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Abstract
Events generated by the execution of a distributed system are related by causality
and concurrency. While providing a means of reasoning about the relative occurrence
of events, this partial order fails to represent the timeliness of occurrence. In this

paper, we develop a novel means of assigning weights to events where the weights
are reduced as the temporal proximity to an anchor event decreases. This weight
quantifies the strength of the causal or concurrent relationship with respect to an
anchor event. Those events that causally succeed the anchor are the focus of this
paper with concurrency and causally preceding being part of future work plans. Three

methods of computing event weights for causally succeeding events are defined. Each
contains a tunable parameter to determine the rate of weight decrease. The methods
are piece-wise linear, exponential, and relevant vector difference decay. A case study

has been performed that applied quantitative causality to the well-known software
engineering problem of feature location. A summary of the case study results is
provided to illustrate the utility of quantitative causality for succeeding events.
Keywords - distributed system, causality, vector time

A distributed system is composed of multiple processes, executing on different proces-
sors, cooperating to solve a problem. The individual processes execute at the speed
of the hosting processor and share no common memory. The sole means of commu-
nication is through asynchronous message passing with undetermined transmission
delays.

While powerful in that large problems can more readily be solved, these dis-
tributed systems are both complex to implement and difficult to maintain. Causality
among events of the system's execution provides a means of understanding the inter-
action of the constituent processes and the impact of a process's execution on other
executing processes. Lamport's definition of the "happens before" relationship[19] is
the basis for deriving the causal relationship among events. If an event e happens
before event e', then event e can causally impact the execution of e'. Logical time
and vector clocks[20, 12] provide a mechanism for partially ordering events according
to their causal relationships.



Vector time and the happens before relationship are employed by a wide range

of solutions for understanding distributed systems[7, 13, 2, 1]. Consider an event e

of the system. Each other event in the system can be classified as concurrent to,

causally succeeding or causal preceding event e. The events that causally succeed e

can be causally impacted by the execution of e. Also for the events that causally

precede e, their execution could have causally impacted the execution of e.
Although causality accurately models the possibility of one event affecting the

execution of another, it does not provide for a quantitative measure of the impact.

In other words, what is not known is the timeliness of events that causally precede

and succeed e. Consider an event f that causally precedes e. If event f immediately

precedes e, f not only happens before e but f is close in time to the occurrence of e.

In contrast, consider the case where f's causal relationship to e is defined by a causal

chain of hundreds of events. Although f may still have a causal impact on e, the
importance of this causal relationship declines as the timeliness between the events

increases.
As an example, consider a run-time error in a long running distributed execu-

tion. Suppose event f of process i, ~, causally precedes the error. Additionally

event f is the first executed event of ~ and the causal relationship to the error is

defined by a long series of inter-process communications. Theoretically, from the def-

inition of causality, event f could have caused the error. Knowing f preceded the

error by several days may indicate that more timely events should be examined first.

Concentration should be focused on events that are temporally closer to the error.

The timeliness of events that causally succeed e is also informative. Suppose the

software of a process requires updating. After the update, testing follows. Specialized

test cases may exist to understand the impact of the change, but it may be unknown

how long each test case should be executed to reach a conclusion. Quantitative

causality provides a means to label causally succeeding events so the potential impact
of the change is distinguishable among these events.

This paper develops a quantitative measure of causality that indicates a temporal
relevance between causally related events. The timeliness values can be used to

identify those events that are more causally related than others. Computation of

quantitative values follows Lamport's definition of causality. The calculation of the

quantitative timeliness values is independent of both synchronized processor clocks
and a global clock.

The necessary background to introduce quantitative causality is provided in sec-

tion 2. Quantitative causality for succeeding events is defined in section 3 with weight

calculation formulas. Section 4 provides a case study to demonstrate the use of quan-

titative causality. Conclusions are in section 5 while section 6 outlines future work.



