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ABSTRACT. In the present work we examine the Photothermal Radiometric (PTR)
Signal from silicon wafers subject to a modulated light source. The stationary one-
dimensional equations are solved numerically using a Galerkin Spectral Method. Shifted
Chebyshev Polynomials are used as basis functions and the mixed boundary conditions
are imposed via bordering. The scheme's overall convergence and accuracy are verified.
Both the linear and nonlinear models are considered and the results confirm the predic-
tions of the physical theory, regarding the dependence of the PTR signal on the governing
parameters.
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Since the early 1980's, several photothermal techniques have been devel-
oped for the characterization of different classes of materials, ranging from
biological samples to solar cells, as well as for imaging of subsurface defects
in metal lines, and implanted semiconductor wafers. The contactless and
non-destructive character of photothermal techniques is their main advan-
tage over other traditional methods of characterization and has made some
of the photothermal techniques very popular in the semiconductor industry.

Photothermal radiometry (PTR) [2] is based on the detection of the
blackbody radiation emitted from a material excited by a modulated light
source and it is shown to be extremely sensitive [3] to the electronic prop-
erties of semiconductors and more specifically: carrier lifetime, and electron
diffusivity.
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When a semiconductor is illuminated with super bandgap light of pho-
ton energy, hv , electrons in the valence band absorb the incident energy
and cross the forbidden energy gap (Eg) towards the conduction band, leav-
ing an equal number of holes behind in the valence band. On a picosecond
time scale electrons and free carriers become thermalised with the lattice
through phonon interaction, releasing the excess energy hv - Eg, and lie
on the bottom of conduction band (electrons) and top of the valence band
(holes). In indirect band gap semiconductors like silicon, electrons and holes
diffuse for a short time known as carrier lifetime Teff, before they recombine
via non-radiative process releasing energy Eg, to the lattice.

When the illumination of the semiconductor is harmonically modulated,
wavelike solutions to the electronic carrier's diffusion equation (2.1) and
heat diffusion equation (2.2) exist. These solutions are known as free carrier
waves and thermal waves respectively. Thermalization and recombination
result in the rise of the local temperature of the semiconductor and a conse-
quent modification of Planck's distribution, resulting in a modulated black-
body emission. The photoexcited free carriers consist an additional source
of infrared radiation because they increase the infrared absorption of the
semiconductor. The reason is that according to Kirchhoff's Law of detailed
balance the rate of emission of black body radiation per wavelength interval
at equilibrium with its surroundings is equal to the rate of absorption of
incident radiation for the same wavelength interval.

In this work we develop a fast and accurate Galerkin type spectral
method, to investigate various aspects of the linear model such as the de-
pendence of the PTR signal on the modulation frequency of the excitation
beam and the free carrier lifetime. In addition, the effect of the non-linearity
on the solutions of the heat and free carrier diffusion equations is examined.
This study of the PTR signal dependence on the physical parameters re-
quires many runs of the numerical code, which makes an efficient algorithm
a necessity.

2.1. Simplifications.

The PTR (Photothermal Radiometric) signal in semiconductors can be
divided into two main contributions, depending on the local variations of
temperature !::J.Tand free carrier concentration !::J.N. In order to obtain the
PTR signal we must first solve the plasma and thermal diffusion equations
for an isotropic medium, which in their full dimensional form read [4]:

a(!::J.N) =DN'V2(!::J.N)- !::J.N + ano!::J.T +cI>'ljJp(r)o:e-azeiwt,
at Teff or Teff



(2.3)
a(~N) IDN a = Sl . ~N(z = 0)

z z=o

and
(2.4)

a(~T) I
K, a = Sl Eg • ~N(z = 0)

z z=o

a(~N) I' -DN a = S2 . ~N(z = L)z z=L

a(~T) I
' -K, a = S2Eg· ~N(z = L),

z z=L

where DN = 24· 1O-4m2 j sand DT = 9 . 10-5m2 j s are the ambipolar
electron diffusivity and thermal diffusivity respectively; no is the equilibrium
free-carrier density, w is the angular frequency (w = 27[}, where f is the
modulation frequency of the excitation beam), K, = 140WjmK is the thermal
conductivity, Eg = 1.79.10-19 J is the band gap energy, hll = 3.86.10-19 J is
the photon energy of the pump beam, t is time and a = 3·106m-1 the optical
absorption coefficient of the sample. ep is the incident photon flux which is

given by ep = P ~~1r~2R), where P is the incident light power, R = 0.3

the reflectivity of the material at the excitation wavelength, d = 1O-4m the
excitation beam radius and wp(r) = exp(-2r2jd2) is the Gaussian profile
of the beam intensity. L = 2 . 1O-3m, is the thickness of the silicon wafer.

