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The Characteristic Finite Volume Element Methods
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Abstract : In the paper, a fully discrete characteristic finite volume element method is introduced

and analyzed for approximating the solution of a nonlinear-hyperbolic equation in 2-space
variables. Piecewise quadratic trial functions and piecewise constant test functions are used to

finally obtain error estimate O(At + hz) . A numerical experiment is given which showed the

method is practicable.
Key words : nonlinear hyperbolic equations, characteristic finite volume element method, error

estimate, numerical experiment.

1. Introduction

The finite volume elements, which can be termed as the generalized difference methods, are
viewed as a new approach of numerical discretization for partial differential equation[1--2]. Since
their constructions are similar to those of some finite difference methods and their convergence
can be analyzed in the framework of finite element methods, the finite volume element methods
enjoy not only the simplicity of difference methods but also the accuracy of finite elements.
Meanwhile, the finite volume element methods maintain the (local) mass conservation law.
Consequently they have been widely used in many practical computations and extensively studied
in theory. On the other hand, in many cases discrete scheme derived in terms of finite volume
element methods is asymmetric, it brings us many difficulties in both theoretical research and
realistic computations. It is usually necessary for us to seek for some suitable technique that can
transform the asymmetric scheme into symmetric one. There are many results about finite volume
element methods for elliptic problems and parabolic problems[3--5].

In the process of nerve conduction, nerve conduction signal £ and its variability with
respect to time and space can be characterized the two-dimensional pseudohyperbolic equation[6]
in Mathematics. It is a class of important nonlinear evolution equation of much current interest.
There are some results about the equations[7--9]. Since generalized nerve conduction equations
are a class of nonlinear evolution which can describe lots of physical phenomenons and possess
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strong physical background, thus it is important for us to develop the studies across-the-board and
deeply either from the theoretical point of view or from the numerical analysis and practical point
of view.

In this paper, we are concerned with numerical approximation to the two-dimensional
generalized nerve conduction equation:

u, +b(x,u,u,)Vu, —Au, — Au = f@u, —gu),xe Q,te J. (11)
u _ou,

on on

u(x,0) = uy(x),u,(x,0) = wy(x),x€ Q. (13)

=0,xe0Q,te J. (12)

‘Where Q=[0,1]2,J =[O,T],BQ denotes the boundary of Q. b(x,u,ut)=

{bl (x, u,u, ),b2 (x, U,u, ) } , Uy and W, are assumed to be enough smooth functions.
‘We make the following physical assumption (A):

@ f(s),g(l) and b,(x,s,1)(i=1,2) arebounded, and & -continuous with
respectto § and I respectively. We give the definition of & -continuous function f (s):
When |5, —S,|S& . there exists a posiive constant L, such that
|F ()= F(sp)| S Lls, — 5,

due CHQXNHNL WHNLH>(Q)), u, € P(H>(Q)YNL W)

u, € I'(H(Q))-

In the present paper, the generalized nerve conduction equation is regarded as a model
problem and characteristic direction method is applied to deal with one-order hyperbolic part of
the equation in the process of scheme construction. The trial function space is chosen as the

quadratic element space of Lagrangian type. Finally, we obtain the desired O(At + hz) error
bound. The primary advantage of this method is that: First, it involves only two time levels and

maintains the mass conservation law. Second, the estimates of U, is obtained at the same time.

Since U, is also an important physical parameter in practice, this scheme avoids arising two
times error by using the common characteristic difference method to approximate U at first, then
to approximate U, .

The rest of this paper is organized as follows: In section 2, we present a full-discrete
characteristic finite volume element scheme while introducing some notations. In section 3, we
give some preliminaries. The error estimates are presented in section 4. In section 5, we carry out
numerical experiments to observe the performance of the proposed scheme. The letter ¢ and C
will be generic positive constants and may be different each time they are used, € will be an
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arbitrarily small positive constant.

2. Some Notations And Full-Discrete Characteristic Finite Volume
Element Scheme

Let V=U, in (1.1), in order to construct finite volume scheme, added V = U, to the
both sides of (1.1). Then (1.1) can be written as:

v, +b(x,u,v)Vv—Av—Au+u, = Hu,v),x€ Q,te J. (2.1)

u =v,xe Q,teJ . (22)

Where H (u,v)=(f (@) +Dv—g(u).