A distributed system is composed of a set of N processes, Po ... PN-1. The execution

of each Pi is seen as a totally ordered sequence of events, e?, et, ... , where event e~

is the kth event executed in process Pi. The processes share neither a common mem-

ory nor synchronized clocks. Inter-process communication is through asynchronous

message passing with unknown but finite transmission delays.
Assume that a message m is transmitted from process Pi to process Pj. Some

event, e~,on Pi is the transmission event of m, and some other event, e;, on Pj will

be the receipt event of m. Two functions given in definitions 1 and 2 will be used to

refer to the communication partner event when only one endpoint is known. That is,

send( eD = e~ and recv( en = e;.

Causality plays a major role in the operation of distributed systems. Some ex-
amples are rollback and recovery[28, 30, 29], global state reasoning[7, 13, 27, 17],

debugging[lO, 16], deadlock detection [4, 24, 15], termination detection [23, 9, 31],

and software development and testing[25, 14, 18]. The "happens before' or causal
relationship [19] is a means for defining order among events in a distributed system.

This relationship is defined by a combination of the relative occurrence of events on a

single process and by inter-process communication. If event e causally precedes event

e', then the execution of e can have a causal impact on e'. Lamport formalized this

relationship and its transitive closure as given in definition 3.

2. event e is the transmission of message m and e' is the receipt of the same
message m, or

Causality is a partial order on the events of the system. Some events are not

causally related but could occur in any order or simultaneously. The relationship

given in definition 4 is referred to as concurrency. For any two events, e and e',
if e does not happen before e' and e' does not happen before e, then e and e' are
concurrent. Concurrency is a non-transitive relationship.



When a distributed system executes, a partial order among events is defined by

the causal relationships. Consider the three process example of figure 1 where dashed
lines indicate inter-process communication. Some of the causal relationships found

in the represented execution are: e~ ~ e~, e~ ~ eg and e~ ~ eg. Note that e~ ~ eg
exists from the transitivity property of causality. Concurrent relationships can also

be found in this execution. For example, the absence of a causal relationship between

events e~ and eI implies that the events are concurrent: e~IleI- Other concurrent

relationships are e611e~ and e~IIei. However, observe that e6 ~ ei which demonstrates

that concurrency is not transitive.
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Figure 1: A three-process execution

For defining quantitative causality, an anchor event is used. The role of the

anchor event is to fasten a point of reference. For example, if a software change is

made and the succeeding events are to be quantified, the event corresponding to the

execution of the software change becomes the anchor event.

2.2. Vector Time

One means of comparing events to determine the causal or concurrent relationship

between them was defined independently by Mattern[20] and Fidge[12]. Integer vec-

tors are used to represent the logical execution order of events. These vectors can

also be used to accurately determine causality and concurrency among events.



Each Pi maintains a vector Ti of N integers, (Ti [0], ... ,T;[ N - 1D, where T;[i] is

the counter of the number of events which have occurred on Pi. The local component

of the vector time, Ti[i], is incremented before each event in p;. Vector time element

Ti[i] is also referred to as the logical clock of Pi. The vector time assigned to event e

is T( e). Entry T( e) [j] is the number of events in Pj that happens before e and that

can causally affect the execution of e. The vector times are maintained across the

system by piggybacking vector time values onto outgoing messages.

Initially, all components of vector times are zero as given in equation (1).

N-l N-l
V V T;[j] = 0

i=O j=O

When an event ef occurs, the vector time on Pi is updated based on the event type of

ef, Equation (2) shows how vector times are modified to include piggybacked values

from incoming messages. The updated vector time is attached to ef and, if ef is a

send event, on the outgoing message. If ef is a receive event, the vector clock on Pi is
assigned the component-wise maximum of the local vector clock and the vector time

attached to the incoming message.

Ti[i] = Ti[i] + 1
if :3e : ef = reeve e) then

N-l
V T;[j] = maxCT;[j], T( eHjD

)=0

It has been shown that vector time is both sufficient and necessary to accurately

model the causal relationships in a distributed execution[5]. A comparison of the

vector times of two events will accurately describe the relationship between the events.

Event e causally precedes event e' if the vector time assigned to e, T( e), is less than

the vector time assigned to e', T(e'). That is, e --+ e' if and only if T(e) < T(e') using

the vector comparison of equation (3).