The quantity Tef! is the effective recombination lifetime of the free car-
riers, and is given by

(2.5) _1_ = ~ + 1'*I~NI2.
Tef! T

The constant term T is the recombination lifetime due to the so-called
Shockley-Read-Hall recombination mode which is independent of the free
carrier concentration. The nonlinear term is due to Auger recombination
[5, 6]. This is a three particle interaction where a conduction band elec-
tron and a valence band hole recombine and the excess energy is given to
a third particle, electron or hole. The Auger mode occurs at elevated free
carrier injection levels and its lifetime is given by TAuger = 1jh*I~NI2)
(complex formulation). The parameter 1'* = 3.88· 1O-43m6s-1 combined
with the characteristic magnitude of ~N describes the relative impact of
the nonlinear term.

The total PTR signal is given by the relation
(2.6)

SPTR = SN + ST, where SN = CN 1L
~Ndz and ST = CT 1L

~Tdz



are the total free carrier and thermal contributions respectively, and the
free carrier and thermal coefficients have values eN = 1, CT = 1023for the
purposes of this work.

Solving the full form of the governing equations poses an extremely
difficult task, so we take advantage of various physical assumptions and
focus just on certain sub cases of the model. When working at relatively low
temperatures thermal activation, (the third term in the r.h.s. of (2.1) ) can
be ignored, effectively decoupling our equations.

Under the assumption that the free carriers recombine almost instan-
taneously after the excitation beam is stopped, the temporal dependence of
the free carrier density is negligible. In addition, assuming that the exci-
tation beam radius is of the order of mm, which is much greater than the
thermal and free carrier wavelengths in silicon, the thermal and free carrier
waves propagate only in one dimension (z-direction) [7].

Hence, the dimensional 1-D equations for the quasi-stationary vibra-
tions are

(2.7)

(2.8)
d2T* iW*T* EgN*_ a*P(l-R)(hv-Eg) -o*z* *Eg1N*12N*---- +- ---------~e +'Y-
dz*2 DT K,T hVK,1rd2 K,'

where 6.N = N*(z*)eiwt, 6.T = T*(z*)eiwt and the * denotes dimensional
variables.

The boundary conditions are of the third kind (Robin conditions):

DN dN** I = SrN*(O) and DN dN** I = -S2N*(L)
dz z*=o dz z*=L

d2N* 1+ iW*TN* =
dz*2 - DNT

-K, dT* I = S* E N*(O)
dz* z*=o 1 9

and K,dd
T

:I = S2E9N*(L).
Z z*=L

2.2. Nondimensionalization.
Dimensionless variables are introduced according to the scheme

() * A * A * d 1d
2.11 N = NN, T = TT, z = Lz, dz* = Ldz'

where L = 2· 1O-3m, N = 1022m-3, T = O.lK. The values for Nand T
have been selected using typical values of the dimensional solutions N* and
T*. This leads to the dimensionless equations

(2.12) ~z~ - 8(1 + iO)N = _Ae-oz + 'YINI2 N,

d2T
-2 - (i08T)T + (3N = -ATe-oz + ILINI2N,
dz



dNj-d = 81N(0)z z=o

dTI-- = 83N(0)
dz z=o

dNI- = -82N(1),
dz z=1

dTI-d = 84N(1).
z z=1

L2 L2 2 A

0: = o:*L = 6 . 103 ,. ,. (3 = EgL N,
, u = DnT' UT = TDT' "'TT

\ _ 0:* P L2 N-1 _ 3.24 06 \ _ 0:* P L2(hv - Eg) _ 6.21 7
A - 2 - -- • 1 , AT - A - ---- • 10

hV1rd DN 1r Thv1rD2", 3.86· 141r

LSi 10 LS2 1 Si EgN L 3.58
81= DN = 12,82= DN = 12' 83= ",i' 14

S2E9N L 0.358
84 = A =

",T 14

Considering that usually T E [10-6,10-4] we have the following range of
values: bE [16.66,1666.66], bT E [444.44,44444.44], (3E [5.114,511.429].

