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Abstract

The main objective of this work is to develop a methodology for risk management in a
distributed system. Security is a very important issue when different users have potential
access to operations of various databases of a system. There are benefits and risks
involved in allowing these accesses overtime. Assuming that the probability of a user
being hostile may be crisp or fuzzy is partially known, we implement fuzzy linear
programming to maximize the benefits while keeping the loss under a certain fuzzy limit
within the time allocation for each user. Furthermore, we develop an approach using
fuzzy cognitive map to help estimate the probability of the user being hostile. In the
paper, we use a specific model for simplicity in illustrating our methodology but the
model can be extended to general problems of allocation of resources in a highly
sensitive information distributed system such as online banking.

1. INTRODUCTION

Recently, requirements in computer communications relative to the benefits and risks
posed by a great variety of users have dramatically expanded. Distributed processing
systems have brought in a very large population of users accessing multiple databases.
The banking area [2] is just one example of the many areas involved.

Distributed systems provide potential benefits and risks. Security is of prime concern and
is a much more complex issue than the one raised by traditional networks [13]. An
attempt to address the issue of the potential risk was the main goal of [1]. In this work a
set of users is considered. Each of these users has potential access to operations of
various databases. There is fuzzy probability of hostility associated with each user, and a
fuzzy tolerance for potential damage. The fuzzy expected loss is then computed and
compared with the fuzzy tolerable damage using the criterion defined by Jain in [4]. No
potential benefit is considered in [1]. To obtain a more realistic model we propose in the
present work to maximize the potential benefit subject to not going over the tolerance for
potential fuzzy losses. Another important element missing in [1] is how to begin
estimating the fuzzy probability of hostility for a user. The problem considered in the
present work is also different from the direction taken in [1]. The purpose here is to
evaluate a “reasonable” amount of time to be allocated to a user for different operations
on different databases. In section 2, we define formally the main goal of the present work
and maximize the potential benefit subject to not going over fuzzy tolerable losses. For
the necessary background in Fuzzy Logic we refer the reader to the work contained in
[91. For specific information in fuzzy linear programming we refer to [9, 11, 17].

The results of Section 2 do depend on the fuzzy probability of hostility of a user. In
Section 3 we outline an approach to estimate that probability. We propose the use of a
fuzzy cognitive map. For material on fuzzy cognitive maps we refer to [3, 16]. In this
section, we use a specific model for simplicity in illustrating our methodology but the

Received December 15, 2006 1061-5369 $15.00 © Dynamic Publishers, Inc.



92 André de Korvin, Plamen Simeonov and Ongard Sirisaengtaksin

model can be extended to general problems of allocation of resources in a highly
sensitive information distributed system such as online banking.

In Section 4 we assume that we have some information on a set of users (some of the
information might be obtained by the methods outlined in the previous sections). Now a
new user is considered. Some policies are applied to the new user by comparing that user
to the set of users we have some information on. We achieve this by introducing masses
in the sense of [15] and obtaining a body of evidence on the set of users. For information
on the use of body of evidence we refer to the works of [10, 14].

Finally, in Section 5, a different approach is taken. There is a set of possible time slices
for a user. A selection of the “right slice” must be made. To do this a fuzzy decision
approach is taken where goals and constraints play a symmetrical role. For fuzzy decision
making the works contained in [5, 7, 8] constitute a comprehensive source. It is worth
noting that in this context the potential benefits and losses are fuzzy sets of type 2 which
recently have become the subject of much interest. The works in [6, 12] are excellent
introduction to fuzzy sets of type 2.

2. TIME SLICES, BENEFITS AND LOSSES

We begin by formally defining the problem. Let X ={x,,x,,...,x,} be the set of n users.
Each user may want to perform operations {0:1,0,.’;,...,0,.’;[:} on the data set di where 1
<k<N.

We have some partial information regarding these users. In particular we have some
estimate on the probability Ph; of the user x; being hostile. Denote by :f,the time slice

allocated to user x; to perform operation Oi’f ;on the data set dp where 1 <j<m, 1 <k <N,
and 1 <i < n. Denote by c,.'f ; the benefits/losses associated with 0,.'f ; per unit of time. We

may express c; ;as
k k L
cf,=(-Ph)bf, - Ph,Y a},
I=1

Where ! denotes the type of damage/loss and 1 <I<L. b} ;denotes the benefit derived per
unit of time from 0,.’f ;1f no hostility was present, and a,",,., ;denotes the damage of type [

sustained per unit of time by operation O,.’f ; if the user turns out to be hostile.