N-l
T(e) < T(e') ~ .v T(e)[j] ~ T(e')[j] 1\ :3i: T(e)[i] < T(e'Hi] (3)

)=0

Vector time partitions events into three regions with respect to an anchor event.

The regions, shown in figure 2, are events that precede the anchor, are concurrent to

the anchor, and succeed the anchor. Preceding events fall into the shaded region on

the left while succeeding events fall into the shaded region on the right. The events
concurrent to the anchor event are in the non-shaded area.

Although causality is needed to reason about distributed systems, causality is

an absolute relationship. Two events are either causally related or concurrent. Dis-

tributed executions are composed of many events and may be long running systems.

The causality of events can be determined with mechanisms such as vector timestamps



but the timeliness of the causality is not captured. We define a model, Quantitative

Causality for Succeeding Events (QCSE), for assigning weights to events where the

weights signify the timeliness of the causality.

Let event e~ be the anchor event. Events can be labeled as to whether they causally

succeed e~ with the use of vector timestamps. All events whose vector time-stamp

is greater than T(e~) causally succeed the anchor, Le., event e causally succeeds e~ if

T(e~) < T(e). This work introduces a weight, wee), which labels event e according to

its causal relevance to the anchor event. The value assigned to event e quantifies the

causal impact that the anchor event has on the execution of e. The range of weight

values is from 1.0 to 0.0. A value of 1.0 is only assigned to the anchor event and

a value of 0.0 suggests that the causal impact of e~ has diminished to a negligible
amount.

In general terms, the weight of an event e; is defined as a function on the event
and the anchor as shown in equation (4).

The event weight wO is dependent on function fe-) and allows flexibility in the means

and rate of decrease from 1.0 to 0.0. Three definitions of fe-) follow and additional

definitions can be developed according to the behavior of the system.
3.1. Piecewise Linear Decay

The first weight function models a piecewise-linear decrease in the assigned value as

the temporal proximity to the anchor event, e~, decreases. In other words, as the



time between e~ and the other events increases, the weight values decrease. Compu-

tation is reliant on the local processor's clock value but requires neither inter-process

synchronization of clocks nor common clock speeds.
The weight assigned to a causally succeeding event decreases as temporal distance

to e~ increases. The rate of decrease is specified by the value T, the expected amount

of time (in no particular unit) for the impact of e~ to diminish to a negligible amount.

This value provides the means to customize the longevity of the impact of e~. For

a long running system, T may be relatively large compared to the value of T for a

short running system.
Assume that some amount of time, 8 (in the same units as T), elapses between

the execution of any two consecutive events on a processor. A rate of decrement, a,
is computed as shown in equation (5) to represent the minimum amount of weight

decrease between any two consecutive events on a processor. The value of a ranges

from 0.0 to 1.0 and is the amount of weight reduction for two consecutive events.

8
a = T (5)

For example, suppose we expect the impact of the anchor events to diminish in

2 seconds of execution time. Considering the local clock speed and the granularity

of events, we determine that at least one microsecond will elapse between any two

consecutive events. The piecewise-linear decay rate would be computed as follows.

a = i. = 0.001 sec = 0.0005
T 2sec

Events that are not found in the "causally succeeding' region of execution are
assigned a value of 0.0. The anchor event is assigned a weight of 1.0. All other events,

those causally following the anchor event, are assigned weights that are calculated

from the immediately preceding event(s).

Local compute events and send events have a single immediate predecessor where

the computation f(·) decreases the weight by a until a value of 0.0 is reached. How-
ever, when computing the weight of a receive event, there are two immediately pre-

ceding events to be considered. A receive event is assigned a weight that is either a

decreased amount from the preceding event on the same process or the weight of the

send event. The definition of f(·) as a piecewise-linear decay is given in equation (6).