There are significant advantages in treating the non-dimensional prob-
lem. Firstly, we are able to fully appreciate the effect of the physical pa-
rameters on the solutions. Secondly, the magnitude of these parameters
is reduced significantly which is useful for computational purposes. And
thirdly, the differentiation matrices become independent of L.

At first, we concentrate on the linear model and thus we set Tef! = T.

This is equivalent to setting "1* = 0 in (2.7, 2.8) and "I = J1 = 0 in (2.12,
2.13).

The dimensionless linear boundary value problem reads

d2~ _ (H1bT) T + (3N = -ATe-az,
dz

subject to (2.14, 2.15).

It possesses the following analytic solution:



-A -cl(3 -c2(3 -AT - A(3
A = 2 2 ' WI = 2 2' W2 = 2 2' W3 = 2 2'a-~ ~-~ ~-~ a-~

_ A [e-a(a - 82)(ON - 81) - eO"N(a + 81)(O"N + 82)]

C2 - eO"N(81 + O"N)(82 + O"N) + e-O"N (82 - O"N)(O"N - 8d'

A(a + 8d + C2(81 + O"N)
Cl = ,

O"N - 81

-W10"NeO"N + W20"Ne-O"N + aW3e-a + 84(c1eO"N + C2e-O"N + Ae-a)
~= T T

O"T(eO" - e-O" )

_e-O"T [( -WI + W2)O"N + aW3 - 83(Cl + C2 + A)]
+ T T ,

O"T(eO" - e-O" )

1
C4 = - [C30"T + WIO"N - W20"N - aW3 + 83(Cl + C2 + A)].

O"T

3.1. The Orthogonal System of Functions.

The numerical scheme is a Galerkin Spectral Method using shifted
Chebyshev Polynomials as basis functions. This choice was made because
the problem is set on the finite interval [0,1] and due to the fact that we
also treat the nonlinear model, which contains cubic nonlinear terms. Also,
Chebyshev expansions of well-behaved functions are expected to have geo-
metric (or exponential) convergence, a feature that is very important in
constructing a fast and accurate scheme.

Chebyshev Polynomials of the first kind are defined by the trigonometric
relation

(3.1) Tn(x) = cosnB where x = cosB.

They form a system of orthogonal functions on [-1,1], with respect to the
weight function

1
w(x)= ~.

V1- x2

The orthogonality relation is:

11Ti(X)Tj(x) dx = { ~
-1 VI - x2 2

7f

i=lj
i=j=l0
i = j = O.

00

F(x) = 2: fnTn(x),
n=O



where the Fourier coefficients are the inner products
1

In = < F(x), Tn(x) >w = ~J F~) dx for n 2: 1
7r I-x
-1

1

10 = < F(x), To(x) >w = ~J F~) dx for n = O.
7r 1- x2
-1

We define the shifted Chebyshev polynomials T;:(x) on [0,1] by

(3.4) T;:(x) = Tn(2x - 1),
where Tn(x) denotes the usual Chebyshev polynomials. As expected, the
T;: form an orthogonal system on [0,1], but with respect to the translated
weight function

w*(x) = w(2x _ 1) = 1
Jl - (2x - 1)2

The orthogonality relation becomes

11 2Tt(x)T~(x) { ~
J dx =

o Jl - (2x - 1)2 2
7r

i=l=j
i=j=l=0
i = j = o.