The main goal of the present work is to get reasonable estimates for t,.’f ;junder a variety of

conditions. As noted above, there are L types of potential losses. Let {7,,7,,.. .,T, } denote
the set of tolerances for each of those losses. In other words, one does not really want to

exceed 7 for losses of type l. A straight forward way to think about these losses could be
in terms of dollar amounts.

Obviously we would like to maximize the potential gain while not exceeding our
tolerance for loss of type [ where 1 </ < L. The problem then can be formulated as linear

programming problem. The solution should yield reasonable values for t,.’f ;e
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We need to
Maximize Z = Zc." 1

ijti.J
ki,j

Subjectto: ».a;; t;S7, 1<I<L
ki, j

The solution to the above problem represents maximizing the benefit subject to keeping
the losses within the appropriate tolerance over the set of all n users. We make 7 fuzzy.
The membership functions of % where 1 <1< L are of the type shown in Figure 1.

Thus we decide to totally tolerate loss up to 7}, then our willingness to tolerate goes
down.

T, T,+ M
! I !

Figure 1: Membership Function of 5

Past a loss of T; + M, our willingness is null. The quantity M; thus denotes the largest
“extra tolerance”, the willingness to go “the extra mile” for loss. Thus the membership
function for 7 is defined as

1 if x<T,

r) = IEMiZX e i< am,

1

0 ifx>2T,+ M,

Thus the right hand sides of the constraints are fuzzy sets. We assume right now that the
left-hand side consists of real quantities. We define the vector 7whose typical component
is . Let

D(7)= r,(Za,’i,., I ,.J
ki, j
Then D,(t) represents the degree to which the t,.’f ;satisfy the I™ constraint. Indeed
T,[Za;“i,it{fi] =1ifand onlyif > aj, #f,<T,
ki.j ki, j

and

r,(Za,’fi,jtfj] =0 ifand only if Y af, tf, 2T, +M,
kij ki.j
otherwise the constraints are partially satisfied. The feasible set is then defined as

L
ﬂD,(z') where () denotes the minimum operator. The feasible set is then the minimum
=1
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degree overall constraints satisfied by t,.'f ;- The lower bound of the optimal values is given
by the solution to the standard linear programming problem.

Maximize Z = Zc

ki, j

LY

(P1)
Subject to: Za,’fh jt,."_ ;ST
ki.j
The upper bound of the optimal values is given by replacing 7; in the above constraints
by T + M,. Let Z; and Z, denote the lower and upper bound values of Z, The extent to
which t,.'f ;jmeet the goal of maximizing Z is 1 if Z exceeds Z, and is 0 if Z falls below Z;

and is defined linearly between Z; and Z,. Thus the extent to which the goal is met is
given by

1 if Z, <> ekt
ki.j
(Ze )
G(7) = == if Z, <Y etk <
(Zu_Zl) kzl; T
0 1f2c,],1
ki, j

v

The problem is to maximize the joint condition of meeting the goal and satisfying the

L
constraints, i.e. to obtain the 7 maximizing nD,(r)/\G(r)i.e. we need to obtain the
I=1

largest A€ [01]such that

Ae[(\D,(r)AG(2)

=1

This means

Maximize A
Subject to: Z ekt j r<

kxj
AM +Zc <T,+M, P2)

ki, j

At 20

ijhij

The above is a standard linear programming problem. The first constraint comes from

L
A<G(r). The second constraint comes from A < ﬂD,(z'). To sum up the steps outlined
I=1
are
1) Obtain Z; by solving (P1).
2) Obtain Z, by solving (P1) with T, replaced by T, + M.
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3) Obtain t,.'f ; by solving (P2) with c,f ;Teplaced by
L
(1-Ph)bf, - Philz_l:a,'fi, ;
More often that not Ph; is not totally known and needs to be fuzzy, i.e.
N;
Ph; = Zai,h/pi.h
h=t

with &, and p,, in [0, 1]. Recall that this notation (see [9] for example) implies that the
probability that Ph; is p,, is «;,. The procedure then is to solve the linear programming
problem as outlined in the 3 steps above for every index vector
h=(h,h,,....h),1<h <N, with Ph = Pin; where { = 1, 2,..., n and obtain the
corresponding time slices t,.’f ;(h). The final solution is then given by the fuzzy time slices
defined by