0.0
1.0

max(w(e;-l) - a),O)
max(w(e;-l) - a), w(send(e;)))

if ek j, el., T" J

ifj=il\l=k

if e; is not a receive event

if e; is a receive event



Consider the example execution shown in figure 3 where the computation of
weights is based on an assumed value of a = 0.1 and the indicated anchor event.
Each event is labeled with the assigned weight. Events that do not causally follow
the anchor event are assigned a weight of zero. These weights are faded to focus
attention on the non-zero weight propagation.
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Figure 3: Piecewise linear weight decrease with a = 0.1

The weight assigned to the anchor event is 1.0. Immediately followingthe anchor
in process P2 is an event whose weight is 0.9, computed as 1.0 - 0.1. Both the event
and the message that is sent from the event are labeled with the value 0.9. When the
message arrives at Po, the attached weight is used to compute the value of the receive
event. The receive event is assigned the maximum of the decremented weight of the
immediately preceding events on Po (0.0 - 0.1 = -0.1) or the message weight (0.9).

Each of the first five events on P2 that causally follow the anchor have weights
that decrease by a from the immediate predecessor event. However, the value assigned
to the sixth event, a receive event, increases compared to its immediate predecessor.
The reason for this is that the assigned value is taken to be the maximum of the value
of the decremented weight of the immediately preceding events on P2 (0.5-0.1 = 0.4)
or the message weight (0.7).

As the system executes, the weights assigned to events decrease. However, the
decrease is not monotonic on a process since a receive can cause a local increase in
event weight. Our previous work[26] proved that the weight assigned to events on
each process reaches zero in a finite amount of time. To bound the time, assumptions
of the upper bounds on inter-event delays and communication latency were made.



Depending on the situation and use of the event weights, a linear decay may not be

the most applicable decrease function. It is foreseen that cases will arise where weight

of events should decrease but never be allowed to diminish to zero. In these cases, an

exponential decay may be more appropriate.

As in the linear decay, a value is defined that controls the rate at which the decay

occurs. The value of (3 ranges from 1.0 to 0.0. Values closer to 1.0 give a quicker

decreasing weight function, while values closer to 0.0 provide for effects that linger

for a longer time.

0.0
1.0
w(ej-l)

1+/3
w(el-1) I

max(~, w(send(ej)))

if ek /. el.,r J

ifj=il\l=k

if e; is not a receive event

if e; is a receive event

Exponentially decreasing weights are assigned to events in a manner similar to

the linear decrease from the previous section. Equation 7 shows that weights assigned
to events not succeeding the anchor are zero while the anchor is assigned a weight

of one. Events causally following the anchor are assigned weights of (1]/3)i' (1]/3)2'

(1]/3)3' and so on.
The weight decreases but, ignoring precision limits, will never reach zero. As in

the linear decay computation, receipt of a message from an event with a higher weight

will increase the weight on the local process. Figure 4 shows the weight decrease using

several values of {3,ranging from 0.01 to 0.10 in increments of 0.01. The graph does not

show the weight increase caused by incoming messages but assumes that no external

messages arrive with a higher weight than the one locally computed. The horizontal

scale represents the number of events that are present between the current event and

the anchor event.

This distribution of weights will correctly model systems where the effects of

events are immediate in most cases, but can linger for an indeterminate amount of

time. It could be the case that the last event in a long running system could be

causally impacted by the first event in the system.

Consider the example execution shown in figure 5 where the computation of

weights is based on an assumed value of a = 0.1 and the indicated anchor event.

Each event is labeled with the assigned weight. Events that do not causally follow

the anchor event are assigned a weight of zero. These weights are faded to focus
attention on the non-zero weight propagation.
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The next definition of the weight function is reliant on a modified version of vector

timestamps, a relative vector 7r of N integers. Only the anchor event and events that

causally succeed the anchor will be labeled with a relative vector. The relative vector

is for determining how many events have occurred on each process since ef. For event

e~, where ef --+ e~, the relative vector of e~, 7r(e~), captures the number of events that

have occurred on each process after the execution of ef and up to the execution of e~.
The 7r for the anchor event ef is set to all zeroes as given in equation (8).