The initial and boundary condition are given by

Ju Odv

—=—=0,xedQ,te J. 2.3

on on e € (23)
u(x,0) =u,(x),v(x,0) = wy(x),x€ Q. (24)

At first, in order to attain very high accuracy we apply characteristic direction method to deal with
the first two terms of (2.1):

, 2
Let l//(x, u,v)=4/1+ |b(x, u, v)| ,here we make a convention that I is defined as

d 0
the characteristic direct of ¥ — =—+b(x,u,v)V.

o ot
‘We have
Jdv  ov
—_—=— Vv.
T 3 +b(x,u,v)Vy

v
Then (2.1) can be rewritten as ¥ —— — Av—Au+ u, = H(u,v).
oI’
Now, let N denotes a positive integer such that NAr =T , t = nAt and

At=tj+1—tj , and for a sequence ¢j(j=1,2, ...... N) , define: 8t¢j =M

Ar
9, =9(t).

v
As far as l//ﬁ is concerned, we consider the standard backward difference quotient error

approximation in the parameter I'm along the tangent to the characteristic from (x 3 n) to

29
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('x’tn+1)
) = V(X1 ) — V(L
v n) W) ) VL) V) SV
or \/|x—;c|2 +Ar At
Where X =Xx—b(x,u_,,,V,, )AL.

Subsequently, we need briefly explain some standard notation from this paper. Setting T B

be a quasi-uniform triangulation of Q, Th consists of finite number of triangular elements

K 0" Q being the barycenter of triangle. Suppose that maximum angle of each element of

/4
triangulation Th is not greater that E , and that the ratio /" of the lengths of two sides of the

,2 3
maximum angle satisfies Y/ € [ 5, E] The corresponding dual decomposition of Th is

denoted by T; , their detailed construction(see figure 1) is as follows: (i)Construction of K ;o ,

suppose that D, € Qn (Q.h denotes the set of the vertexes of all the triangular elements),

1
Dy; isapointon Do P, suchthat Py Py = — Py P, , connect successively Dy, to obtain a

3

polygon K ;0 surrounding  P; (ii) Construction of K :, , let m be midpoint of a common side
of two adjacent triangular elements, a polygon K ,» Surrounding m is obtained by connecting
successively p20Q03Q2Q23 melel Q01 Doy Where Q01 denotes the midpoint of
D2 Py »other points are  also similar.

The trial function space U , is chosen as the lagrangian quadratic element space related to
Th , the corresponding basis function are the piecewise quadratic polynomials. The test function

. . » . i

space Vh is taken as the piecewise constant function space on Th .

1
Let T,: H (.Q) U - then by the interpolation theory of Sobolev spaces [6], we

obtain

||u —n‘hu"j < Ch* ||u||3 ,i=0,12,ue H*(Q). (26)
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We define the interpolation operator 77, " U P Vh by

Zu, = u,(P)X, +. u, (M, (27)
p m

Left: Portion of triangulation sharing a common vertex F, and its control volume.

Right: Portion of two adjacent triangular elements sharing a midpoint of a common side
m and its control volume.

Where Y » and ), arerespectively taken as the characteristic function corresponding to

K and K;l

P

Define @, (u, W), AK (u, v, W) as follows:

ac,w)==" [w(p,) [ Vu-nds+wim) [ Vu-nds). (28)

I=i,j k

A (u,v,w)=— Z [w(p,)L V(u+v)-nds+w(m,)IE V(u+v)-nds]

I=i,j.k
(29)

where we V,,(u,v)e H' (K)XH'(K).

See figure 2: € = Py Ppa » B = P10 @12QQi Pranss - VK€ T,

Where i+1=j,j+1=k,k +1=i.n is the unit outer normal vector on the boundary
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Note that a(u, W) =D ay (U, W), AW, v, W) = 3 A (,v,W).
K K

Before presenting three discrete norms[10], we introduce two vectors on K related to

u,el,.
(uh )O,K = (uh(pi )’ u, (pj )’ uh(pk ), u, (mi )’uh (mj), u, (mk ))T (2.10)
(uh )I,K = (uh(pi)—uh(mi)’uh(pj)_uh(mj)’uh(pk)_uh(mk)

w, (m,) — 0, (m, ), 4, (m) =, () (211)

Any a triangular element K, .

