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Abstract
Motion estimation (ME) is a process for removing tempoml redundancies in video
sequences. It contributes most of the compression ratio and consumes typically 60-80%
of the video encoding time. This paper investigates parallel execution of ME on the
Multiprocessor DSP (MDSP) architecture, a software programmable, scalable
multiprocessor platform. We use a low-overhead data distribution scheme and achieve
load balancing among processors. In addition, we assign different tasks of an ME
algorithm to suitable types of processors. Many sequential ME algorithms can be adapted
to run on the MDSP in pamllel, and the experimental results show that very good speedup
can be obtained. Since the MDSP is software programmable, our design can be easily
integrated into a video encoder, modified to meet different standards, and used in various
video applications.

Keywords - motion estimation, multiprocessor, pamllel execution, speedup, video
encoding

Motion estimation (ME) is a process for removing tempoml redundancies in video
sequences (Shi & Sun, 1999). It is based on the assumption that the changes between
successive frames come from motion of objects in the video. The amount of data can be
reduced through coding the displacements of objects. ME is central to video compression.
It contributes most of the compression mtio and consumes typically 60-80% of the video
encoding time (Kuhn, 1999; Zhu et aI., 2002). That is, ME has a great impact on the
speed of a video encoder, and is important for real-time video applications, such as video
conferencing, and digital TV broadcasting.



A video encoder can be implemented in hardware or software. Hardware
implementations use customized architectures. They are usually optimized for specific
algorithms, thus are very fast. However, they are inflexible, unsuitable for other digital
video applications or future standards (Ahmad et aI., 2001). The hardware approach also
has higher technical hurdles and needs a longer design cycle (Bolton et aI., 2002). ASIC
motion estimators have been designed (Fanucci et aI., 2001; Kittitornkun & Hu, 2001;
Kuhn, 1999; Parhi & Nishitani, 1999; Tuan et aI., 2002), but fast ME algorithms are
generally hard to realize in hardware for their irregular control flow and data flow.

The software approach does not have the above-mentioned drawbacks. However, the
intensive computation of video compression may overwhelm a single-processor computer.
Thus, parallel processing becomes a natural choice. Vos and Schobinger design a
two-dimensional systolic array to execute multiple ME algorithms (Vos & Schobinger,
1993). To achieve the same objective, Dutta and Wolf propose a parallel architecture
(Dutta & Wolf, 1996). Their design avoids the drawbacks of memory-access bottlenecks
from which general-purpose multiprocessors suffer; PEs are connected to memory banks
through a general-purpose interconnection network. Dutta and Wolf also survey various
parallel approaches to ME. Tan et aI. implement full-search ME algorithms on four
distributed-memory parallel computers (Tan et aI., 1999). Their results should help
practitioners in using parallel systems. Some other researchers use parallel computers
(Ahmad et aI., 2001; Akramullah et aI., 1995; Shen & Delp, 1996) or clusters of
workstations (Akramullah et aI., 1999; He et aI., 1999) as the computing platform; their
hardware costs are quite high. Kang et al propose a special hardware/software co-design
architecture (Kang et aI., 2003); they specifically design a data distribution mechanism to
use the tree-structured processor-memory nodes efficiently.

This paper investigates parallel execution of ME on the Multiprocessor DSP (MDSP)
architecture, a software programmable, scalable multiprocessor platform (Cradle, 2004;
Wyland, 1999). The MDSP is a special shared-memory multiprocessor with
programmable I/O. It is fast enough for video encoding, and much less expensive than the
above-mentioned parallel hardware. It employs multiple RISC-like processors, digital
signal processors, and direct memory access (DMA) units to provide a high-performance
parallel processing platform. More details of the MDSP architecture will be described in a
later section.

We use a low-overhead data distribution scheme and achieve load balancing among
processors. In addition, we assign different tasks of an ME algorithm to suitable types of
processors. Many sequential ME algorithms can be adapted to run on the MDSP in
parallel, and the experimental results show that very good speedup can be obtained. Since
the MDSP is software programmable, our design can be easily integrated into a video
encoder, modified to meet different standards, and used in various video applications.