N-l
V 7ri[j] = 0
J=O

Other processes Pj,j -I- i, do not have a 7r until one is propagated to it through inter-

process communication. Processes that possess a relative vector update the values

as shown in equation (9). Message transmission events will effectively piggyback the
relative vector on all outgoing messages.

if 3e : e~= recv( e) then
N-l
V 7rj[m] = max(7rj[m], 7r(e)[m])

m=O

7rj[j] = 7rj[j] + 1



The relative vector captures the total number of events that the anchor event has

impacted. A parameter II is a bound on the impact of the anchor event and states that

after II events have occurred, the effects of the anchor event will be negligible. The

value of II will vary according to the distributed system and the nature of the anchor

event. From the n(eD and the parameter II, the weight for event e; is computed.

if ek /. el.. r J

ifj=i!\l=k

otherwise

Figure 6 provides an example to demonstrate the use of the above equation. The

figure has labels on events that contain both the relative vector attached to the event
and the computed weight of the event. Events that do not have a relative vector are

labeled with [-, - , -] that is faded.

The anchor event on P2 is given a relative vector of all zeroes which results in a
computed weight of 1.0. The relative vector is incremented in the local component

for the next event on P2• A resulting weight is computed as l~Ol = 0.9 indicating a

high relative significance to the anchor. Since the event is a message transmission,

the vector assigned to the event is also attached to the outgoing message. When the

message is received at Po, it is used to update the relative vector of the receive event

which is, in turn, used to compute the weight of the receive event.

Although this technique, as presented, incurs excessive overhead for storage and

computation of a secondary vector timestamp, this technique can be implemented

as a computed vector derived from traditional vector timestamps. For example, the



relative vector of an event can be computed from the vector timestamps of the an-

chor event and the event in question. Equation (11) shows the computation of the

relative vector given that e7 -+ e;. No additional run-time expense is incurred as the

computation can be made post mortem.

As with the piecewise linear decay, excluding the effects of arriving messages,

vector difference will provide a linear decrease in event weights. In contrast to the

piecewise linear decay, weights are monotonically decreasing on each process. A

receive event will not result in a weight increase from the immediate preceding events.

The arrival of a message may increase the components of the relative vector, but the

vector increase results in a lower computed weight.

To better understand the importance of quantitative causality, we examined a prob-

lem common to software engineers - the feature location problem[3, 32, 6, 8]. For a

distributed program, a feature location study has been conducted with and without
quantitative causality.

Features are services that the software provides to its users. Consider a word

processor. Examples of features are word wrap, spell check, font change, etc. To

the user, the features appear to be a single action. However, the implementation



may involvemany different software components cooperatively resolving the request.
An error report or upgrade request initiated by the user is commonly in terms of
features. Software engineers need to understand the code involved in the feature in
order to make the necessary changes. Locating the source code that implements a
particular user accessed feature of the software is non-trivial. An understanding of
the code is also needed before any additional features are added to reduce the chance
of disturbing existing functionality.

We conducted a case study[ll] where the focus was providing a methodology for
the feature location problem. Software components are ranked according to a calcu-
lated value to indicate the component's relevance to the feature under investigation.
In this study, the usefulness of quantitative causality is illustrated by comparing the
exclusion and inclusion of quantitative causality in the ranking of components. Only
the portions of the study relevant to quantitative causality are presented.
4.1. Gunner

The case study used a distributed program entitled Gunner. The Gunner program
is a simple text-based game developed using MPI[21, 22] as a programming exercise
in several courses. It simulates a medieval gunner firing a cannon at a castle. The
program has two main features: move the gun and take a shot.

The software components that implement the move the gun feature, F, were
sought. When the system was executed, 169 software components were traced. The
methodology ranks the components from highest to lowest based on traced executions
of a feature. The ranking distinguishes the more relevant components of the feature
so that key components can be identified.

Fundamental to locating the key software components is the association between
events of a distributed system's execution and the components of the distributed
system. A software component, cq, is the source of an event, ef, if event ef was the
direct result of the execution of cq. The function aO maps the event to the source
component.