1}, = > (minay,,) /1 ()
’ 1

where the sum is overall index vectors . A defuzzification process, see [9] would then
yield a numerical value for t,.’f i

3. USING FUZZY COGNITIVE MAPS TO ESTIMATE Ph;

The results of the previous section depend on the values of Ph;. The goal of this section is
to indicate how using Fuzzy Cognitive Maps will help in the estimate of Ph;. Fuzzy
Cognitive Maps have been used in a variety of situations including plant control [3] and
fuzzy knowledge processing [16]. The information compiled on a typical user x; could
look as outlined below.

+
I_’[ C,: Unknown History ]
L C;: Not US Citizen ]— [ Cj3: Past History of ] [ Cs4: User Worke?]

Devious Behavior for Competitor

+
Cs: User is Relatively [ Cs: User is Sophisticateﬂ C;: User has
New Trustworthy

| AL, v-| y-
L Ce: High Risk }4 ::| Cs: Average Risk | [ Cio: Low Risﬂ
-1 + |-t |

For clarity sake only a few lines are represented. The lines labeled “+” from C; to C;
represent the proposition C; implies C;. Lines label “—” represent the fact that C; prevents
C;. Of course such a directed graph need to be binary and links can have values between



96 André de Korvin, Plamen Simeonov and Ongard Sirisaengtaksin

—1 and +1 for example. Again for simplicity sake we have assumed that a link can only
have the value —1 or +1. Thus the completed graph above could be represented by matrix

C] C2 C3 C4 CS C6 C7 C8 C9 CIO

¢, 0 1 0 0 1 0 O O 1 0
c, 0 0 0 0 0 0 -1 1 1 0
¢, 0 0 0 0 0O 1 -1 1 0 0
¢, 0 0 0 O O O O O 1 0
M=lc, o0 1 0 0 O -1 -1 0 0 1
cc 0 0 0 0 0 0 O 1 1 1
¢, 0 -1 -1 0 0 1 0 -1 -1 1
¢, 0 0 0 0 -1 0 -1 0 -1 -1
¢, 0 0 0 0 0 0 -1 -1 0 -1
c, 0 0 0 0 0 0 0 -1 -1 0]

A zero entry in Cj; denotes the absence of any link from C; to C;. We input to the system
the node C; i.e. the user is “not a US citizen. This system behaves similarly to temporal
associative memories that is a dynamical system reaches equilibrium via forward
evolving inferences. The system forms a recurrent net where links provide the means of
“input” nodes to fire at “output” nodes and vice versa. In our example

[10, 0,0,00la0=[0 0,1,,1,00,00]={1, ,0,1,00,0,10]
The first component is changed from O to 1 since we continuously input 1 to C;. Next
[, 0,1,0, 10l60z[02, ,0,1,01,-30, ,0]=[1100]1, ,0,010]

The —1 are changed to 0 on account of the threshold operation, where the threshold is say
0.5. Therefore [,1 ,0,1 ,O,I,DQi is a fixed point, meaning -- If the user is a non US
citizen then there is unknown history, the user is relatively new, the risk is average. In
this case we might consider Ph; = 0.5 as a reasonable value. On the other hand if we
assume the user has a trustworthy background, we turn off C; and turn on C; then

[o, 1.0]30:0,0,1,0, ,0,0,0,0 0)e= [0 0, ,0,0,01,0 0,0}
(7 is continuously on
[0 00, o0,100=[0, 0 ,0000, ,0l6=[00, 000,10, 0)

Thus we have a fixed point and no inference shows up except that user has a trustworthy
background. As the last example take the case of a non US citizen with highly
sophisticated skills then taking the first fixed point, turning off non citizen and turning on
Ce we obtain

[01, 0, 1,1000]M =[0 .1, ,001,-3 ,2.1]
After the threshold operation this changes to [0, 0,1,0,0,0, ,11] Iand
01, 000,108 =[0, ,0,000000]=[0, 0,00 0,1,0000
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[0 00]M0880,0 ,0000L0=[0 000,10.11]
[0 0000103 =[0, 0 ,000801]=[000, 0,101, ,1]
Now the risk is low, average, high. This indicates the fuzzy nature of Ph; under such
conditions. A reasonable fuzzy value for Ph; might be
Ph; = 0.6/0.2 +0.7/0.5 + 0.6/0.8