The rest of this paper is organized as follows. Sec. 2 briefly introduces sequential



ME techniques. Sec. 3 describes the MDSP architecture. Sec. 4 uses a fast ME algorithm
to demonstrate how sequential ME algorithms can be adapted to fully utilize the MDSP
architecture and resources. Sec. 5 gives experimental results and some related discussions.
Finally, Sec. 6 concludes this paper.

The block matching technique has been the most widely used for ME, and has been
adopted by international video coding standards, such as MPEG and H.26x series (1995;
1999; 1993; 1996). It divides a frame into non-overlapped blocks of B x B pixels. The
most frequently used B is 16; a block of size 16 x 16 is called a macroblock. For each
current macroblock, a best matched counterpart is found within the search window in its
reference frame. The reference frame is another frame reconstructed from encoded data.
The displacement between the position of the best match and the position of the current
macroblock is called motion vector (MY). It is recorded together with the prediction
error matrix (PEM), which is a 16 x 16 matrix of pixel value differences between the
current macroblock and the best match. Thus, the decoder can reconstruct the macroblock
by using the MV, for locating a macroblock from the reference frame, and the PEM.

Of all the matching criteria, the sum of absolute difference (SAD), also called the
mean absolute difference (MAD) (Koga et al., 1981), is the most widely used owing to its
simplicity and effectiveness. SAD is defined as

B-1 B-1

SAD(x,y)(U,v)= LL!I,(x+i,y+ j)-I'_I(x+u+i,y+v+ j)l,
j=O i=O

where It(m, n) and It-1(m, n) respectively stand for the intensity value of pixels at (m, n) in
the current and the reference frame. Equation (1) calculates the SAD value between the
macroblock at (x, y) in the current frame and a candidate macroblock for the best match at
(x + u, Y + v) in the reference frame. Every valid pair of (u, v) stands for a possible
candidate for the best match. ME is to find a pair of(u, v) that minimizes Equation (1).

The most intuitive ME algorithm is full search. Full search is a brute force algorithm
that exhaustively checks every candidate macroblock within the search window. It
assures that the globally best match can be found; however, since the SAD calculation is
nontrivial, full search needs plenty of calculations.

Therefore, many fast ME algorithms, or fast searches, have been proposed. Most of
them are based on the unimodel error surface assumption; that is, for candidate
macroblocks, the closer to the global best match, the less the SAD value. These
algorithms have their own search patterns, each of which defines a small set of search
points. Each search point stands for a candidate macroblock. Instead of examining every



search point in the search window that full search does, fast searches only examine the
search points on the search pattern to conjecture the possible location of the best match,
and then move the search pattern toward it. Examples of this kind of algorithms include
three-step search (TSS) (Koga et aI., 1981), new three-step search (Li et aI., 1994),
four-step search (Po & Ma, 1996), diamond search (DS) (Zhu & Ma, 2000), PMYFAST
(Tourapis et aI., 2000), hexagonal search (Zhu et aI., 2002), cross-diamond search
(Cheung & Po, 2002), and cross-diamond-hexagonal search (Cheung & Po, 2005). They
greatly reduce encoder's computational workload at the expense of both picture quality
and compression ratio, because the unimodel error surface assumption does not always
hold and the search process may thus trap into local minima.

The correlation among adjacent macroblocks can be exploited to help some fast
searches. The MY of the current macroblock is usually the same as or similar to the MVs
of temporally or spatially neighboring macroblocks, which can be used to predict the MV
of the current macroblock (Alkanhal et aI., 1999; Nam et aI., 2000; Tourapis et aI., 2000;
Xu et aI., 1997).

The MYs used for predicting the MV of the current macroblock are called predictors.
The most frequently used predictors include the MVs of the left, above, and above-right
macroblocks of the current macroblock. MY prediction usually helps fast searches reach
the best match earlier and avoids trapping into local minima.