Figure 7 shows the system model. On the left is the collection of software compo-
nents that gives a static view of the system. On the right is the dynamic view of the
system as it is defined by a particular execution. A function a maps a dynamic event
to the static component. Although each event will map to a single component, the
opposite is not the case. Consider the multiple events generated when a component
is executed inside the body of a loop.
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A feature is typically not one event but several events, termed an interval of
events for feature F. Relating this back to the concept of an anchor event, instead

of one events constituting an anchor, the multiple feature events collectively form an

anchor. An interval consists of a start event, ea, an end event eb, and all events that

both causally follow the start event and causally precede the end event. Multiple

intervals are taken from multiple executions of the feature. For example, t executions

of the feature would form the set f*.

From the intervals, a component relevance index, Pc is calculated. The value of Pc will
range from 0.0 to 1.0 and is the numeric value for ranking the component.

Initially in the case study, each event in the interval was assigned a weight of one

and all other events are assigned a weight of zero.

w(e) = {
1 if e E f*

o ifert-I*

Pc = I{e : c = 8(e)} I
For the case study of Gunner and the feature move the gun, the feature was

repeatedly executed until Pc rankings stabilized. The top 20 of 169 components are
shown in table 1. The source code was instrumented at function entry and exit as
well as MPI function calls.

There is a clear division of components identified by the difference in Pc values of
0.8885 and 0.1600. Nine of the key components have Pc values that indicate they are

L w(e)
e:c=8{e)



Function Event Type Pc
gunner_display FEntry 1.0000 ± 0.0000
gunner _display FExit 1.0000 ± 0.0000

moveGun FEntry 1.0000 ± 0.0000
moveGun FExit 1.0000 ± 0.0000

moveGun Send 1.0000 ± 0.0000
validate_gunner FEntry 1.0000 ± 0.0000
validate_gunner FExit 1.0000 ± 0.0000
doEmpty Layout WithGunner FEntry 0.8885 ± 0.0368
doEmpty Layout With Gunner FExit 0.8885 ± 0.0368
Process4 Recv 0.1600 ± 0.1260
setGunner FEntry 0.1204 ± 0.1024
writeChar Rows FEntry 0.1006 ± 0.0344
display FExit 0.1003 ± 0.0344
Graphics FEntry 0.1003 ± 0.0344
Graphics FExit 0.1003 ± 0.0344
showBorders FEntry 0.1003 ± 0.0344
showBorders FExit 0.1003 ± 0.0344
writeChar Rows FExit 0.1003 ± 0.0344
writeHorizontalBorder FEntry 0.1003 ± 0.0344
writeHorizontalBorder FExit 0.1003 ± 0.0344

part of the move the gun feature. A problem was found: two other components exist
that are key to the feature but are not highly ranked. The reason for the omission
of key components is that events that causally follow the start event but are not
part of the interval are excluded, i.e., assigned a weight of zero. The events that
causally follow ea and happen in some reasonable short time after the interval should
be considered.

The need for quantifying events was realized so a more accurate ranking could
be accomplished. The addition of a piecewise linear decay was employed. Three
experiments were conducted with T set to 0.5 seconds, 2.0 seconds, and 5.0 seconds.
The correct 11 components are found in all three experiments. The Pc values shown
in table 2 were calculated.



Function Event Type 0.0 see 0.5 see 2.0 see 5.0 see
gunner _display FEntry 1.0000 1.0000 1.0000 1.0000

gunner _display FExit 1.0000 1.0000 1.0000 1.0000

moveGun FExit 1.0000 1.0000 1.0000 1.0000

moveGun FEntry 1.0000 1.0000 1.0000 1.0000

moveGun Send 1.0000 1.0000 1.0000 1.0000

validate_gunner FExit 1.0000 1.0000 1.0000 1.0000

validate-E;unner FEntry 1.0000 1.0000 1.0000 1.0000

doEmptyLayout WithGunner FEntry 0.8885 0.8885 0.8885 0.8889

doEmpty Layout WithGunner FExit 0.8885 0.8885 0.8885 0.8889

Process4 Recv 0.1600 0.9950 0.9950 0.9950

setGunner FEntry 0.1204 0.7405 0.8635 0.8882

writeChar Rows FEntry 0.1006 0.1006 0.1026 0.1352

display FExit 0.1003 0.1003 0.1022 0.1335
Graphics FExit 0.1003 0.1003 0.1028 0.1372