00

F(x) = L InT;:(x),
n=O

where the Fourier coefficients are the inner products
1

In = < F(x), T;:(x) >w* = ~ J 2 F(x)T;:(x) dx for n 2: 1
7r Jl - (2x - 1)2

o
1

F( ) rr>*() - ~ J 2 F(x)TO' (x) d< x ,.Lo X >w* - ---;===== X
7r Jl - (2x - 1)2

o

The appropriate formulas for expanding the derivatives of the T;: into
a linear combination of Tt are
(3.7)

n

T;:" (x) = LXni1i*(X) where
i=O

n

T;:' (x) = L VniTt(X)
i=O

where Vni ~ {



and Ci = 1 for i = 1, ... ,n and CO = ~. They are easily derived in exactly
the same manner as their counterparts for the regular Tn functions, except
that for each derivative there is a multiplication by a factor of 2.
The product formula

T-* (x)T'!' (x) = ~ [T:" . + T-*+ .]~ J 2 ~-J ~ J

It is essential for the treatment of the nonlinear term, as will be seen in
subsection 4.2.

3.2. Derivation of the Galerkin Equations.

In order for us to obtain the Galerkin Equations we develop the sought
functions into spectral series with respect to T;:(z):

I

N(z) = 2:a/li*(z)
i=O

I

T(z) = 2:biTj*(z),
i=O

where the unknown coefficients ai and bi are complex-valued. We prefer to
work in the complex domain because separating the sought functions into
real and imaginary parts

and developing them into series would have led to a coupled system.
We introduce series (3.11) into Eqns. (2.16, 2.17), multiply all terms by

the test functions Tl(z), j = 0,1,2, ... ,I and integrate over [0,1]. Making
use of the orthogonality of the T;:(z) functions, simplifying the constants
7r /2 for j = 1,2, ... I and 7r for j = 0 respectively and utilizing the formulas
compiled in the previous subsection, we obtain the following linear algebraic
systems of I + 1 equations with I + 1 unknowns for the coefficients ai and
bi:

I2:Xijai - (JJvaj = - Afj,
i=O

I2:Xijbi - (J~bj = -AT fj - {3aj,
i=O

We consider the above as two separate systems because (3.12) can be
solved first and then the obtained values of the ai may be substituted into
(3.13).



The vector !J is due to the Galerkin expansion of the function e-az and
is defined by

1

J 2e-azT*(z)
f· - J dz
J - 1 _ (2z _ 1)2

o
Utilizing the substitution cosO = 2z - 1 and (3.10) we obtain

1 7r

J 2e-aZrl«z) J '"fj = J 2 dz = e-'2(l+cos0) cos (jO)dO
1-(2z-1)

o 0
We then evaluate the trigonometric integral using the trapezoidal rule. The
reason for this is that due to the periodic integrand the trapezoidal rule
converges faster than any power of h, where h is the distance between two
consecutive integration nodes (see [8]). Furthermore, we avoid any difficul-
ties that may arise due to the singularities observed in the original integral.

The boundary conditions (2.14, 2.15) are imposed via bordering (see
[9]), i.e. the last two rows of the matrices and r.h.s. vectors in (3.12) and
(3.13) are replaced by

(3.15) [Sl( -l)j - t Vij( _l)i] aj = 0 ,
t=O

- [S2 - t Vij] aj = 0
t=O

When the boundary conditions are implemented as we have just de-
scribed, the technique is called the tau method in some of the literature
([10]). Despite the fact that this destroys the triangularity of the matrices,
it improves their condition numbers.

The two linear systems we have obtained are complex-valued. The
matrices are inverted with the aid of the IMSL routine DLINCG.

4.1. The Linear Model.

The scheme's overall accuracy is verified by comparing the numerical
solution to the analytic solution (2.18),(2.19) of the linear system. The case
demonstrated in Fig. 1 is P = 0.025W, T = 1O-5s, f = 100Hz. The modulus
of the absolute error does not exceed 0.1% for the free carrier concentration
Nand 0.0000001 % for the temperature T.

The following figure shows the convergence rate of our scheme for the
same case. This is found to be geometric as predicted by the theory of
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FIGURE 1. Modulus of absolute error in solving the linear
system. Left panel: free carrier diffusion; Right panel: tem-
perature.

Chebyshev spectral series. The decay of the coefficients 380-400 is superge-
ometric, until the order of the round-off error is reached.
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FIGURE 2. Convergence of the spectral series. Left panel:
solid line: lajl, dashed line: the best fit curve lajl =
100exp(-0.09j); Right panel: solid line: Ibjl, dashed line:
the best fit curve Ibjl = 40exp (-0.09i).