The MDSP architecture is shown in Figure I. An MDSP chip contains at least one
processor subsystem, which is a cluster of processors. Processor subsystems are
connected to a very high-speed global bus, and communicate with the external DRAM
through a DRAM controller. The MDSP has a programmable I/O system, which enables
developers to implement most of the I/O devices in software. The programmable I/O
system consists of a special I/O subsystem, two I/O buses and logic at the I/O pins; this
hardware is powerful enough to implement high performance devices such as PCI,
Ethernet, and SCSI interfaces. The synchronization mechanism in the MDSP is provided
by 64 global semaphore registers.

Figure 2 shows the processor subsystem block diagram. A processor subsystem has
four Media Stream Processors (MSPs), each of which consists of a Processing Engine
(PE) and two Digital Signal Processors (DSPs). In addition, the processor subsystem has
32 KB program memory shared by PEs and 64 KB data memory shared by all the
processors in the processor subsystem. The processor subsystem also has a DMA
controller called Memory Transfer Engine (MTE), which can be used to transfer data
between the shared memories and external DRAM. The MTE has four program counters,
thus can deal with four data transfer requests simultaneously. All the processors in the



processor subsystem are connected together with the shared memories through a local bus.
There are 32 local semaphore registers in the processor subsystem.
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Fig. 1. MDSP block diagram.
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Fig. 2. Processor subsystem block diagram.

The PE is a 32-bit RISe processor and operates at about 45 MIPS under 225 MHz. It can
initiate and monitor the MTE and the two collaborative DSPs, thus is ideally suited for
control functions.

A DSP is a 32-bit processor; it is the primary computing engine of the MDSP. It
operates at 220 MHz, and has 128 registers and a local program memory of 512 20-bit
instructions. In addition, it has a floating point multiplier-accumulator that can perform
sixteen 8-bit operations, four 16-bit operations, or three floating point operations in each
clock cycle; thus, it can provide up to 7.04 GOPS. The DSP also has two 16-word FIFOs
that allow data pre-fetch from and post-write to the processor subsystem shared data
memory while executing instructions, maintaining a high processing rate with efficient
memory transfers.



4.1. Balancing the workload of MSPs
Every macroblock in the current frame is processed separately. Each MSP can be
assigned a macroblock to perform ME. The single-program-multiple-data approach is
used. An MSP acts as the controller. It keeps an integer variable, say next_ME, to indicate
the next macroblock to be processed. Every MSP consults next_ME to decide the next
macroblock for it to perform ME. After an MSP has processed a macroblock, the MSP
saves the MY and PEM in the external DRAM before it consults next_ME for performing
one more ME. Since the MDSP has built-in semaphores, it is easy to ensure the integrity
of the read-and-increment operations performed by MSPs on next_ME.

For example, suppose the sequence number of macroblocks in a frame begins with 0,
the initial value of next_ME is O. When an MSP reads the value of next_ME, it also
increments next_ME. When the value of next_ME equals the total number of macroblocks
in a frame, it means that all the macroblocks in the current frame have been taken care of.
MSPs may be idle for a period of time less than the time required to compute the MV of a
macroblock. Therefore, the workload of MSPs is well balanced.

4.2. Task assignment in an MSP
We now consider how the processors of an MSP perform fast search. Recall that many
fast searches have their respective search patterns, and every search point of the search
pattern represents a candidate macroblock. Fast searches compute the SAD of each search
point to approach the possible location of the best match.

We use the DS algorithm (Zhu & Ma, 2000) to illustrate how a fast search can be
implemented. DS has two search patterns, i.e., large diamond search pattern (LDSP) and
small diamond search pattern (SDSP), depicted in Fig. 3. DS works as follows:
(l) The initial LDSP is at the center of the search window, and the SAD values of the 9

search points are computed. If the point with the smallest SAD is at the center, go to
(3); otherwise, go to (2).

(2) The point with the smallest SAD becomes the center of a new LDSP. If the point
with the smallest SAD is at the center of the new LDSP, go to (3); otherwise, repeat
this step.