K
"uh "(2),h = ;"uh "(z),h,x = Z 71n9(44) (u, )Z,K B(u,)o - (212)
K

|uh |12h = ;Iuh |12,h,K = Z(“h )ITK (uh )1,K . (213)
K

|2 _l 2 + 2
"uh|1,h - |uh"0,h |uh|1,h‘ (2.14)

Where B = (bl)

66 is a given symmetric positive definite matrix in [11].

Finally, setting £ =£,_,,, then the corresponding variational problems for (2.1) and (2.2)

are:

((vt ),,+1 + b('x’ un+l s vn+l) ) VVn+1 + (ut ),,+1 ’ Z) + A(un+l ’ vn+1 ’l)

=(H Wy Vs X X) - (2.15)
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@, )= Wy 0., —(1,), > 20)- (2.16)
WhereVZ S Vh .

At the same time, one sees that the full discrete characteristic finite volume element

schemes for (2.1) and (2.2) read as: find U n +1,Vn 3 € U oo such that

v. -V u.-U
(22—t )+ (2, D)+ AU s Vs ) =(HU,.V, ). ) 217)
At At
U, -U
n+ n, = V+ , . 2.18
(——At D=V, ) (2.18)
WhereVlEV ., n=0,1,2........ N-1.

Assure that U o and V0 respectively denote some approximation of U, and V, in
U It satisfying :
Uy —uy, 2)=0,(Vy—w,y, 1) =0. (2.19)
It should be pointed out that [7];c= x=b(x,U,,V,) ALV, =V(;c). It x
stays out of Q. then using mirror reflection technique, we can find the symmetric point X" of

X with respect to 0€2. At this time, we require Vn = Vn (x* ) .

3. Preliminaries

Lemma 3.1 Vuh eU ,» there exists positive constants €, and C, independent of h,

such that
¢ [ Ilo,h <], <, ||uh||0,h' 3.
& funl, <heal < il - (G.2)
¢ |[us ||0’h < ||7r;uh||0 <c, ||uh||0,h . 33

Lemma3.2 Yu » € U # » there exists a positive constant O, such that,

* 2
a(u,,mu,) = aluh |1,h . (3.4)
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For the proof of the above two lemma, we can refer to [10][11].

Lemma 3.2 (the trace theorem)[12]Suppose that Q is a bounded region with a Lipschitz

continuous boundary o , then there exists a positive constant C, such that,

1 1
||u||L2(BQ) S C"“"ZZ(Q) ‘"“"fmm Vue H'(Q). (-5

Lemma 33 [13)[14] Vu, € U,

el < €l - (6
|z, < Sl @)
|Eh |1,h < C|uh|1,h' 3.8)

Where U, € U 4» We introduce a one-to-one operator mapping U, to U, , such that for any
triangular element K , a relationship between U, and U, always holds: ( U, )0 =

D(uh )O,K . D= (dij )6><6 is a non-singular matrix defined in [13] and V, and U, satisfy

Vo) = le”gii—f}w,, Y« Bt )z

Proof: Using the relation of U, and U, , the identity (2.12) and the positive definite matrix
B, finally we both obtain a positive definite quadratic form related to thevector (i h )0 k - Thus
"uh "Qh is equivalent with “_L_t_ i "()’h , there exists a positive constant C , such that "_Li h |I0,h <

Clltal -

Then

R 3
ﬂ'hghllo < Cllﬂhuo,h ,"!h"()'h < C||uh "0,}! , the desired result follows from

the two inequality. This completes the proof of (3.7).