4. COMPARING A NEW USER TO A POOL OF USERS

In this section we assume we have determined possible time slices t,.'f ;for a set of users
X ={x,,x,,...,x,}. A new user x"is now under consideration and our goal is to determine
the time slices tif ; for x". On a scale of 0 to 1 it might be difficult to assign a similarity

score to the pair x”, x,. Instead we chose to partition [0, 1] into subintervals

I,=(,r], 1<s<N,

i

Let my(l;s) denote the fraction of experts whose opinion is that similarity score of
x and x, is some number falling in /; ;. Clearly

0<m(l,,))<1 and
N;

>md,)=1

=1

We may view m; as a mass with focal element in the sense of [15]. We now introduce a
function that reflects on how falling in the interval I;, implies similarity. Let

4G5 x)= (1—M,-,s)+1‘7"‘ll,~,s |

Here | I;5 | denotes the length of I that is ris — ;5. M;; denotes the midpoint of I;; that is
his +hy
2
dissimilarity of x"and x,. If M, is close to 0, 1- M;, is large, d (x’,x,) is large and the
similarity score being in /;; is low. Conversely, if M;; is close to 1, | I;; | is small and the
similarity score falling in ;, is high while d (x",x,) is low. It is worth noting that a large |

Iis | leads to large dissimilarity because experts are then uncertain about the similarity
score to assign.

and o is a parameter where 0 < o < 1. The function d; actually reflects the

If we pick @ =0 5.then
ds(x*,x[) =(1_Mi,s)+|1i,-\' I

The distance of M;; to 1 and | I;; | play then an equal role in contribution to the
dissimilarity of x” and x,. We would like to normalize the dissimilarity so we set
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D(x' %)= d(x ,xi)
Max{ds(x ,x,.)}

Since we are interested in how similar x"and x, are we set
* *
S,(x,x)=1-D,(x",x)

This comes from placing the score in I;; so we define the average similarity of
x" and x, as

Ny
AvgSim(x",x,) = Zm,.(l,.'s)Ss(x*,x,.)

s=1
We then define the fuzzy time slices for x” as

i, = AvgSim(x',x)It!,

. . k . . .
Then estimating ¢;;, for example, by methods previously outlined and applying some
defuzzification to t,ﬁ ;[9], we obtain an estimate for tii ;- It is worth mentioning that the
estimate tf, ; was obtained by looking how similar x  was on the average to the set of

users {xl,xl,...,xn }. Applying the combination of masses rule for independent experts,
one could work with a consensus mass instead of m;, see [5]. Again, for simplicity sake
we did not do this. The same comment could be applied to the previous section where a
consensus fuzzy cognitive map could have been considered.

Example: Assume a set of users is X ={x,,x,,x,} with the following subintervals and
assigned masses.

User Subinterval Mass Midpoint

X1 11’1 = (0, 05] m(11'1) =0.5 M1,1 =0.25
11,2 = (0.5, 1] m(]l,z) =0.5 M1,2 =0.75
L1=(0,1/3] m(l1) =1/3 M, =1/6

X2 12,2 = (1/3, 2/3] m(12,2) =1/3 M2,2 =0.5
L3=(2/3,1] m(lp3) =1/3 M,3=5/6

x 13’1 = (O, 1/4] m(13,1) =04 M3’1 =1/8
I, = (1/4, 1] m(l,)=0.6 | Ms,=5/8

Then, the dissimilarity for the new user x* and x; can be computed as follows. First find
the dissimilarity score, that is

d(x",x)=(1-025+05=1.25
d,(x",x)=(1-075)+05=0.75

Then normalize the score between 0 and 1, we obtain normalized dissimilarity as

D(x',x)=125/ 25=1
D,(x",x)=075/ 25%0.6

Next the similarity can be determined as
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S, (x",x)=1-1=0

S,(x",x)=075/125=1-0.6=04

Thus, the average similarity of x” and x; is
AvgSim(x",x,)=0.5x0+05x0.4=0.2
Similarly, the average similarity of x” and x», and x” and x; can be obtained as follows
AvgSim(x",x,)=0.27 and AvgSim(x",x,)=0.27

That means the fuzzy time slices for x is

;=0 /2%;+029/t; ,+0.27/t;,

By defuzzification, the numerical value of time slices for x can be determined.