(3) The point with the smallest SAD becomes the center of an SDSP. Compute the SAD
values of the five search points of the SDSP. The point with the smallest SAD is what
we want for computing the MY.
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Fig. 3. Two search patterns ofDS: (a) LDSP,~) SDSP.

Computing the SAD of a search point is independent of computing that of another point.
Therefore, these computations can be done in parallel. Each MSP has two DSPs to
compute the SAD values for search points in parallel. As already mentioned, the DSP is
fast; in particular, each DSP can perform multiple operations in each clock cycle.

On the other hand, the PE executes the main program of the fast search. It chooses
the search point that needs to compute SAD values based on the search pattern and
computed SAD values, and asks DSPs to compute new SAD values. DSPs save the SAD
values in the shared data memory, from where the PE can read out. If a different ME
algorithm is used, only the portion of program that runs on the PE needs rewriting.

4.3. Practical techniques to improve performance
When only one processor subsystem is used, the next_ME variable mentioned above
should be kept in the 64-KB shared data memory. However, when the system has more
processor subsystems, next_ME should be stored in the external DRAM. Storing in the
shared data memory of one processor subsystem requires complex programming for
MSPs of other processor subsystems to access the variable through the global bus (see
Fig. 1) and incurs overhead. Storing in the external DRAM is easier to implement and, as
will be seen in Sec. 5, does not have perceivable adverse effect on the speedup.

Duplicate computations can be avoided by saving computed SAD values of search
points in the shared data memory. For example, Fig. 4 shows two possible states ofDS. If
the LDSP moves up, as shown in Fig. 4(a), only five new search points need to compute
SAD values. If the LDSP moves northeast, as Fig. 4~) shows, only three points need
further computations. We can use a 2-D array to save the SAD values of all the search
points. Alternatively, hashing can be used to reduce the amount of memory required.
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Fig. 4. (a) The LDSP moves upward; (b) the LDSP moves northeast.

Different macroblocks may have many pixels in common. Fig. 5 shows that two
candidate macroblocks and their overlapping. Therefore, it can save much time to read
the whole search window into the shared data memory once and for all. Suppose the
search window is [-7, 7], the whole search window of a macroblock takes up (7 x 2 +
16)2 = 900 bytes of memory, and four MSPs totally require 900 x 4 = 3600 bytes of
shared memory.

Furthermore, neighboring macroblocks in the current frame have common pixels, as
shown in Fig. 6(b). Thus, reading the search windows of multiple macroblocks to the
shared data memory at a time can save I/O time.
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Fig. 6. (a) A macroblock and its search window;
(b) two search windows with shared pixels.

4.4. Suitability of ME algorithms
Recall that we use PEs and DSPs to do different tasks that can fully utilize their
respective capability. Since PEs choose the search points and ask DSPs to compute SAD
values, our approach is suited to all block-matching ME algorithms that are based on
comparing SAD values, to which full search and most fast searches belong.



It should be noted that the MV prediction mentioned in Sec. 2 needs modification.
The usual predictors include the MVs of the above, above-right, and left macroblocks of
the current macroblock. However, in our approach, when a macroblock is being
processed by an MSP, the macroblock to its left is very likely being processed by another
MSP; thus, the MY of the left macroblock is not computed early enough for it to be a
predictor. The MY of the above-left macroblock can be used instead.

A programming language CLASM (C-Like Assembly) can be used for software
development on the MDSP (Cradle, 2004). Developers can also use the standard ANSI C
to code the program executing on PEs. The MDSP has a simulator called Inspector under
the Microsoft Windows environment.

To evaluate the effectiveness of our design, we have conducted experiments with
different numbers of MSPs. DS is adapted to run on MSPs, and the search window is [-7,
7]. Programs are executed under the Inspector to count the number ofMDSP clock cycles
required. Source video frames are processed one by one. Every frame uses the
uncompressed frame immediately before it as its reference frame.