By the elliptic condition (lemma3.2), there exists a positive constant M , such that

2 1 . M
|Eh ILh,K < -C; ay (U, Tyu,) = m(“h )1TK Gu) k-

Where G = (hij )5)<5 and is a matrix defined in [11], moreover

hy| < S m(K). Let
S beafixed positive constant, m(K ) denotes area of triangular element K . Clearly

we use holder inequality to obtain
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M

am(K) (w, )ITK G(Eh)“( = C|uh |l,h,K Iﬂh |1,h,K'

By the above two estimate, it is an easy matter to deduce that Ig h |1 hK <C |uh |1 hK" This

completes the proof of (3.8).
Lemma34. Vu, ,w,,v, €U,
|A(u,w, v, — A, W, T, v, )l <C(n ||u||3 +|mu—u, |1)|vh |1,h. (39)
|A(u, w, v, )~ A, , W, T, v, )I < C(R |ul|, + | —w, vl (310)

Proof: A (U, W, T, V,) — Ay (U, W, T, v,) =

- Z [(Vh (m1+2) YV, (Pl )) V(u uh) nds + (Vh (Pl) Y, (m1+1))

I=i A, k 1Pit+1

%V(u —u,)-nds+ (v, (m,,)—v,(m,,))- LQ V(u—u,)-nds].

Applying holder inequality, the trace theorem(3.5), together with interpolation estimate and
inverse property of finite element methods, we deduce that

V(u—-u,) nds

1P

< %W(u — 7,u)-n|ds + Eﬁ;lv(”"u —~u,)-nlds

1
<h?(|Vu—mu)|

+||V(7z'hu -u,)

(Qpu) |L2(lell+]))

1 1 1

<12 (g, =l

H(K) H2(K)

+||V(7tu uh)" +||V(7z‘u uh)"

I} (K) H' (K)

< C(h2 "u"3,x + |7thu — U, |1,K)

It is obvious that |_1_1_h (m,)—v, (P1)| < |Xh| < C|Vh|

1L,h,K LaK"

By the similar technique, error estimate of other terms can easily establish, thus we further
have the following result:

A w, 7, v,)~ Ay, w, 7, v,)

2
<C(h ||u||3 +|7l’hu — U, |1)|vh |1,h
An argument similar to the one in the above case implies that

|A(us W, 7T, V) — A(u,w,, T, v, )| < C(h2 ||W"3 +|7[hw_ Wh |1)|vh |1,h'
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This completes the proof.

4. Error Estimate
Note that U —u =O'—77,V—V=«f—9,where O'=U—7thu,7]=u—ﬂ'hu,

E=V—-mv,0=v—mv.
Substracting (2.17) from (2.15) and using (2.16) and (2.18),we have

§n+1 6 5 5
At

n

,Z) (§n+1_ n+1’Z)+( ’Z)+( "+1 Az 9Z)

(Dt p U,v,)-V ol

(at (x, )-Vv,, A —. %)

H(OOX U415 V,) — B, U V) - V0, 1)+ (A5 Vg 2) — AU 0 Ve 1)
7

HHU,,V,) = H(W, 0,9, ) = 2 T (x). @)

i=1

Subtracting (2.16) from (2.18) yields

0,1~0, Mnni 77
( n+At - ,x) ( = . ’Z) + (§n+l n+1’Z)
() — O, ). 42)

The following estimate result, which can be easily proved, will be used in our analysis.
2 2
W, —w 1 fa
vvens I e f w,dt "W "L 2 (b W) @3
At At n 0 n¥n+l

Taking J = Atﬂ;énﬂ in (4.1) and summing from =0 o R—1, then we will use

different technique to deal with every term in the right hand side of the equality (4.1).
For the first term, it follows from (2.6) and (3.7)that

2 2
+10 0)

n+l

ZT"“(Am’ £ )= AtZ(.fm G,y VS CAY (€
n=0

n+lllo
n=0

<Ch*+ AtZ

(44)

n+t |0

It can be easily verified [15] that é‘%j‘— < C||&||,- using the initial value condition(B),
0

together with At =O(h’) and inverse property of finite element, we find
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Soraimg, ) =-ag Ete A &)
n=0
< C(Azf:[lgm : +h*). (45)
n=0

Deduce by an analogy for the second term estimate and use (4.3), we obtain

5 6 .
ZT"”(A”’ o) = A’Z( LN TINE A’Z[( LRI
n=0 n=0 n=0
0 n 4 & 2
HE—,m¢ +||9 || +|€., )SC(h +ArY |l @-6)
n=0
Set y(x,U,, oV, 2 the characteristic direction corresponding to
§—+b(x,U",Vn)-V is denoted by I'(x,U,,V,), we can get
t
ov,,, v,
wtl — — o 4 p(x,U,,V,)-Vy,
L