Graphics FEntry 0.1003 0.1003 0.1028 0.1372
showBorders FExit 0.1003 0.1003 0.1028 0.1372
showBorders FEntry 0.1003 0.1003 0.1028 0.1372
writeCharRows FExit 0.1003 0.1003 0.1023 0.1342
writeHorizontalBorder FExit 0.1003 0.1003 0.1023 0.1342
writeHorizontalBorder FEntry 0.1003 0.1003 0.1024 0.1349

The well-defined tertiary relationships between a pair of events in the executions of

a distributed system are either "preceding', "succeeding", or "concurrenf'. We have

developed a novel approach for event comparison that provides a quantitative measure

of the timeliness of events in conjunction with the causal relationships. Quantitative
causality assigns weights to events to quantify the timeliness of the events. This paper

focuses on events that causally succeed an anchor event. The QCSE model provides
a mechanism for assigning weights to events.

In QCSE, events that occur within close temporal proximity are given a greater

weight than events that occur further apart in time. Computation of event weights

relies on a function that is customizable according to the type of system being ex-

ecuted and the purpose of the weights. Three weight functions are provided. Each
function is parametrized to control the rate of decrease. This parametrization allows



tailoring the weights to a particular distributed system behavior. For example, the

parametrization can be customized for the running time of the system or the longevity

of an event's impact.
Linear decreasing weights are provided by the piecewise linear decay function. A

parameter determines the slope of the decay. The function is piecewise in that the

arrival of a message could convey more timely information and cause the local weight

to increase before returning to the linear decrease.
A parametrized Exponential decay was defined to provide a lingering weight that

approaches zero. We expect this weight function to more accurately represent the

declining relevance of causal relationships in some system executions. The rate of

decrease is controlled by a single parameter with the effects of example values shown.

Arriving message can cause the local event weight to increase.

A vector time that is relative to the anchor event is used to compute weights for

events in the third function. The vector tracks the number of events in all processes

that happen between the anchor event and the current event. A proportion function

is applied to the relevant vector to determine the weight to be assigned. Arriving mes-

sages will cause the weight to decrease providing a monotonically decreasing function.

The parameter determines the slope of the decay functions.

To demonstrate the utility of quantitative causality, we provide a case study

centered around the feature location problem. The study involves a small distributed

game called Gunner. The game was analyzed to locate a specific feature. The analysis

was performed in two different ways: once without using quantitative causality and

then with quantitative causality. Quantitative causality enabled the identification of

all key components where the original feature location analysis failed.
5.1. Future Work

The QCSE model propagated weights for events succeeding an anchor event. Another

model, Quantitative Causality for Preceding Events (QCPE), is currently being de-

veloped to assign weights to events that causally precede the anchor event. This will

be analogous to QCSE in that weights will reflect the timeliness of the events to the

anchor. If the anchor event is the symptom of a bug, the quantifying of preceding

events could form a set of those first implicated as the source of the error and rank the

possible cause locations. Similar functions, piece-wise linear, exponential and vector

difference, should be appropriate for this model.

To complete the triad of distributed system event relationships we will explore

the use of quantitative measures applied to concurrent relationships. Quantifying the

concurrency of an event with respect to an anchor event would provide a means to

reason globally about the state of the system. An immediate challenge with quanti-



tative concurrency is that concurrency is not transitive. Assigned weights can not be
propagated as they are in the causal model. Regions of concurrency with respect to
an anchor event can be identified and the weights computed over that region.

A simple example of quantitative concurrency considers two concurrent events
from different processors that, if executed simultaneously, could cause deadlock. The
definition of concurrency states whether or not the possibility exists for simultaneous
execution, not how likely the occurrence. We will develop a means of assigning a
weight to pairs of concurrent events to indicate the likelihood of simultaneity so the
most likely source of errors can be the focus.

Potential case studies to examine the implementation of assigned weights are
under consideration. One, receiving current funding from Northrup-Grumman, will
examine distributed system traces using quantitative causality and concurrency met-
rics for design recovery.
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