of riangluar inequality and assumption (A)
and induction ypothesis(C) results in

IH(Un, v,,)- H(un+l, vn+I)1~1v,,1'1!(Un)- !(Un+1)1+Q!(Un+l)1+ 1) . Iv" -vn+11+lg(Un)- g(un+I)1

$; (~IIVnllo,oo+~)(IUn -unI+lUn+1 -Unl)+ (1!(un+1)1 +1)(IVn -vnl+lvn+l-vnl)



R-I R-I
LI:,n+I(Mtr;~n+l) = /),.tL (H (U n'Vn) - H (un+l,vn+I),tr;f.+I)
'1=0 n=O

R-2 R-I
~ C(h4 +/),.t2 +MLII(jn+lll~ +MLllqn+III~)·

n=O n=O

Now, we turn to the error estimate in the left-hand terms of (4.1), recalling the discrete norms
1

of (2.12) and using ab ~ _(a2 + b2
), we obtain

2

~(qn+~~qn ,/),.ttr;f.+I) ~ ~[llqn+III~.h-~(llqnll~.h+llqn+III~.h)]

sides of (4.2) and sum from n = 0 to R -1.
We proceed in analogy with (4.11) and conclude that

R-I

~ C(h4 +/),.tLII(jn+III~)·
n=O

R-I R-I R-I
L(qn+I-Bn+l'Mtr;Qn+l) ~ C(h4 +LltLII(jn+lll~+/),.tLllqn+III~)·
n=O n=O n=:()

() un+1-u .. 1 [,+1Let rn+1 = U, n+1 n , It ISeasy to see [6] that rn+1 = - (t - t )uttdtMM. n

We have the following results

Ilrn+lll~~ /),.~2(t'lt-tJlluttllo)2 ~M t'lluttll~dt



- - 2L ((U,)n+1- d,Un,atJrZQn+l) ~ C(at2 + at L IllTn+1 110) .
n=O n=O

R-I R-l
IllTRII~~ C(h4 +at2 +lllToll~+at LlllTn+lll~+at LII~n+III~)·

n=O n=O

R~ R~

IllTRII~+II~RII~~ C(h4 +at2 +lllToll~+11~011~+(at+h)LlllTn+lll~ +(at+h)LII~n+III~)
n=O n=O

Consequently, the discrete Gronwall inequality argument and initial value condition

(B) produce

Combining (4.18) and (2.6) lead to

sup (11Un-Unll~ +IIVn - Vnll~)~ C(at2 + h4
).

OSnSN

Where positive integer R is not greater than N.
It remains to check the induction hypothesis (C),

For n=R,

sufficiently small at and h, the following error estimate holds

sup (11Uk -Ukllo +IIVk - Vkllo) ~ CCat+ h2
).

OSkSN

The characteristic finite volume element method is used to approximate the following nonlinear
hyperbolic equation:



1
u" -/:!,.u, -/:!,.u = r(x,t),XE n = (O,Jr)x(O,Jr),tE (0,-].

2

1
u =O,u, =O,XE an,tE (0'2"]'

squares, ending up with a square mesh; Then we further decompose it into right triangulation by

drawing the dragonal of each small square.Jr/6 and 0.1 respectively denote space mesh size

h and time step size /:!"t.
Two generalize difference methods are used to solve that problem.

(I) The characteristic finite volume element method on triangular meshes denoted by CTFVM.
(2) The bilinear finite volume element method along characteristics on quadrilateral networks

denoted by CQFVM.
The numerical results and corresponding true solution (TS) are partly given in Table 1, the

M

maximum absolute error(MAE)( maxlu; -V;I) and the average absolute error(AAE)
,=1

«tlu; -V;I)1M) is also provided in Table 2. It is easy to see that the finite volume element

method on the triangular mesh behaves better than the one on the quadrilateral mesh. Although the
accuracy on trianglar grid is greatly improved, the algorithm is slightly more complicated than the
case that the mesh is quadrilateral.

(XpYj) CTFVM(Vh) CQFVM(Vh) TS(u)

(Jr/6,Jr/3) 0.5580333 0.5692364 0.5556136

(Jr/6,2Jr/3) 0.5591276 0.5692375 0.5556137

(Jr/3,Jr/3) 0.5570505 0.5692383 0.5556137

(Jr/3, Jr/2) 0.6456243 0.6572987 0.6415675

(2 Jr/3, Jr/3) -0.5586519 -0.5692382 -0.5556135

(2Jr/3, Jr/2) -0.6456393 -0.6573002 -0.6415672



(5tt/6, tt/3) -0.5580313 -0.5692373 -0.5556138

(5tt/6,2tt/3) -0.5596563 -0.5692372 -0.5556139

MAE AAE

CTGDM
2.0317098E-02 2.4786643E-03

( u )

CQGDM
2.7010024E-02 9.4673503E-03

( u )
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