In terms of a taylor expansion with an integral remainder, we then arrive at

ZT"*‘(Am.f )= AtZ(y/ Yo YTV geg )< CAtZ(

n+1

n=0 m n=0 At
1 ot , OV ’ v &l 2
+— [x(@—x{ +@@)-1,)? <SCA |— +ArY [ all)
|At J: ‘ ar, | oorpa a0
) R-1 2
SCAF + ALY .l - C%))
n=0

In the following further analysis, we need two induction hypothesis (C) as follows:

(1) There exists a positive constant M , such that sup "V ||0 <M,
O<n<R

(2) Vg, >0, when Ar and h are sufficiently small, we have.

-W

n+l n

sup
O<n<R-1

.o <E§,.

Where w=u (or v ), W=U (or V ), we will employ mathematical induction to proof the

above two results.
For n=0, integrating inverse property and interpolation estimate of finite element methods,

together with Az = O(h®) and initial value condition(B), as a result, we can obtain
Vollo... < IVoll.. + Vo = 7ol +17uv = Vill,.. S Ci + CA* +Cih< M.

v = Woll,... < Wi = woll,.. +lwo =Woll,.. < CAe 72 4w - Wl + |7wo ~Woll,...

37



38 Zhoufeng Wang Zhiyue Zhang

SCh+C,h +Ch<g,

Assume that sup [V |l <M, sup |w,, —W,[, < &.then we give a proof for
0sn<R-1 ’ 0<n<R-2 ’

sup W, —W, “(),M <&,

0sn<R

V.lo SM, sup
’ 0snsR-1
while taking into account error estimate of the other terms.

Noticing that b,(x,l,s) are &-continuous with respectto ! and s respectively, it leads to

Ib(x’ un+1 ? vn+1) - b(‘x' Un 4 Vn )

<[bOt Uy Vi) = (U, v, )|+ (U, 0,,) —B(X,U,LLV,)

<L +L,

Which together with (4.3) and (2.6) and initial value condition(B) implies

un+l _Un vn+l —Vn M

R-1 R-1
ST M ) =AY ((B(x,u,,,,.) =bU, V)V, ;& )
n=0 n=0
2

2 2

R-1
< CAtZ( un+l _Un 0 + vn+1 _Vn 0 + fnﬂ ())

n=0
< L= 2 2 2 2 2
_CAtZ(uM—u" b e =UL [l +livess = Vally HIva = Vil + nnlly)

n=0

) . R=2 " R-1 )
SCAP +h* +A1Y ol + A €.l - (4.8)
n=0 n=0

Similar to lemma(3.5), we have

|A(un+1 ’ vn+l 4 ”; f ) - A(Un+1 4 Vn+] 4 7[}: ;_,”,1)

Zn+l

<A Vs T E D - AUV TELD

§n+1 1)' |§n+l|1,h N

+ |A(Un+l > Va1 ”;i,,ﬂ )= AU sV T, énﬂ)

<CH

2
3+h

+

O,

n+l

M

un+l vn+1

3

We use lemma(3.1), At =O(h’) and inverse property of inite element to conclude that

R-1 R-1
Z(; L amé )= At; (A2 Ve1: 06~ AU Voo TS D)
‘ R-1 2 R-1 5
sCh* +nY o, + B2 JEA ) - (4.9)
n=0 n=0

For sufficiently small Az and h, a combination of riangluar inequality and assumption (A)
and induction ypothesis(C) results in

|HW,.V,) - H(pov, )| SV, || f U - F 0,

v.

+( ()

+1)-

‘/n - vn+1

+gU,)-g(u,.,)

+ +|v v

ntl~ ¥n

<LV,

0,00 + LZ)( Un - un un+1 - un

)+ (| ()| +1(

Vn - v'l

)
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+

).