The calculated behavior of the PTR signal amplitude vs the frequency
(see Fig. 3) is in very good agreement with the predictions of the theory.
All the characteristic features of the thermal wave contribution (1/1 de-
pendence) at lower frequencies, then the plateau of free carrier dominance
and finally the free carrier diffusion regime initiated at the frequency where
271" IT :::::J 1 are evident in the graphs for two different values of carrier lifetime.

The PTR phase difference of the thermal wave contribution is inde-
pendent from the modulation frequency and is always at -900 relative to
excitation, while the phase of the free carriers depends on the modulation
frequency I. The free carriers are in phase with the excitation at low fre-
quencies (271"1 < T) and as the modulation frequency is increasing their phase
moves towards -900

• In Fig. 4 the phase of the PTR signal is presented as



s-
$ 16+022
'""C:E
0.
E
«l 1e+021a:
I-a.

1e+020
100 1000 10000 100oo01e+006

frequency (Hz)

~ 1e+022
~
..'"
~
«l
a:
b::

1e+020
100 1000 10000 1000001e+006

frequency (Hz)

FIGURE3. PTR signal amplitude dependence on frequency
f· Note the characteristic bend at f ~ 2;'7' Left panel:
7 = 10-58; Right panel: 7 = 10-68.

a function of the modulation frequency for two values of the carrier lifetime;
7 = 10-58 and 7 = 10-68. For small values of modulation frequency the
thermal contribution is stronger than the free carrier one and hence the
phase is at -900

• As the modulation frequency is increasing above 100Hz
the free carrier contribution is dominating the signal and the phase is mov-
ing towards 00

• For the case of longer lifetime this transition from -900 to
00 happens earlier than the case of shorter lifetime. At higher frequencies
the phase of the signal (dominated from the free carriers) is moving back to
-900 and for the case of the longer lifetime this happens earlier compared
to the short lifetime.
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FIGURE 4. PTR signal phase dependence on frequency f.
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4.2. The Nonlinear Model. The dimensionall-D equations for the non-
linear case are (2.7, 2.8) subject to the boundary conditions (2.9, 2.10). It
may seem that with "(* having such a small value, the nonlinearity can al-
ways be disregarded. However, this is not the case since a typical value (see



subsection 2.2) for the dimensional solution N* is of order 1022 and thus
')'*IN*12 N* ~ 0 (1023) ~ N*.

Recall that the respective nondimensional boundary value problem is
. *L2iV2 ')'*E L2iV3

gIven by (2.12, 2.13), where')' = ] D = 1.552, p, = 9 x ~

N ~T
0.0198 and the boundary conditions are given by (2.14, 2.15). The values of
these dimensionless parameters clearly demonstrate the significance of the
nonlinearity for the aforementioned values of N*.

Following the same procedure as for the linear case (cf. Section 3 ) we
arrive at

I I I 1
(4.1) L Xijai - (/jyaj = -Ali + ')' L L "2siak(c5i+k,j + c5li-kl,j)

i=O i=O k=O

I 2 I I 1
(4.2) L Xijbi - CTTbj = -AT Ii - f3aj - p,L L "2siak(c5i+k,j + c5li-kl,j)

i=O i=O k=O

where CTFv= c5(1 + in) and CT~= inc5T.
I I

The term Si = ~ 2:: 2:: alam(c5l+m,i +c5II-ml,i) originates from the inner
I=Om=O

product < IN(z)l2,Tt(z) >w* = < NN,Tt(z) >w*. The terms Si and the
double sums in the r.h.s of (4.1) and (4.2) are due to the representation of
the nonlinear term and are obtained with the aid of (3.9).

Again, to impose the boundary conditions bordering is utilized and the
last two equations in systems (4.1) and (4.2) are replaced by (3.15) and
(3.16) respectively. The resulting algebraic system for a = {aj}]=o may be
written in matrix form as

where 9 denotes the nonlinear term. It is solved following a semi-implicit
scheme and simple iterations, i.e.

aln+1] = ew-1 (I + gIn]) + (1 - e)aln]

The relaxation parameter e which assumes values 0 < e :::;1 is especially
useful for the convergence of the simple iterations in the upper range of the
modulation frequency values. Note that the matrix is only inverted once
before the beginning of the simple iterations which is very important for the
efficiency of the scheme.