5. SELECTING A TIME SLICE FROM A LIST

We assume in this section that for client x*, there is a list of possible time slices
{tf i P=12, NS j}. Which of these slices should be allocated to x” ? A possible way

to approach this is to view this as a decision problem, see [5, 7]. For a decision problem
the following components are needed: A set of possible actions/alternatives, a set of goals
and a set of constraints. Reasonable goals in the present case could be

(1) Potential benefit should be high
(2) Losses should be kept low

Constraints could be

(1) Assume that the time line is partitioned into subintervals K f,v , Wwhere 1<v<M,
we would like the solution ¢, , to fall in an interval K%, of high mass m" (K% )
(2) For that K f,v of high mass we would like time slice of a user x;, t,.’f ; to fall not too

far off K%,

Constraints (1) and (2) can be summed up as follows: The candidate tf j.p 18 @ good time

slice for x" if the belief is high that it falls in some interval such that some user has been
allocated a time slice not falling too far from that interval.

The benefit coming from # ;. peing allocated is
B(z,;,)=(1-Ph)bl L.,

And the loss of type j for such an allocation is

k k
L., ,)=Pha,.

k
j t*,j,p
Note that B and L, are fuzzy sets of type 2 on candidate time slices as Ph,, b.’i i
typically fuzzy. We now define three fuzzy sets whose membership functions are as
shown in Figure 2.

a,"'.,j are



100 André de Korvin, Plamen Simeonov and Ongard Sirisaengtaksin

1 j 1 \ 1
I
Time Line
Not_Too_Far Low High

Figure 2: Not_Too_Far membership fumctions

Nextwedefine

C}, =m nNot Too Fard €, K )

where d denotes the digance fimction. Thus C’;Nxeﬂectshow cos= K’;Noomesto some
allocated tin e slice. The fzzy decision sston tim e shices can then be expressed as

B} t5p) = WlpOS{B (655) H 'gh}+ szlposs{Ll (t-,",j,p),Lan}+ wyml, ®5,)+w,Cl,
1
where w1+2w2_1+w3+w4 =1 and Poss denotes the possiility fimction. Recall the
1

possiility com puted on a pairof fiizzy sets is the Jargest Intersection of these sets [8].To
obtain the best solution tf, , we can m axin ize E?over{t",jlp,p=12,..,Nf,j}.The last

tw o tem s of the right hand side fom a com prom ise betw een a high belief that: tf, will
fall in K, and the proxin ity of som e allocated tine to K, . The firt two tem s of the
right picecin ity of the right hand side flect the tw o goalsm entioned earlier.

Note whilk i is ofien the case that E(a)=min{mi'1'1Gi(a),mpth(a)}whete

EG,@)C, @)and a are the decision, the goals, the constaints and the alemative,

respectively, we have intioduced possbilily fimctions as benefits and losses are fuzzy
sets of type 2. Such sets have moently generated m uch research, see 6,12, 14].

6 .CONCLUSION

I this work we have Ivestigated the Tin e Slice A Tlocation . h Section 2 a setX of users
is oonsidered. One would lke to allow these users certain operations on different date
sets. There are benefits and risks involved h allow g access. One would lke o
m axin ze the benefits while kesping dam ages under a certain  (fuzzy) lin is. In porant
infom ation in such apoblem  is the probability of the userbeing hostile. That probability
may be crgp or fiizzy. The solutin is cbtained by considering a set of fiizzy lnear
program m ing prcblem s. Tn Section3, we develop a possible m ethodology to help I the
estim ation of the userbeing hostile. The apprach is to use a fuzzy cognitive m ap . In the
paper, we use a specific m odel for sin pliclty in illushating our m ethodology but the
model can be extended to geneml problem s of allbcation of msoures in a highly
sensitive infom ation disrbuted system  such as online banking. Tn Section 4 anew user
is com pared o a largely know n pool of users. The amnoeept of average sim ilarity of the
new user o each user In the pool is toduced. This average sim ilarity then yields a
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fuzzy time slice for the new user. A defuzzification process would then yield a possible
time slice for the new user. In the last section there is a list of possible time slices for a
new user. A selection from that list is then make by defining reasonable goals and
constraints and treating this problem as a classic fuzzy decision making problem. The
goals involve fuzzy sets of type 2 and for this reason possibility functions are introduced
in the expression of the fuzzy decision.
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