This together with initial value condition (B) yields

<c(u, Vst =V

nel ~ ¥n

V —v,

n

+ Up i1 —u,

ZT"*‘(Amhﬁ )= AtZ(H(U V)= H V) 8D

Zn+l

n=0
2 2 2
nllp gn 0 + e n+l o
R-=2 2 R-1
SC* + AP + ALY |6, + A DNl (4.10)
n=0 n=0

Now, we turn to the error estimate in the left-hand terms of (4.1), recalling the discrete norms

1
of (2.12) and using ab < —(a2 +b?), we obtain

2

R-1 1
z(;(g'”'l 6" Atﬂh £n+1) 2 ZO[||§M1"(2),h —5( 6 ;h + §n+1 0,k )]
R-1
Z%Z( Eon (2),,,— f 2, ). @.11)

n=|

At the same time, choosing } = A7, 0., in (4.2), we show the error estimate of two-hand

sides of (4.2) and sum from n=0 to R-1.
We proceed in analogy with (4.11) and conclude that

Z( =% Apto )2 Z( Ovalen—loule) - 4.12)
n=0
By lemma (2.6) and (4.3), we have
R-1 R-1
A . 1 ey 2 2
Z(‘;(—N AT O, S CAth(;(EJ: Il de +oal)
<C(h* +Atz o, (4.13)
The following proof parallels to that of (4.4)
R-1
Y &, -8, A7, 0,,) <C(R* +Atz o, +Atz » (4.14)

n=0

ra= (ut )n+1 -

We have the following results

—u n
zl_—n it is easy to see [6] that 1, = ~ [ (t—t,)u,dt

r

n+l

l < i )2 <A f' e, |t
Consequently,
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- R-1
ﬁ (@), — O, AT, 0,.) SCALP + Y |0l - (4.15)
n=0 n=0
By virtue of (4.12)-(4.15), we have
R-1 R-1
lowl; < Ct* +ar* +|o [} + A Y |lo,., Py Ll (4.16)
n=0 n=0

Collecting (4.4)-(4.11) and (4.16),let Ar and h be sufficiently small, we can obtain

§n+1 |(: )

R-1 R-1
lowll +[éell < €0k + A7 +o | + 16l + s+ W2 ol + Ar+ W2

4.17)
Consequently, the discrete Gronwall inequality argument and initial value condition
(B) produce

lowll +lg:l; < Ch* +Ar%). @.18)

Combining (4.18) and (2.6) lead to

2
un_Un 0 vn_Vn

y<C@r +hY). (4.19)

+

sup (|
0<nsN
Where positive integer R is not greater than N.

It remains to check the induction hypothesis (C),
For n=R,

Ve "o,m <|ve "o,m +|ve —Va "o,m SC+GhsM.
We also see that for n=R—1,

W - wR"o,m <[we = Wi "o,m +[ Wiy = Wiy "o,w $&-
Theorem4.1 : Let u, v be the solutions to problem(2.1)-(2.4), {U, }ry, {V.}ip tothe

characteristic finite volume element scheme (2.17)-(2.19). Suppose that initial value U, and V,
satisfy the conditions(B), i.e.,

1o = muoll, + Vo = Zuvo ), < ClAL+ 1),

if partition parameters satisfy At =O(h>), provided initial assumption(A) is satisfied, then for

sufficiently small Af and h, the following error estimate holds

sup (Ju, ~U,|l, +|v. ~Vill,) < CAr+ ). 4.20)
0<k<N

5. Numerical Experiment

The characteristic finite volume element method is used to approximate the following nonlinear
hyperbolic equation:
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u,—Au, —Au=r(x,1t),xe Q=(0,7)x(0,7),t (O,%] .
u(x,0) = sin 2x, sin x,,u, (x,0) =—sin 2x, sin x,, x€ ..
u=0,u, =0,xedQ,te (0,%].
Where the true solution u = e~ sin 2x, sinx,, r(x,#) =u = ™ sin 2, sin x, . To obtain

numerical solution to this problem, we place over Q= [0,7]1x[0,7] 6X6=36 uniform
squares, ending up with a square mesh; Then we further decompose it into right triangulation by
drawing the dragonal of each small square.Z/6 and 0.1 respectively denote space mesh size

h and time step size Af.
Two generalize difference methods are used to solve that problem.
(1) The characteristic finite volume element method on triangular meshes denoted by CTFVM.
(2) The bilinear finite volume element method along characteristics on quadrilateral networks
denoted by CQFVM.
The numerical results and corresponding true solution (TS) are partly given in Table 1, the

M
maximum absolute error(MAE)( m_a}x |u,. -U ,.| ) and the average absolute error(AAE)
M
((Z|ui -U, |) / M) is also provided in Table 2. It is easy to see that the finite volume element
i=1
method on the triangular mesh behaves better than the one on the quadrilateral mesh. Although the

accuracy on trianglar grid is greatly improved, the algorithm is slightly more complicated than the
case that the mesh is quadrilateral.