Since there is no exact analytic solution of the nonlinear dynamical sys-
tem (2.12), (2.13) is known, the assessment of the nonlinear approximation
(4.1), (4.2) is limited to (i) verifying the convergence rate of the Galerkin
spectral series; and (ii) examining whether the predictions of the physical
theory (PhotoThermal Radiometry) are mirrored in the numerical calcula-
tions.
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FIGURE5. Total free carrier contribution amplitude 18NI as
a function of power. Solid line: linear. Dashed line: nonlin-
ear.

Fig. 5 depicts the dependence of the total free carrier contribution
8N = J~N*(z)dz as a function of power. The nonlinear behavior is al-
ready evident at incident power 0.01W (corresponding to an energy flux
of 31.8 W/cm2). As incident flux is increased, a higher population of free
carriers is generated. This results in a decrease of free carrier lifetime (see
Eqn. 2.5) and consequently the free carrier population is less than the one
predicted by the linear model.

In Fig. 6 we demonstrate the exponential convergence rate of the spec-
tral series coefficients for P = O.lW, T = 5.10-68, f = 4000Hz, DN = 10-4,

parameter values for which their is a pronounced nonlinear effect (see Fig. 5).
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FIGURE6. Left panel: Convergence of the spectral series for
the free carriers. Solid line: laj I, dashed line: the best fit
curve lajl = 150exp(-0.075j). Right panel: Convergence
of the spectral series for the temperature. Solid line: Ibjl,
dashed line: the best fit curve Ibjl = 2exp(-0.075j).



The free carrier density at the surface of the sample N(O) is yet another
quantity of physical and mathematical importance for our comparison of the
linear and nonlinear models. A simulation of the free carrier density at the
surface of the sample is shown in Fig. 7 as a function of the modulation
frequency, for both the linear and non-linear cases. The value of the exci-
tation power used is P = 0.1W that lies beyond the value that defines the
transition to the non-linear regime as we have already established.

Fig. 7 presents two important features. The first is the decreased value
of the amplitude corresponding to the non-linear model relative to the linear
one, something that is evident from Fig. 5. The other important feature is
the shift of the characteristic frequency at which the slope changes, towards
higher values. The fact that the characteristic frequency is inversely pro-
portional to the carrier lifetime is in accordance to the decrease of carrier
lifetime due to the Auger recombination mechanism, whose importance is
dictated from the excitation power increase. The phenomenon of frequency
shift towards higher values is even more evident in the free carrier density
phase graph. The resolution of phase is in general higher in all photothermal
experiments.

For high values of modulation frequency we observe that the linear
and non linear model converge, since the variation of both amplitude and
phase depends mostly on the electronic diffusivity and surface recombination
velocity, parameters that are the same in both cases.
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FIGURE 7. Left panel: Amplitude IN(O)I as a function of
frequency. Right panel: Phase of surface free carriers. Solid
line: nonlinear, dashed line: linear.

In the present work, a Galerkin type spectral scheme is constructed
for the numerical investigation of the PhotoThermal Radiometric Signal
from silicon wafers subject to a modulated light source. Following physical
assumptions, the full time-dependent 2-D system of PDEs is reduced to a
dynamical system and the obtained equations are nondimensionalized.



Shifted Chebyshev polynomials are used as basis functions and the
boundary conditions are imposed via bordering. The convergence rate of
the method for both the linear and nonlinear systems is found to be expo-
nential. The spectral solution is found to be in good agreement with the
available exact analytic solution of the linear model.

The results obtained for both the linear and nonlinear models match
the predictions of Photothermal Radiometry theory. Firstly, for the lin-
ear model, the PTR amplitude and phase dependence on the modulation
frequency clearly have the expected bend and peak respectively at the char-
acteristic frequency value f ~ 2;7' Secondly, for the nonlinear model,
we have the expected decrease in free carrier population and shift of the
characteristic frequency compared to the linear case.

Thus, we have constructed and tested an efficient and accurate method
which can also be used for multilayer heterostructures.
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