The controller MSP is in charge of data I/O. To achieve this, the controller MSP will
initially load two successive frames, i.e., a current frame and its reference frame, to the
external DRAM. Then, when a frame is being processed, all the MSPs, with the possible
exception of the controller MSP, perform ME for the macroblocks in the frame, and
transfer the results to the external DRAM. In the meantime, the controller MSP can
output the results of the previous frame from the external DRAM to the hard disk; this is
referred to as output. The controller MSP also reads the next frame from the hard disk
into memory; this is referred to as input. There is no output when the first frame is being
processed, and no input when the last frame is being processed. Once the output and input
are completed, the controller MSP can perform ME. Therefore, the processing of each
frame, except for the first and last frames, by the MSPs can be conceptually illustrated by
Fig. 7.

Controller
MSP

1
Start of frame i

1 ) Time

End of frame i



As already mentioned, we used uncompressed frames as reference frames. This is
different from the case used in real ME, in which a reference frame is actually
decompressed after compression. Because the two kinds of reference frame are very
similar, it is assumed that and they make little difference to the movement of search
patterns in the search process. As a result, the processing time and speedup will only be
slightly affected, if any. The speedup measured should be accountable.

In our experiment, before the ME of each macroblock begins, PE reads the whole
search window in the reference frame into the shared data memory. As mentioned in Sec.
4.3, this avoids reading the same pixels for different candidate macroblocks. The search
window is a square with 16 + 7 x 2 = 30 pixels on each side, where each row of 30 pixels
takes up 30 bytes of consecutive data. We did not use the MTE to read in the whole
search window. If the whole search window is read by the MTE, the MTE will be used 30
times, each for only 30 bytes. This should be ineffective.

We used the first 20 frames of source video sequences of Coastguard, Foreman, and
Salesman, each with QCIF (176 x 144) format. For comparison, we also experiment with
the first 50 frames of Salesman. Table I gives the speedups obtained when different
numbers of MSPs were used, where Salesmanl and Salesman2 represent the first 20
frames and the first 50 frames of Salesman, respectively. When n MSPs were used, the
speedup is computed by the number of clock cycles when an MSP is used divided by the
number of clock cycles when n MSPs are used.

No. of
MSPs

Coastguard Foreman Salesmanl Salesman2

2 1.97 1.97 1.97 1.98

3 2.91 2.91 2.91 2.95
4 3.81 3.82 3.81 3.88
6 5.41 5.47 5.42 5.60
8 7.01 7.09 7.01 7.32

12 7.89 8.61 7.91 8.16

Table 1 shows that when no more than 8 MSPs were used, the speedups were good;
however, when 12 MSPs were used, the speedup were not satisfactory. To investigate the
cause, we recorded which MSP processed which macroblock. It was found that when
more than 8 MSPs were used, virtually no macroblocks of any frame, except the first and
last frames, were processed by the controller MSP. This implies that when more than 8
MSPs were used, the ME computation time was not greater than the I/O time. Only when
the first frame was being processed, the controller MSP performing no output, and when



the last frame was being processed, the controller MSP performing no input, could the
controller MSP help perform ME. Thus, the speedup could only be slightly increased

when more than 8 MSPs were used.
Although the va in our experiment limits the growth of speedup, the real motion

estimator implemented using the MDSP may not perform va. Before ME begins, video
sequences could have been read to the external DRAM through a specific input device;
moreover, the result of ME should also be kept in the external DRAM for further
compression, e.g., intracoding. The controller MSP can perform ME after simply setting
next_ME. Therefore, more MSPs can be used to obtain better speedup.

We have investigated full utilization of the multiple processors and other resources in the
MDSP to perform ME in parallel. Many fast sequential ME algorithms can be adapted to
run concurrently on the MDSP to speed up the video compression. We can share the
workload among multiple MSPs of the MDSP with minimal overhead, and the MSPs are
essentially equally loaded. our experimental results show that the speedup is very good
when no more than 8 MSPs are used. In fact, in real applications, more MSPs can be used
to run faster and achieve satisfactory speedup.
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