Table 1. The comparison between CTFVM and CQFVM with ¢ =0.3.

(x,y;) | CTEVM(U,) | CQFVM(U,) TS(u)
(=/6,7/3) 0.5580333 | 0.5692364 0.5556136
(z/6,27/3) | 0.5591276 | 0.5692375 0.5556137
(z/3,7/3) 0.5570505 | 0.5692383 0.5556137
(z/3,7/2) 0.6456243 | 0.6572987 0.6415675
2z/3,7/3) | -0.5586519 | -0.5692382 | -0.5556135
(27/3,7/2) | -0.6456393 | -0.6573002 | -0.6415672
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(57/6,7/3) | -0.5580313 | -0.5692373 | -0.5556138

(57/6,27/3) | -0.5596563 | -0.5692372 | -0.5556139

Table 2. The comparison of MAE and AAE between CTFVM and CQFVM

MAE AAE
CTGDM
(u) 2.0317098E-02 | 2.4786643E-03
CQGDM
(1) 2.7010024E-02 | 9.4673503E-03
u

References

LeVeque, R.J., 2002: Finite Volume Methods for Hyperbolic Problems, Cambridge University
Press, London.

Ewing, R.E., T. Lin and Y. Lin, 2002: On the accuracy of the finite volume element method
based piecewise linear polynomials, SIAM J. Numer. Anal., 39: 1865---1888.

Chatzipanteidis P. and R.D. Lazarov, 2005: Error estimates for finite volume element method
for elliptic PDE's in nonconvex polygonal domains, SIAM J. Numer.Anal., 42(5):
1932---1958.

Carstensen, C., R.D. Lazarov, and S. Tomov, 2005: Explicit and averaging a posteriori error
estimates for adaptive finite volume methods, SIAM J. Numer.Anal. 42(6): 2496---2521.
Eymard, E., T. Gallouet and R. Herbin, 2000: Finite volume methods, in Hand book of
numerical analysis, Volume VII, North-Holland, Amsterdam.

Li, R.Z. Chen and W. Wu, 2000: Generalized difference methods for differential equations,
Volume 226 of Monographs and Textbooks in Pure and Applied Mathematics,Numerical
analysis of finite volume methods. Marcel Dekker Inc., New York..

Zhang, Z. Y., 2002: The new ADI characteristics finite element methods for the
three-dimensional generalized nerve conduction equation, N. P. Sci. comp., 10: 355-370.
Zhang, Z. Y. and H. Wei, 2003: A multisep characteristic finite difference method for a class
of nerve conduction equations, N. P. Sci. comp., 11:315---323.

Zhang, Z. Y., 2004: An economical difference scheme for heat transport equation at the

~ microscale, Numer. Meth. for PDEs, 20:855---863.
10.

Chen, Z. Y., 1990: A generalized difference method for the equations of heat conduction, Acta.
Sci. Natur. Univ. Sunyaseni, 1: 6-13.

Tian, M. and Z. Y. Chen, 1991: Quadratic element generalized difference methods for elliptic
equation, Numer. Math. J. Chinese universities, 2:99---113.

Brenner, S. C. and L. R. Scott, The mathematical theory of finite element methods, Springer
Verlag, New York, 1994.



The Characteristic Finite Volume Element Methods

13. Yang M. and Y. R. Yuan, 2004: A multistep finite volume element scheme along
characteristics for nonlinear convection diffusion problems, Math. Numer. Sinica, 4:
484---496.

14. M. Yang, 2004: Quadratic finite volume element methods for nonlinear parabolic equation,
Numer. Math. J. Chinese universities, 3: 257---266.

15. F. R. Thomas, Time stepping along characteristics with incomplete iteration for a Garlerkin
approximation of miscible displacement in porous media , SIAM. J. Numer. Anal,
5(1985)970-1013.

43



Zhoufeng Wang Zhiyue Zhang



